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Notation

For ordinals α, β, γ, the arrow notation

γ → (β, α)2

denotes the statement that for all f : [γ]2 → 2 either there is
B ⊆ γ of order type β such that f [B]2 = 0 or there is A ⊆ γ of
order type α such that f [A]2 = 1.

Theorem (Sierpiński 1933, Erdös-Rado 1956)

γ 6→ (ω1, ω1)2 iff γ < (2ℵ0)+.

Corollary

For γ ≤ 2ℵ0 ,
γ → (γ, α)2 implies α < ω1.
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Theorem (Erdös-Dushnik-Miller 1940)

γ → (γ, ω)2 for all infinite cardinals γ.

Theorem (Erdös-Rado 1956)

γ → (γ, ω + 1)2 for all regular cardinals γ.

Problem (Erdöds-Rado, 1956)

Does γ → (γ, ω + 1)2 for all γ of cofinality > ω?

Theorem (Shelah, 2009)

γ → (γ, ω + 1)2 when γ > 2cf(γ) and cf(γ) > ω.
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Problem (Erdös-Rado 1956)

Does ω1 → (ω1, ω + 2)2 hold?

Here, we shall consider the following more general question.

Problem
When does γ → (γ, α)2 hold for γ ≤ 2ℵ0 and α < ω1?

Theorem (Hajnal 1960)

CH implies ω1 6→ (ω1, ω + 2)2.

Theorem (T., 1983)

PFA implies ω1 → (ω1, α)2 for all α < ω1.
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Corollaries of the proof

Corollary (T., 1983, 1999)

For every finite colouring

[ω1]2 = K0 ∪ K1 ∪ · · · ∪ Kn

and for every α < ω1 either

1. there exist A,B ⊆ ω1 of order type α and ω1, respectively,
such that A < B and [A]2 ∪ (A× B) ⊆ K0, or

2. there is i = 1, 2, ..., n and a set C ⊆ ω1 of order type α such
that [C ]2 ⊆ Ki .

Corollary (Baumgartner-Hajnal, 1973)

ω1 → (α)2k for all α < ω1 and k < ω.
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The variation γ → (γ, ω : 2)2

The arrow notation
γ → (γ, ω : 2)2

denotes the statement that for every f : [γ]2 → 2 either there is
C ⊆ γ of order-type (cardinality) γ such that f [C ]2 = 0 or there
exist sets A,B ⊆ γ of order type ω and 2, respectively, such that
A < B and f (A× B) = 1.

Remark
Suppose f : [γ]2 → 2 is a witness to γ 6→ (γ, ω : 2)2. Let P be the
poset of all finite C ⊆ γ such that such that f [C ]2 = 0. Then P is
a ccc poset without a subset of size γ of pairwise compatible
conditions.

Theorem (Hajnal, 1960)

CH implies ω1 6→ (ω1, ω : 2)2.
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The bounding number

Recall that

b = min{|A| : A ⊆ NN and (∀b ∈ NN)(∃a ∈ A)a �∗ b},

where ≤∗ is the ordering of eventual dominance in NN.

Theorem (T., 1984, 1989)

b = ω1 implies b 6→ (b, ω : 2)2.

Theorem (T., 1984, 1989)

Assume b = ω1 and let X be any separable metric space of
cardinality ℵ1. Then for each x ∈ X we can choose a sequence
H(x) = {hn(x) : n < ω} converging to x such that for every
uncountable Y ⊆ X there exist x 6= y in Y such that x ∈ H(y).

Remark
Defining [ω1]2 = K0 ∪ K1 by letting {x , y} ∈ K1 iff x ∈ H(y) or
y ∈ H(x) we get ω1 6→ (ω1, ω : 2)2.
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The set-mapping

Fix unbounded A ⊆ NN well-ordered by <∗ in order type ω1.
For b ∈ A fix finite-to-one,

eb : {a ∈ A : a <∗ b} → N

such that

|{c <∗ a : ea(c) 6= eb(c)}| < ℵ0 for a <∗ b in A.

Define

H : A→ [A]≤ℵ0

by

H(b) = {a <∗ b : eb(a) ≤ b(∆(a, b))}.
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Corollaries of the proof

Corollary (T., 1989)

If b = ω1 the topology of any separable metric space of cardinality
ℵ1 can be refined to a locally countable locally compact topology
that is hereditarily separable in all finite powers.

Corollary (T., 1989, 2006)

If b = ω1 then there is a scattered compactum K whose function
space C (K ) contains no uncountable bi-orthogonal systems.

Remark
Prior to this Kunen(1984) and Shelah(1985) were able to construct
such Banach spaces using CH and ♦, respectively.
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Problem
Does b = ω2 imply b 6→ (b, ω : 2)2?

Theorem (T., 1985)

b = ω3 does not imply b 6→ (b, ω : 2)2.

Problem
What properties of a given carinal γ ≤ 2ℵ0 guarantee that

γ → (γ, ω + 2)2 or γ → (γ, ω : 2)2

holds? What about
γ → (γ, α)2

for all α < ω1? What if γ = b?

Proposition (Folklore?)

If γ carries a ℵ1-saturated normal ideal then γ → (γ, ω : 2)2.



Problem
Does b = ω2 imply b 6→ (b, ω : 2)2?

Theorem (T., 1985)

b = ω3 does not imply b 6→ (b, ω : 2)2.

Problem
What properties of a given carinal γ ≤ 2ℵ0 guarantee that

γ → (γ, ω + 2)2 or γ → (γ, ω : 2)2

holds? What about
γ → (γ, α)2

for all α < ω1? What if γ = b?

Proposition (Folklore?)

If γ carries a ℵ1-saturated normal ideal then γ → (γ, ω : 2)2.



Problem
Does b = ω2 imply b 6→ (b, ω : 2)2?

Theorem (T., 1985)

b = ω3 does not imply b 6→ (b, ω : 2)2.

Problem
What properties of a given carinal γ ≤ 2ℵ0 guarantee that

γ → (γ, ω + 2)2 or γ → (γ, ω : 2)2

holds? What about
γ → (γ, α)2

for all α < ω1? What if γ = b?

Proposition (Folklore?)

If γ carries a ℵ1-saturated normal ideal then γ → (γ, ω : 2)2.



Problem
Does b = ω2 imply b 6→ (b, ω : 2)2?

Theorem (T., 1985)

b = ω3 does not imply b 6→ (b, ω : 2)2.

Problem
What properties of a given carinal γ ≤ 2ℵ0 guarantee that

γ → (γ, ω + 2)2 or γ → (γ, ω : 2)2

holds? What about
γ → (γ, α)2

for all α < ω1? What if γ = b?

Proposition (Folklore?)

If γ carries a ℵ1-saturated normal ideal then γ → (γ, ω : 2)2.



One Cohen real and ω1 6→ (ω1, ω : 2)2

Let C be the standard poset for adding a single Cohen real.

Theorem (T., 1984)

C forces ω1 6→ (ω1, ω : 2)2.

Fix A ⊆ NN with well-ordering <w such that otp(A, <w ) = ω1.
For each b ∈ A fix finite-to-one,

eb : {a ∈ A : a <w b} → N

such that

|{c <w a : ea(c) 6= eb(c)}| < ℵ0 for a <w b in A.
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For a real r ∈ NN, define

Hr : A→ [A]≤ℵ0

by

Hr (b) = {a <w b : eb(a) ≤ r(∆(a, b))}

Then Hr (b) is either finite or it converges to b.

Lemma
If r is a Cohen real the set mapping Hr has no uncountable free
subsets of A.

Remark
This fact fails for random reals, so one can ask the following.

Problem
Assume PFA and let R be any measure algebra. Does R force
ω1 → (ω1, α)2 for all α < ω1?
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Martin’s axiom

Theorem (Laver 1975)

MA implies γ → (γ, ω : 2)2 for all regular γ < 2ℵ0 .

Theorem (Hajnal 1960, Laver 1975)

MA plus 2ℵ0 ≤ ℵ2 imply 2ℵ0 6→ (2ℵ0 , ω : 2)2.

Theorem (T., 1985)

MA plus 2ℵ0 = ℵ3 do not imply 2ℵ0 6→ (2ℵ0 , ω : 2)2.

Proposition

MA plus 2ℵ0 = ℵ3 do not imply 2ℵ0 → (2ℵ0 , ω : 2)2.

Proof.
Start with 2ℵ0 = 2ℵ2 = ℵ3 and with a counterexample to
2ℵ0 → (2ℵ0 , ω : 2)2 and force MA in the usual way.
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Forcing γ 6→ (γ, ω : 2)2 versus forcing γ 6→ (γ, ω + 2)2

Proposition

No ccc poset can force γ 6→ (γ, ω : 2)2 for an arbitrary regular
cardinal γ.

Proof.
If γ is measurable, the normal measure on γ generates an
ℵ1-saturated ideal in the ccc forcing extension and, as noted
above, this implies γ → (γ, ω : 2)2

Theorem (T., 1985)

For every regular uncountable cardinal γ there is a ccc poset of
cardinality γ forcing γ 6→ (γ, ω + 2)2 and adding at least γ new
reals.

Corollary

γ → (γ, ω : 2)2 does not imply γ → (γ, ω + 2)2
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Theorem (Baumgartner 1969, 1976)

Assuming GCH for every regular cardinal γ there is a cardinal
preserving poset which forces 2ℵ0 = γ+ and 2ℵ0 6→ (2ℵ0 , ω : 2)2.

Theorem (Laver 1975)

Assuming GCH for every Mahlo cardinal γ there is a cardinal
preserving poset which forces 2ℵ0 = γ and 2ℵ0 6→ (2ℵ0 , ω : 2)2.

Question
Can we have 2ℵ0 6→ (2ℵ0 , ω : 2)2 with the continuum a successor
of a singular cardinal?
How about 2ℵ0 = ℵω+1?
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γ → (γ, ω + 2)2 and the γ-Souslin Hypothesis

Definition
γ is ℵ0-accessible if γ ≤ δℵ0 for some δ < γ

Theorem (Erdös-Rado , 1956)

If γ is an ℵ0-inaccessible and regular then γ → (γ, ω1 + 1)2.

Remark
Suppose [γ]2 = K0 ∪ K1 is a witness to γ 6→ (γ, ω : 2)2. Let P be
the poset of all finite X ⊆ γ such that [X ]2 ⊆ K0. Then P is a ccc
poset which does not have γ as its pre-caliber. Recall the standard
fact that every ℵ0-inacessible regular cardinal is pre-caliber of every
ccc poset.

Theorem (Raghavan-T., 2014)

γ → (γ, ω + 2)2 implies γ-SH when γ is ℵ0-accessible and regular.
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Colouring [T ]2

Suppose δ < γ is least such that δℵ0 ≥ γ. Then cf(δ) = ω.
Let T be a γ-Souslin tree. We may assume it is a downward closed
subtree of δ<γ . Let |s| = α if s ∈ T ∩ δα.

For each t ∈ T pick a strictly increasing ft : ω → δ cofinal in δ
such that fs 6= ft when s 6= t.
Define

[T ]2 = K0 ∪ K1

by letting {s, t} in K1 if s and t are comparable in T , say s <T t,
and

ft(∆(fs , ft)) = t(|s|).

Then [T ]2 = K0 ∪ K1 witnesses γ 6→ (γ, ω + 2)2.

Remark
[T ]2 = K0 ∪ K1 is not a witnesses to γ 6→ (γ, ω : 2)2.
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Corollary

ℵω+1 6→ (ℵω+1, ω + 2)2 is consistent with GCH.

Remark
Recall that we have previously established this with the continuum
large and in particular with 2ℵ0 = ℵω+1.

Problem
Is ℵω+1 → (ℵω+1, ω + 2)2 is consistent with GCH? With
2ℵ0 = ℵω+1? How about ℵω+1 → (ℵω+1, α)2 for all α < ω1?

Problem
Is ℵω+1 → (ℵω+1, ω : 2)2 is consistent with GCH? With
2ℵ0 = ℵω+1? Same question for the negative relation
ℵω+1 6→ (ℵω+1, ω : 2)2.
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γ → (γ, ω : 2)2 and the Souslin Hypothesis

Definition
A coherent Souslin tree is a downward closed subtree S of ω<ω1

such that {ξ < α : s(ξ) 6= t(ξ)} is finite for all α < ω1 and
s, t ∈ S ∩ ωα.

Definition
Fix a coherent Souslin tree S . By MAℵ1(S) (respectively, PFA(S))
we denote the forcing axiom for ℵ1 dense sets and ccc posets that
preserve the tree S (respectively, proper posets that preserve S).

Proposition

ω1 → (ω1, ω : 2)2 does not imply SH.

Proof.
Observe that the proof of Laver’s theorem above shows that
MAℵ1(S) implies ω1 → (ω1, ω : 2)2.
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Theorem (Raghavan - T., 2014)

PFA(S) implies that S forces ω1 → (ω1, α)2 for all α < ω1.

Definition
The P-ideal dichotomy is the consequence of PFA stating that
for every P-ideal I of countable subsets of some index-set X , either
there is uncountable Y ⊆ X such that all countable subsets of Y
belong to I or the set X can be decomposed into countably many
subsets that contain no infinite subsets that are in I .

Theorem (T., 1985, 2011)

PID and p > ω1 implies ω1 → (ω1, α)2 for all α < ω1.

Theorem (T., 2001, 2012)

PFA(S) implies that the Souslin tree S forces PID.

Problem (T., 2011)

Assume PID. Is b = ω2 equivalent to the statement that
ω1 → (ω1, α)2 for all α < ω1?
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Saturated ideals

Recall the following that has been mentioned above

Proposition (Folklore?)

If γ carries an ℵ1-saturated normal ideal then γ → (γ, ω : 2)2.

Theorem (Kunen 1971)

If γ is a real-valued measurable cardinal then γ → (γ, α)2 for all
α < ω1

Remark
Recall that we have established above that γ simply carrying an
ℵ1-saturated normal ideal does not imply γ → (γ, ω + 2)2.
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Definition
Given infinite cardinals α, β, γ, recall that a poset P has caliber
(γ, β, α) if for every X ⊆ P of cardinality γ there exists Y ⊆ X of
cardinality β such that all subsets of Y of cardinality α have
extensions in P.

Definition
An ideal I of subsets of some cardinal δ is (γ, β, α, )-saturated is
the quotient algebra P(δ)/I has caliber (γ, β, α).

Theorem (Laver, 1978)

If γ is a measurable cardinal then there is a forcing notion (that
preserves cardinals if GCH holds) that adds at least γ reals and
forces that γ supports a normal (γ, γ,ℵ0)-saturated ideal.
Moreover, 2ℵ0 = γ can be arranged.
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Theorem (Laver, 1978)

If γ supports a normal (γ, γ,ℵ0)-saturated ideal then γ → (γ, α)2

for all α < ω1.

Remark
Unlike Kunen’s assumption that P(γ)/I supports a measure,
Laver’s assumption generalizes to higher cardinals. So we have, for
example, the following.

Theorem (Laver, 1978)

2ℵ1 → (2ℵ1 , α)2 for all α < ω2 is consistent relative the consistency
of a measurable cardinal.
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The σ-finite chain condition and b→ (b, α)2

Definition
Recall that a poset P satisfies the σ-finite chain condition if it
can be decomposed into countably many subsets Pn so than no Pn
contains an infinite set of pairwise incompatible conditions.

Theorem (Raghavan - T, 2014)

If γ supports a normal ideal I so that the quotient algebra P(γ)/I
satisfies the σ-finite chain condition then γ → (γ, α)2 for all
α < ω1.

Corollary

b→ (b, α)2 for all α < ω1 is consistent relative the consistency of
the existence of one measurable cardinal.

Question
What is the consistency strength of the statement that
b→ (b, α)2 for all α < ω1?



The σ-finite chain condition and b→ (b, α)2

Definition
Recall that a poset P satisfies the σ-finite chain condition if it
can be decomposed into countably many subsets Pn so than no Pn
contains an infinite set of pairwise incompatible conditions.

Theorem (Raghavan - T, 2014)

If γ supports a normal ideal I so that the quotient algebra P(γ)/I
satisfies the σ-finite chain condition then γ → (γ, α)2 for all
α < ω1.

Corollary

b→ (b, α)2 for all α < ω1 is consistent relative the consistency of
the existence of one measurable cardinal.

Question
What is the consistency strength of the statement that
b→ (b, α)2 for all α < ω1?



The σ-finite chain condition and b→ (b, α)2

Definition
Recall that a poset P satisfies the σ-finite chain condition if it
can be decomposed into countably many subsets Pn so than no Pn
contains an infinite set of pairwise incompatible conditions.

Theorem (Raghavan - T, 2014)

If γ supports a normal ideal I so that the quotient algebra P(γ)/I
satisfies the σ-finite chain condition then γ → (γ, α)2 for all
α < ω1.

Corollary

b→ (b, α)2 for all α < ω1 is consistent relative the consistency of
the existence of one measurable cardinal.

Question
What is the consistency strength of the statement that
b→ (b, α)2 for all α < ω1?



The σ-finite chain condition and b→ (b, α)2

Definition
Recall that a poset P satisfies the σ-finite chain condition if it
can be decomposed into countably many subsets Pn so than no Pn
contains an infinite set of pairwise incompatible conditions.

Theorem (Raghavan - T, 2014)

If γ supports a normal ideal I so that the quotient algebra P(γ)/I
satisfies the σ-finite chain condition then γ → (γ, α)2 for all
α < ω1.

Corollary

b→ (b, α)2 for all α < ω1 is consistent relative the consistency of
the existence of one measurable cardinal.

Question
What is the consistency strength of the statement that
b→ (b, α)2 for all α < ω1?



The σ-finite chain condition and b→ (b, α)2

Definition
Recall that a poset P satisfies the σ-finite chain condition if it
can be decomposed into countably many subsets Pn so than no Pn
contains an infinite set of pairwise incompatible conditions.

Theorem (Raghavan - T, 2014)

If γ supports a normal ideal I so that the quotient algebra P(γ)/I
satisfies the σ-finite chain condition then γ → (γ, α)2 for all
α < ω1.

Corollary

b→ (b, α)2 for all α < ω1 is consistent relative the consistency of
the existence of one measurable cardinal.

Question
What is the consistency strength of the statement that
b→ (b, α)2 for all α < ω1?



Weakly compact cardinals and Cohen reals

From now on γ is assumed to be an uncountable cardinal.
Recall, that γ is weakly compact iff γ → (γ, γ)2.
Let Cδ be the the standard poset for adding δ Cohen reals.

Theorem (T., 1985)

γ → (γ, γ)2 implies that Cδ forces γ → (γ, α)2 for all α < ω1.

Corollary

2ℵ0 → (2ℵ0 , α)2 for all α < ω1 is consistent relative the consistency
of a weakly compact cardinal.

Question
What is the consistency strength of the statement that
2ℵ0 → (2ℵ0 , α)2 for all α < ω1?
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Weakly compact cardinals and Sacks reals

Let Sδ be the standard poset for adding side-by-side δ Sacks reals.

Theorem (T., 1985)

γ → (γ, γ)2 implies that Sδ forces γ → (γ, α)2 for all α < ω1.

Remark
The same result hold for any α-support product of posets of
cardinalities at most β for any pair of cardinals α, β < γ.

Question
Assume CH. What does Sω2 force about γ = ℵ2 = 2ℵ0?
For example, does Sω2 force

2ℵ0 → (2ℵ0 , α)2 for all α < ω1?
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Adding γ Sacks subsets of ω1, ω2, ...

For a cardinal δ let Sδ(ω1) be the standard poset of adding
side-by-side δ Sacks subsets of ω1.
As customary in this context, we assume ♦ on ω1.

Theorem (T., 1985)

γ → (γ, γ)2 implies that Sδ(ω1) forces γ → (γ, α)2 for all α < ω2.

Corollary

2ℵ1 → (2ℵ1 , α)2 for all α < ω2 is consistent relative the consistency
of a weakly compact cardinal.

Similarly, working with Sacks subsets of ω2, we get

Theorem (T., 1985)

2ℵ2 → (2ℵ2 , α)2 for all α < ω3 is consistent relative the consistency
of a weakly compact cardinal.
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Some open problems

Problem
Does 2ℵ0 → (2ℵ0 , ω + 1)2 hold?

Problem
Is 2ℵ0 = ℵ2 consistent with 2ℵ0 → (2ℵ0 , α)2 for all α < ω1 ?

Problem
Are MA plus 2ℵ0 = ℵ3 consistent with 2ℵ0 → (2ℵ0 , α)2 for all
α < ω1 ?

Problem
Is there any ω-accessible γ > ω1 for which γ → (γ, α)2 for all
α < ω1 does not require any consistency strength beyond ZFC?

Problem
Is ℵω+1 6→ (ℵω+1, ω : 2)2 consistent?

Problem
Is ℵω+1 → (ℵω+1, α)2 for all α < ω1 consistent?
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Summary

(I) While γ → (γ, α) is relatively well understood when γ = ω1

this is much less so for larger γ ≤ 2ℵ0 .

(II) If we analyze 2ℵ0 → (2ℵ0 , ω : 2)2 under Martin’s axiom there
is a difference when 2ℵ0 ≤ ℵ2 and when 2ℵ0 > ℵ2.

(III) While b 6→ (b, ω : 2)2 when b = ω1 it is consistent that
b→ (b, α)2 for all α < ω1.

(IV) There are many natural open problems whose solution might
require blends of techniques from different areas of set theory.
For example, the consistency of ℵω+1 → (ℵω+1, ω + 2)2 might
be one such problem.



Summary

(I) While γ → (γ, α) is relatively well understood when γ = ω1

this is much less so for larger γ ≤ 2ℵ0 .

(II) If we analyze 2ℵ0 → (2ℵ0 , ω : 2)2 under Martin’s axiom there
is a difference when 2ℵ0 ≤ ℵ2 and when 2ℵ0 > ℵ2.

(III) While b 6→ (b, ω : 2)2 when b = ω1 it is consistent that
b→ (b, α)2 for all α < ω1.

(IV) There are many natural open problems whose solution might
require blends of techniques from different areas of set theory.
For example, the consistency of ℵω+1 → (ℵω+1, ω + 2)2 might
be one such problem.



Summary

(I) While γ → (γ, α) is relatively well understood when γ = ω1

this is much less so for larger γ ≤ 2ℵ0 .

(II) If we analyze 2ℵ0 → (2ℵ0 , ω : 2)2 under Martin’s axiom there
is a difference when 2ℵ0 ≤ ℵ2 and when 2ℵ0 > ℵ2.

(III) While b 6→ (b, ω : 2)2 when b = ω1 it is consistent that
b→ (b, α)2 for all α < ω1.

(IV) There are many natural open problems whose solution might
require blends of techniques from different areas of set theory.
For example, the consistency of ℵω+1 → (ℵω+1, ω + 2)2 might
be one such problem.



Summary

(I) While γ → (γ, α) is relatively well understood when γ = ω1

this is much less so for larger γ ≤ 2ℵ0 .

(II) If we analyze 2ℵ0 → (2ℵ0 , ω : 2)2 under Martin’s axiom there
is a difference when 2ℵ0 ≤ ℵ2 and when 2ℵ0 > ℵ2.

(III) While b 6→ (b, ω : 2)2 when b = ω1 it is consistent that
b→ (b, α)2 for all α < ω1.

(IV) There are many natural open problems whose solution might
require blends of techniques from different areas of set theory.
For example, the consistency of ℵω+1 → (ℵω+1, ω + 2)2 might
be one such problem.



Summary

(I) While γ → (γ, α) is relatively well understood when γ = ω1

this is much less so for larger γ ≤ 2ℵ0 .

(II) If we analyze 2ℵ0 → (2ℵ0 , ω : 2)2 under Martin’s axiom there
is a difference when 2ℵ0 ≤ ℵ2 and when 2ℵ0 > ℵ2.

(III) While b 6→ (b, ω : 2)2 when b = ω1 it is consistent that
b→ (b, α)2 for all α < ω1.

(IV) There are many natural open problems whose solution might
require blends of techniques from different areas of set theory.
For example, the consistency of ℵω+1 → (ℵω+1, ω + 2)2 might
be one such problem.


