The bounding number and the Ramsey calculus up to the continuum

Stevo Todorcevic

Singapore, April 6, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. The arrow notation $\gamma \to (\gamma, \alpha)^2$

- 1. The arrow notation $\gamma \to (\gamma, \alpha)^2$
- 2. From $\gamma \to (\gamma, \omega)^2$ to $\gamma \to (\gamma, \omega + 2)^2$ and then to $\gamma \to (\gamma, \alpha)^2$

- 1. The arrow notation $\gamma \to (\gamma, \alpha)^2$
- 2. From $\gamma \to (\gamma, \omega)^2$ to $\gamma \to (\gamma, \omega + 2)^2$ and then to $\gamma \to (\gamma, \alpha)^2$

3. The variation $\gamma \rightarrow (\gamma, \omega : 2)^2$ and the special interest in its negation $\gamma \not\rightarrow (\gamma, \omega : 2)^2$

- 1. The arrow notation $\gamma \to (\gamma, \alpha)^2$
- 2. From $\gamma \to (\gamma, \omega)^2$ to $\gamma \to (\gamma, \omega + 2)^2$ and then to $\gamma \to (\gamma, \alpha)^2$

- 3. The variation $\gamma \rightarrow (\gamma, \omega : 2)^2$ and the special interest in its negation $\gamma \not\rightarrow (\gamma, \omega : 2)^2$
- 4. The case $\gamma = \omega_1$, the case $\gamma = \mathfrak{b}$ and the case $\gamma = 2^{\aleph_0}$

- 1. The arrow notation $\gamma \to (\gamma, \alpha)^2$
- 2. From $\gamma \to (\gamma, \omega)^2$ to $\gamma \to (\gamma, \omega + 2)^2$ and then to $\gamma \to (\gamma, \alpha)^2$

- 3. The variation $\gamma \rightarrow (\gamma, \omega : 2)^2$ and the special interest in its negation $\gamma \not\rightarrow (\gamma, \omega : 2)^2$
- 4. The case $\gamma = \omega_1$, the case $\gamma = \mathfrak{b}$ and the case $\gamma = 2^{\aleph_0}$
- 5. When does $\mathfrak{b} \not\rightarrow (\mathfrak{b}, \omega : 2)^2$?

- 1. The arrow notation $\gamma \to (\gamma, \alpha)^2$
- 2. From $\gamma \to (\gamma, \omega)^2$ to $\gamma \to (\gamma, \omega + 2)^2$ and then to $\gamma \to (\gamma, \alpha)^2$

(日) (同) (三) (三) (三) (○) (○)

- 3. The variation $\gamma \rightarrow (\gamma, \omega : 2)^2$ and the special interest in its negation $\gamma \not\rightarrow (\gamma, \omega : 2)^2$
- 4. The case $\gamma = \omega_1$, the case $\gamma = \mathfrak{b}$ and the case $\gamma = 2^{\aleph_0}$
- 5. When does $\mathfrak{b} \not\to (\mathfrak{b}, \omega : 2)^2$?
- 6. The consistency of $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$

- 1. The arrow notation $\gamma \to (\gamma, \alpha)^2$
- 2. From $\gamma \to (\gamma, \omega)^2$ to $\gamma \to (\gamma, \omega + 2)^2$ and then to $\gamma \to (\gamma, \alpha)^2$

(日) (同) (三) (三) (三) (○) (○)

- 3. The variation $\gamma \rightarrow (\gamma, \omega : 2)^2$ and the special interest in its negation $\gamma \not\rightarrow (\gamma, \omega : 2)^2$
- 4. The case $\gamma = \omega_1$, the case $\gamma = \mathfrak{b}$ and the case $\gamma = 2^{\aleph_0}$
- 5. When does $\mathfrak{b} \not\to (\mathfrak{b}, \omega : 2)^2$?
- 6. The consistency of $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$
- 7. The consistency of $\mathfrak{b} \to (\mathfrak{b}, \alpha)^2$ for all $\alpha < \omega_1$

- 1. The arrow notation $\gamma \to (\gamma, \alpha)^2$
- 2. From $\gamma \to (\gamma, \omega)^2$ to $\gamma \to (\gamma, \omega + 2)^2$ and then to $\gamma \to (\gamma, \alpha)^2$

(日) (同) (三) (三) (三) (○) (○)

- 3. The variation $\gamma \rightarrow (\gamma, \omega : 2)^2$ and the special interest in its negation $\gamma \not\rightarrow (\gamma, \omega : 2)^2$
- 4. The case $\gamma = \omega_1$, the case $\gamma = \mathfrak{b}$ and the case $\gamma = 2^{\aleph_0}$
- 5. When does $\mathfrak{b} \not\to (\mathfrak{b}, \omega : 2)^2$?
- 6. The consistency of $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$
- 7. The consistency of $\mathfrak{b} \to (\mathfrak{b}, \alpha)^2$ for all $\alpha < \omega_1$
- 8. Open problems

- 1. The arrow notation $\gamma \to (\gamma, \alpha)^2$
- 2. From $\gamma \to (\gamma, \omega)^2$ to $\gamma \to (\gamma, \omega + 2)^2$ and then to $\gamma \to (\gamma, \alpha)^2$

- 3. The variation $\gamma \rightarrow (\gamma, \omega : 2)^2$ and the special interest in its negation $\gamma \not\rightarrow (\gamma, \omega : 2)^2$
- 4. The case $\gamma = \omega_1$, the case $\gamma = \mathfrak{b}$ and the case $\gamma = 2^{\aleph_0}$
- 5. When does $\mathfrak{b} \not\to (\mathfrak{b}, \omega : 2)^2$?
- 6. The consistency of $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$
- 7. The consistency of $\mathfrak{b} \to (\mathfrak{b}, \alpha)^2$ for all $\alpha < \omega_1$
- 8. Open problems
- 9. Summary

For ordinals α, β, γ , the arrow notation

$$\gamma \to (\beta, \alpha)^2$$

denotes the statement that for all $f : [\gamma]^2 \to 2$ either there is $B \subseteq \gamma$ of order type β such that $f[B]^2 = 0$ or there is $A \subseteq \gamma$ of order type α such that $f[A]^2 = 1$.

For ordinals α, β, γ , the arrow notation

$$\gamma \to (\beta, \alpha)^2$$

denotes the statement that for all $f : [\gamma]^2 \to 2$ either there is $B \subseteq \gamma$ of order type β such that $f[B]^2 = 0$ or there is $A \subseteq \gamma$ of order type α such that $f[A]^2 = 1$.

Theorem (Sierpiński 1933, Erdös-Rado 1956)

$$\gamma
eq (\omega_1, \omega_1)^2$$
 iff $\gamma < (2^{leph_0})^+$.

For ordinals α, β, γ , the arrow notation

$$\gamma \to (\beta, \alpha)^2$$

denotes the statement that for all $f : [\gamma]^2 \to 2$ either there is $B \subseteq \gamma$ of order type β such that $f[B]^2 = 0$ or there is $A \subseteq \gamma$ of order type α such that $f[A]^2 = 1$.

Theorem (Sierpiński 1933, Erdös-Rado 1956)

$$\gamma
eq (\omega_1,\omega_1)^2$$
 iff $\gamma<(2^{leph_0})^+$.

Corollary For $\gamma \leq 2^{\aleph_0}$, $\gamma \rightarrow (\gamma, \alpha)^2$ implies $\alpha < \omega_1$.

 $\gamma \to (\gamma, \omega)^2$ for all infinite cardinals γ .

・ロト・日本・モト・モート ヨー うへで

 $\gamma \rightarrow (\gamma, \omega)^2$ for all infinite cardinals γ .

Theorem (Erdös-Rado 1956)

$$\gamma
ightarrow (\gamma, \omega + 1)^2$$
 for all regular cardinals γ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\gamma \rightarrow (\gamma, \omega)^2$ for all infinite cardinals γ .

Theorem (Erdös-Rado 1956)

$$\gamma
ightarrow (\gamma, \omega + 1)^2$$
 for all regular cardinals γ .

Problem (Erdöds-Rado, 1956) Does $\gamma \rightarrow (\gamma, \omega + 1)^2$ for all γ of cofinality $> \omega$?

 $\gamma \rightarrow (\gamma, \omega)^2$ for all infinite cardinals γ .

Theorem (Erdös-Rado 1956)

$$\gamma
ightarrow (\gamma, \omega + 1)^2$$
 for all regular cardinals γ .

Problem (Erdöds-Rado, 1956) Does $\gamma \rightarrow (\gamma, \omega + 1)^2$ for all γ of cofinality $> \omega$? Theorem (Shelah, 2009) $\gamma \rightarrow (\gamma, \omega + 1)^2$ when $\gamma > 2^{cf(\gamma)}$ and $cf(\gamma) > \omega$. Problem (Erdös-Rado 1956) Does $\omega_1 \rightarrow (\omega_1, \omega + 2)^2$ hold?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem (Erdös-Rado 1956)

Does $\omega_1 \rightarrow (\omega_1, \omega + 2)^2$ hold?

Here, we shall consider the following more general question.

Problem

When does $\gamma \to (\gamma, \alpha)^2$ hold for $\gamma \leq 2^{\aleph_0}$ and $\alpha < \omega_1$?

Problem (Erdös-Rado 1956)

Does $\omega_1
ightarrow (\omega_1, \omega+2)^2$ hold?

Here, we shall consider the following more general question.

Problem

When does $\gamma \to (\gamma, \alpha)^2$ hold for $\gamma \leq 2^{\aleph_0}$ and $\alpha < \omega_1$?

Theorem (Hajnal 1960)

CH implies $\omega_1 \not\rightarrow (\omega_1, \omega + 2)^2$.

Problem (Erdös-Rado 1956)

Does $\omega_1 \rightarrow (\omega_1, \omega + 2)^2$ hold?

Here, we shall consider the following more general question.

Problem

When does $\gamma \to (\gamma, \alpha)^2$ hold for $\gamma \leq 2^{\aleph_0}$ and $\alpha < \omega_1$?

Theorem (Hajnal 1960)

CH implies $\omega_1 \not\rightarrow (\omega_1, \omega + 2)^2$.

Theorem (T., 1983)

PFA implies $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの

Corollary (T., 1983, 1999) For every finite colouring

$$[\omega_1]^2 = K_0 \cup K_1 \cup \cdots \cup K_n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and for every $\alpha < \omega_1$ either

Corollary (T., 1983, 1999) For every finite colouring

$$[\omega_1]^2 = K_0 \cup K_1 \cup \cdots \cup K_n$$

and for every $\alpha < \omega_1$ either

1. there exist $A, B \subseteq \omega_1$ of order type α and ω_1 , respectively, such that A < B and $[A]^2 \cup (A \times B) \subseteq K_0$, or

Corollary (T., 1983, 1999) For every finite colouring

$$[\omega_1]^2 = K_0 \cup K_1 \cup \cdots \cup K_n$$

and for every $\alpha < \omega_1$ either

- 1. there exist $A, B \subseteq \omega_1$ of order type α and ω_1 , respectively, such that A < B and $[A]^2 \cup (A \times B) \subseteq K_0$, or
- 2. there is i = 1, 2, ..., n and a set $C \subseteq \omega_1$ of order type α such that $[C]^2 \subseteq K_i$.

Corollary (T., 1983, 1999) For every finite colouring

$$[\omega_1]^2 = K_0 \cup K_1 \cup \cdots \cup K_n$$

and for every $\alpha < \omega_1$ either

- 1. there exist $A, B \subseteq \omega_1$ of order type α and ω_1 , respectively, such that A < B and $[A]^2 \cup (A \times B) \subseteq K_0$, or
- 2. there is i = 1, 2, ..., n and a set $C \subseteq \omega_1$ of order type α such that $[C]^2 \subseteq K_i$.

Corollary (Baumgartner-Hajnal, 1973)

$$\omega_1 \to (\alpha)_k^2$$
 for all $\alpha < \omega_1$ and $k < \omega$.

<□ > < @ > < E > < E > E のQ @

The arrow notation

$$\gamma
ightarrow (\gamma, \ \omega: 2)^2$$

denotes the statement that for every $f : [\gamma]^2 \to 2$ either there is $C \subseteq \gamma$ of order-type (cardinality) γ such that $f[C]^2 = 0$ or there exist sets $A, B \subseteq \gamma$ of order type ω and 2, respectively, such that A < B and $f(A \times B) = 1$.

The arrow notation

$$\gamma
ightarrow (\gamma, \ \omega: 2)^2$$

denotes the statement that for every $f : [\gamma]^2 \to 2$ either there is $C \subseteq \gamma$ of order-type (cardinality) γ such that $f[C]^2 = 0$ or there exist sets $A, B \subseteq \gamma$ of order type ω and 2, respectively, such that A < B and $f(A \times B) = 1$.

Remark

Suppose $f : [\gamma]^2 \to 2$ is a witness to $\gamma \not\to (\gamma, \omega : 2)^2$. Let \mathcal{P} be the poset of all **finite** $C \subseteq \gamma$ such that such that $f[C]^2 = 0$. Then \mathcal{P} is a ccc poset without a subset of size γ of pairwise compatible conditions.

The arrow notation

$$\gamma
ightarrow (\gamma, \ \omega: 2)^2$$

denotes the statement that for every $f : [\gamma]^2 \to 2$ either there is $C \subseteq \gamma$ of order-type (cardinality) γ such that $f[C]^2 = 0$ or there exist sets $A, B \subseteq \gamma$ of order type ω and 2, respectively, such that A < B and $f(A \times B) = 1$.

Remark

Suppose $f : [\gamma]^2 \to 2$ is a witness to $\gamma \not\to (\gamma, \omega : 2)^2$. Let \mathcal{P} be the poset of all **finite** $C \subseteq \gamma$ such that such that $f[C]^2 = 0$. Then \mathcal{P} is a ccc poset without a subset of size γ of pairwise compatible conditions.

Theorem (Hajnal, 1960) CH implies $\omega_1 \neq (\omega_1, \ \omega : 2)^2$.

Recall that

 $\mathfrak{b} = \min\{|A| : A \subseteq \mathbb{N}^{\mathbb{N}} \text{ and } (\forall b \in \mathbb{N}^{\mathbb{N}}) (\exists a \in A)a \nleq^* b\},$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where \leq^* is the ordering of eventual dominance in $\mathbb{N}^{\mathbb{N}}$.

Recall that

 $\mathfrak{b} = \min\{|A| : A \subseteq \mathbb{N}^{\mathbb{N}} \text{ and } (\forall b \in \mathbb{N}^{\mathbb{N}}) (\exists a \in A)a \nleq^{*} b\},$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where \leq^* is the ordering of eventual dominance in $\mathbb{N}^{\mathbb{N}}$. Theorem (T., 1984, 1989) $\mathfrak{b} = \omega_1 \text{ implies } \mathfrak{b} \not\rightarrow (\mathfrak{b}, \ \omega : 2)^2$.

Recall that

 $\mathfrak{b} = \min\{|A| : A \subseteq \mathbb{N}^{\mathbb{N}} \text{ and } (\forall b \in \mathbb{N}^{\mathbb{N}}) (\exists a \in A)a \nleq^{*} b\},$

where \leq^* is the ordering of eventual dominance in $\mathbb{N}^{\mathbb{N}}$.

Theorem (T., 1984, 1989)

 $\mathfrak{b} = \omega_1 \text{ implies } \mathfrak{b} \not\rightarrow (\mathfrak{b}, \ \omega : 2)^2.$

Theorem (T., 1984, 1989)

Assume $\mathfrak{b} = \omega_1$ and let X be any separable metric space of cardinality \aleph_1 . Then for each $x \in X$ we can choose a sequence $H(x) = \{h_n(x) : n < \omega\}$ converging to x such that for every uncountable $Y \subseteq X$ there exist $x \neq y$ in Y such that $x \in H(y)$.
The bounding number

Recall that

 $\mathfrak{b} = \min\{|A| : A \subseteq \mathbb{N}^{\mathbb{N}} \text{ and } (\forall b \in \mathbb{N}^{\mathbb{N}}) (\exists a \in A)a \nleq^{*} b\},$

where \leq^* is the ordering of eventual dominance in $\mathbb{N}^{\mathbb{N}}$.

Theorem (T., 1984, 1989)

$$\mathfrak{b} = \omega_1 \text{ implies } \mathfrak{b}
e (\mathfrak{b}, \ \omega: 2)^2$$

Theorem (T., 1984, 1989)

Assume $\mathfrak{b} = \omega_1$ and let X be any separable metric space of cardinality \aleph_1 . Then for each $x \in X$ we can choose a sequence $H(x) = \{h_n(x) : n < \omega\}$ converging to x such that for every uncountable $Y \subseteq X$ there exist $x \neq y$ in Y such that $x \in H(y)$.

Remark

Defining $[\omega_1]^2 = K_0 \cup K_1$ by letting $\{x, y\} \in K_1$ iff $x \in H(y)$ or $y \in H(x)$ we get $\omega_1 \not\rightarrow (\omega_1, \ \omega : 2)^2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fix unbounded $A \subseteq \mathbb{N}^{\mathbb{N}}$ well-ordered by $<^*$ in order type ω_1 .

(ロ)、(型)、(E)、(E)、 E) の(の)

Fix unbounded $A \subseteq \mathbb{N}^{\mathbb{N}}$ well-ordered by $<^*$ in order type ω_1 . For $b \in A$ fix finite-to-one,

$$e_b: \{a \in A : a <^* b\} \to \mathbb{N}$$

such that

$$|\{c <^* a : e_a(c) \neq e_b(c)\}| < \aleph_0$$
 for $a <^* b$ in A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fix unbounded $A \subseteq \mathbb{N}^{\mathbb{N}}$ well-ordered by $<^*$ in order type ω_1 . For $b \in A$ fix finite-to-one,

$$e_b: \{a \in A : a <^* b\} \to \mathbb{N}$$

such that

Define

$$|\{c<^*a:e_a(c)\neq e_b(c)\}| for $a<^*b$ in A.$$

$$H: A \to [A]^{\leq \aleph_0}$$

by

$$H(b) = \{a <^* b : e_b(a) \leq b(\Delta(a,b))\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Corollary (T., 1989)

If $\mathfrak{b} = \omega_1$ the topology of any separable metric space of cardinality \aleph_1 can be refined to a locally countable locally compact topology that is hereditarily separable in all finite powers.

Corollary (T., 1989)

If $\mathfrak{b} = \omega_1$ the topology of any separable metric space of cardinality \aleph_1 can be refined to a locally countable locally compact topology that is hereditarily separable in all finite powers.

Corollary (T., 1989, 2006)

If $\mathfrak{b} = \omega_1$ then there is a scattered compactum K whose function space C(K) contains no uncountable bi-orthogonal systems.

Corollary (T., 1989)

If $\mathfrak{b} = \omega_1$ the topology of any separable metric space of cardinality \aleph_1 can be refined to a locally countable locally compact topology that is hereditarily separable in all finite powers.

Corollary (T., 1989, 2006)

If $\mathfrak{b} = \omega_1$ then there is a scattered compactum K whose function space C(K) contains no uncountable bi-orthogonal systems.

Remark

Prior to this Kunen(1984) and Shelah(1985) were able to construct such Banach spaces using CH and \Diamond , respectively.

Problem Does $\mathfrak{b} = \omega_2$ imply $\mathfrak{b} \not\to (\mathfrak{b}, \ \omega : 2)^2$?

Problem Does $\mathfrak{b} = \omega_2$ imply $\mathfrak{b} \not\to (\mathfrak{b}, \ \omega : 2)^2$?

Theorem (T., 1985)

 $\mathfrak{b} = \omega_3$ does not imply $\mathfrak{b} \not\rightarrow (\mathfrak{b}, \ \omega : 2)^2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem

Does $\mathfrak{b} = \omega_2$ imply $\mathfrak{b} \not\rightarrow (\mathfrak{b}, \ \omega : 2)^2$?

Theorem (T., 1985)

$$\mathfrak{b} = \omega_3$$
 does not imply $\mathfrak{b} \not\rightarrow (\mathfrak{b}, \ \omega : 2)^2$.

Problem

What properties of a given carinal $\gamma \leq 2^{\aleph_0}$ guarantee that

$$\gamma
ightarrow (\gamma, \omega+2)^2 \, \, {\it or} \, \gamma
ightarrow (\gamma, \, \, \omega:2)^2$$

holds? What about

 $\gamma \to (\gamma, \alpha)^2$

for all $\alpha < \omega_1$? What if $\gamma = \mathfrak{b}$?

Problem

Does $\mathfrak{b} = \omega_2$ imply $\mathfrak{b} \not\rightarrow (\mathfrak{b}, \ \omega : 2)^2$?

Theorem (T., 1985)

$$\mathfrak{b} = \omega_3$$
 does not imply $\mathfrak{b} \not\rightarrow (\mathfrak{b}, \ \omega : 2)^2$.

Problem

What properties of a given carinal $\gamma \leq 2^{\aleph_0}$ guarantee that

$$\gamma
ightarrow (\gamma, \omega+2)^2 \, \, {\it or} \, \gamma
ightarrow (\gamma, \, \, \omega:2)^2$$

holds? What about

 $\gamma \to (\gamma, \alpha)^2$

for all $\alpha < \omega_1$? What if $\gamma = \mathfrak{b}$?

Proposition (Folklore?)

If γ carries a \aleph_1 -saturated normal ideal then $\gamma \to (\gamma, \ \omega : 2)^2$.

<□ > < @ > < E > < E > E のQ @

Let ${\mathcal C}$ be the standard poset for adding a single Cohen real.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let C be the standard poset for adding a single Cohen real. Theorem (T., 1984) C forces $\omega_1 \not\rightarrow (\omega_1, \ \omega : 2)^2$.

Let C be the standard poset for adding a single Cohen real. Theorem (T., 1984) C forces $\omega_1 \not\rightarrow (\omega_1, \ \omega : 2)^2$.

Fix $A \subseteq \mathbb{N}^{\mathbb{N}}$ with well-ordering $<_{w}$ such that $\operatorname{otp}(A, <_{w}) = \omega_{1}$.

Let C be the standard poset for adding a single Cohen real. Theorem (T., 1984) C forces $\omega_1 \not\rightarrow (\omega_1, \ \omega : 2)^2$.

Fix $A \subseteq \mathbb{N}^{\mathbb{N}}$ with well-ordering $<_w$ such that $\operatorname{otp}(A, <_w) = \omega_1$. For each $b \in A$ fix finite-to-one,

$$e_b: \{a \in A : a <_w b\} \to \mathbb{N}$$

such that

$$|\{c <_w a : e_a(c) \neq e_b(c)\}| < \aleph_0 \text{ for } a <_w b \text{ in } A.$$

$$H_r: A \to [A]^{\leq \aleph_0}$$

by

$$H_r(b) = \{a <_w b : e_b(a) \le r(\Delta(a, b))\}$$

<□ > < @ > < E > < E > E のQ @

$$H_r: A \to [A]^{\leq \aleph_0}$$

by

$$H_r(b) = \{a <_w b : e_b(a) \le r(\Delta(a, b))\}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Then $H_r(b)$ is either finite or it converges to b.

$$H_r: A \to [A]^{\leq \aleph_0}$$

by

$$H_r(b) = \{a <_w b : e_b(a) \le r(\Delta(a, b))\}$$

Then $H_r(b)$ is either finite or it converges to b.

Lemma

If r is a Cohen real the set mapping H_r has no uncountable free subsets of A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$H_r: A \to [A]^{\leq \aleph_0}$$

by

$$H_r(b) = \{a <_w b : e_b(a) \le r(\Delta(a, b))\}$$

Then $H_r(b)$ is either finite or it converges to b.

Lemma

If r is a Cohen real the set mapping H_r has no uncountable free subsets of A.

Remark

This fact fails for random reals, so one can ask the following.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$H_r: A \to [A]^{\leq \aleph_0}$$

by

$$H_r(b) = \{a <_w b : e_b(a) \le r(\Delta(a, b))\}$$

Then $H_r(b)$ is either finite or it converges to b.

Lemma

If r is a Cohen real the set mapping H_r has no uncountable free subsets of A.

Remark

This fact fails for random reals, so one can ask the following.

Problem

Assume PFA and let \mathcal{R} be any measure algebra. Does \mathcal{R} force $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$?

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■ - のへで

Theorem (Laver 1975) MA implies $\gamma \to (\gamma, \ \omega : 2)^2$ for all regular $\gamma < 2^{\aleph_0}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Laver 1975) *MA implies* $\gamma \rightarrow (\gamma, \ \omega : 2)^2$ for all regular $\gamma < 2^{\aleph_0}$. Theorem (Hajnal 1960, Laver 1975) *MA plus* $2^{\aleph_0} \leq \aleph_2$ *imply* $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Laver 1975) *MA implies* $\gamma \rightarrow (\gamma, \ \omega : 2)^2$ for all regular $\gamma < 2^{\aleph_0}$. Theorem (Hajnal 1960, Laver 1975) *MA plus* $2^{\aleph_0} \leq \aleph_2$ *imply* $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$. Theorem (T., 1985) *MA plus* $2^{\aleph_0} = \aleph_3$ *do not imply* $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$.

Theorem (Laver 1975) *MA implies* $\gamma \rightarrow (\gamma, \ \omega : 2)^2$ for all regular $\gamma < 2^{\aleph_0}$. Theorem (Hajnal 1960, Laver 1975) *MA plus* $2^{\aleph_0} \leq \aleph_2$ *imply* $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$. Theorem (T., 1985) *MA plus* $2^{\aleph_0} = \aleph_3$ *do not imply* $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$. Proposition

MA plus $2^{\aleph_0} = \aleph_3$ do not imply $2^{\aleph_0} \to (2^{\aleph_0}, \ \omega : 2)^2$.

Theorem (Laver 1975) *MA implies* $\gamma \rightarrow (\gamma, \ \omega : 2)^2$ for all regular $\gamma < 2^{\aleph_0}$. Theorem (Hajnal 1960, Laver 1975) *MA plus* $2^{\aleph_0} \leq \aleph_2$ *imply* $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$. Theorem (T., 1985) *MA plus* $2^{\aleph_0} = \aleph_3$ *do not imply* $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$.

Proposition

MA plus $2^{\aleph_0} = \aleph_3$ do not imply $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \ \omega : 2)^2$.

Proof.

Start with $2^{\aleph_0} = 2^{\aleph_2} = \aleph_3$ and with a counterexample to $2^{\aleph_0} \to (2^{\aleph_0}, \ \omega : 2)^2$ and force MA in the usual way.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proposition

No ccc poset can force $\gamma \not\rightarrow (\gamma, \ \omega : 2)^2$ for an arbitrary regular cardinal γ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

No ccc poset can force $\gamma \not\rightarrow (\gamma, \ \omega : 2)^2$ for an arbitrary regular cardinal γ .

Proof.

If γ is measurable, the normal measure on γ generates an \aleph_1 -saturated ideal in the ccc forcing extension and, as noted above, this implies $\gamma \rightarrow (\gamma, \ \omega: 2)^2$

Proposition

No ccc poset can force $\gamma \not\rightarrow (\gamma, \ \omega : 2)^2$ for an arbitrary regular cardinal γ .

Proof.

If γ is measurable, the normal measure on γ generates an \aleph_1 -saturated ideal in the ccc forcing extension and, as noted above, this implies $\gamma \to (\gamma, \ \omega: 2)^2$

Theorem (T., 1985)

For every regular uncountable cardinal γ there is a ccc poset of cardinality γ forcing $\gamma \not\rightarrow (\gamma, \omega + 2)^2$ and adding at least γ new reals.

Proposition

No ccc poset can force $\gamma \not\rightarrow (\gamma, \ \omega : 2)^2$ for an arbitrary regular cardinal γ .

Proof.

If γ is measurable, the normal measure on γ generates an \aleph_1 -saturated ideal in the ccc forcing extension and, as noted above, this implies $\gamma \to (\gamma, \ \omega: 2)^2$

Theorem (T., 1985)

For every regular uncountable cardinal γ there is a ccc poset of cardinality γ forcing $\gamma \not\rightarrow (\gamma, \omega + 2)^2$ and adding at least γ new reals.

Corollary

$$\gamma
ightarrow (\gamma, \; \omega:2)^2$$
 does not imply $\gamma
ightarrow (\gamma, \omega+2)^2$

Theorem (Baumgartner 1969, 1976)

Assuming GCH for every regular cardinal γ there is a cardinal preserving poset which forces $2^{\aleph_0} = \gamma^+$ and $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Baumgartner 1969, 1976)

Assuming GCH for every regular cardinal γ there is a cardinal preserving poset which forces $2^{\aleph_0} = \gamma^+$ and $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$.

Theorem (Laver 1975)

Assuming GCH for every Mahlo cardinal γ there is a cardinal preserving poset which forces $2^{\aleph_0} = \gamma$ and $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \omega : 2)^2$.
Theorem (Baumgartner 1969, 1976)

Assuming GCH for every regular cardinal γ there is a cardinal preserving poset which forces $2^{\aleph_0} = \gamma^+$ and $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$.

Theorem (Laver 1975)

Assuming GCH for every Mahlo cardinal γ there is a cardinal preserving poset which forces $2^{\aleph_0} = \gamma$ and $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \omega : 2)^2$.

Question

Can we have $2^{\aleph_0} \not\rightarrow (2^{\aleph_0}, \ \omega : 2)^2$ with the continuum a successor of a singular cardinal? How about $2^{\aleph_0} = \aleph_{\omega+1}$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition γ is \aleph_0 -accessible if $\gamma \leq \delta^{\aleph_0}$ for some $\delta < \gamma$

Definition

 γ is \aleph_0 -accessible if $\gamma \leq \delta^{\aleph_0}$ for some $\delta < \gamma$

Theorem (Erdös-Rado, 1956)

If γ is an \aleph_0 -inaccessible and regular then $\gamma \to (\gamma, \omega_1 + 1)^2$.

Definition

 γ is \aleph_0 -accessible if $\gamma \leq \delta^{\aleph_0}$ for some $\delta < \gamma$

Theorem (Erdös-Rado , 1956)

If γ is an \aleph_0 -inaccessible and regular then $\gamma \to (\gamma, \omega_1 + 1)^2$.

Remark

Suppose $[\gamma]^2 = K_0 \cup K_1$ is a witness to $\gamma \not\rightarrow (\gamma, \omega : 2)^2$. Let \mathcal{P} be the poset of all finite $X \subseteq \gamma$ such that $[X]^2 \subseteq K_0$. Then \mathcal{P} is a ccc poset which does not have γ as its pre-caliber. Recall the standard fact that every \aleph_0 -inacessible regular cardinal is pre-caliber of every ccc poset.

Definition

 γ is \aleph_0 -accessible if $\gamma \leq \delta^{\aleph_0}$ for some $\delta < \gamma$

Theorem (Erdös-Rado, 1956)

If γ is an \aleph_0 -inaccessible and regular then $\gamma \to (\gamma, \omega_1 + 1)^2$.

Remark

Suppose $[\gamma]^2 = K_0 \cup K_1$ is a witness to $\gamma \not\rightarrow (\gamma, \omega : 2)^2$. Let \mathcal{P} be the poset of all finite $X \subseteq \gamma$ such that $[X]^2 \subseteq K_0$. Then \mathcal{P} is a ccc poset which does not have γ as its pre-caliber. Recall the standard fact that every \aleph_0 -inacessible regular cardinal is pre-caliber of every ccc poset.

Theorem (Raghavan-T., 2014) $\gamma \rightarrow (\gamma, \omega + 2)^2$ implies γ -SH when γ is \aleph_0 -accessible and regular.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Suppose $\delta < \gamma$ is least such that $\delta^{\aleph_0} \ge \gamma$. Then $cf(\delta) = \omega$.

Suppose $\delta < \gamma$ is least such that $\delta^{\aleph_0} \ge \gamma$. Then $cf(\delta) = \omega$. Let T be a γ -Souslin tree. We may assume it is a downward closed subtree of $\delta^{<\gamma}$. Let $|s| = \alpha$ if $s \in T \cap \delta^{\alpha}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose $\delta < \gamma$ is least such that $\delta^{\aleph_0} \ge \gamma$. Then $cf(\delta) = \omega$. Let T be a γ -Souslin tree. We may assume it is a downward closed subtree of $\delta^{<\gamma}$. Let $|s| = \alpha$ if $s \in T \cap \delta^{\alpha}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For each $t \in T$ pick a strictly increasing $f_t : \omega \to \delta$ cofinal in δ such that $f_s \neq f_t$ when $s \neq t$.

Suppose $\delta < \gamma$ is least such that $\delta^{\aleph_0} \ge \gamma$. Then $cf(\delta) = \omega$. Let T be a γ -Souslin tree. We may assume it is a downward closed subtree of $\delta^{<\gamma}$. Let $|s| = \alpha$ if $s \in T \cap \delta^{\alpha}$.

For each $t \in T$ pick a strictly increasing $f_t : \omega \to \delta$ cofinal in δ such that $f_s \neq f_t$ when $s \neq t$. Define

$$[T]^2 = K_0 \cup K_1$$

by letting $\{s, t\}$ in K_1 if s and t are comparable in T, say $s <_T t$, and

$$f_t(\Delta(f_s,f_t))=t(|s|).$$

Suppose $\delta < \gamma$ is least such that $\delta^{\aleph_0} \ge \gamma$. Then $cf(\delta) = \omega$. Let T be a γ -Souslin tree. We may assume it is a downward closed subtree of $\delta^{<\gamma}$. Let $|s| = \alpha$ if $s \in T \cap \delta^{\alpha}$.

For each $t \in T$ pick a strictly increasing $f_t : \omega \to \delta$ cofinal in δ such that $f_s \neq f_t$ when $s \neq t$. Define

$$[T]^2 = K_0 \cup K_1$$

by letting $\{s, t\}$ in K_1 if s and t are comparable in T, say $s <_T t$, and

 $f_t(\Delta(f_s,f_t)) = t(|s|).$ Then $[T]^2 = K_0 \cup K_1$ witnesses $\gamma \not\rightarrow (\gamma, \omega + 2)^2.$

Suppose $\delta < \gamma$ is least such that $\delta^{\aleph_0} \ge \gamma$. Then $cf(\delta) = \omega$. Let T be a γ -Souslin tree. We may assume it is a downward closed subtree of $\delta^{<\gamma}$. Let $|s| = \alpha$ if $s \in T \cap \delta^{\alpha}$.

For each $t \in T$ pick a strictly increasing $f_t : \omega \to \delta$ cofinal in δ such that $f_s \neq f_t$ when $s \neq t$. Define

$$[T]^2 = K_0 \cup K_1$$

by letting $\{s, t\}$ in K_1 if s and t are comparable in T, say $s <_T t$, and

$$f_t(\Delta(f_s,f_t))=t(|s|).$$

Then $[T]^2 = K_0 \cup K_1$ witnesses $\gamma \not\rightarrow (\gamma, \omega + 2)^2$.

Remark

 $[T]^2 = K_0 \cup K_1$ is **not** a witnesses to $\gamma \not\rightarrow (\gamma, \omega : 2)^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remark

Recall that we have previously established this with the continuum large and in particular with $2^{\aleph_0} = \aleph_{\omega+1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

Recall that we have previously established this with the continuum large and in particular with $2^{\aleph_0} = \aleph_{\omega+1}$.

Problem

Is $\aleph_{\omega+1} \to (\aleph_{\omega+1}, \omega+2)^2$ is consistent with GCH? With $2^{\aleph_0} = \aleph_{\omega+1}$? How about $\aleph_{\omega+1} \to (\aleph_{\omega+1}, \alpha)^2$ for all $\alpha < \omega_1$?

Remark

Recall that we have previously established this with the continuum large and in particular with $2^{\aleph_0} = \aleph_{\omega+1}$.

(日) (同) (三) (三) (三) (○) (○)

Problem

Is $\aleph_{\omega+1} \to (\aleph_{\omega+1}, \omega+2)^2$ is consistent with GCH? With $2^{\aleph_0} = \aleph_{\omega+1}$? How about $\aleph_{\omega+1} \to (\aleph_{\omega+1}, \alpha)^2$ for all $\alpha < \omega_1$?

Problem

Is $\aleph_{\omega+1} \to (\aleph_{\omega+1}, \omega : 2)^2$ is consistent with GCH? With $2^{\aleph_0} = \aleph_{\omega+1}$? Same question for the negative relation $\aleph_{\omega+1} \not\to (\aleph_{\omega+1}, \ \omega : 2)^2$.

<□ > < @ > < E > < E > E のQ @

Definition

A coherent Souslin tree is a downward closed subtree S of $\omega^{<\omega_1}$ such that $\{\xi < \alpha : s(\xi) \neq t(\xi)\}$ is finite for all $\alpha < \omega_1$ and $s, t \in S \cap \omega^{\alpha}$.

Definition

A coherent Souslin tree is a downward closed subtree S of $\omega^{<\omega_1}$ such that $\{\xi < \alpha : s(\xi) \neq t(\xi)\}$ is finite for all $\alpha < \omega_1$ and $s, t \in S \cap \omega^{\alpha}$.

Definition

Fix a coherent Souslin tree S. By $MA_{\aleph_1}(S)$ (respectively, PFA(S)) we denote the forcing axiom for \aleph_1 dense sets and ccc posets that preserve the tree S (respectively, proper posets that preserve S).

Definition

A coherent Souslin tree is a downward closed subtree S of $\omega^{<\omega_1}$ such that $\{\xi < \alpha : s(\xi) \neq t(\xi)\}$ is finite for all $\alpha < \omega_1$ and $s, t \in S \cap \omega^{\alpha}$.

Definition

Fix a coherent Souslin tree S. By $MA_{\aleph_1}(S)$ (respectively, PFA(S)) we denote the forcing axiom for \aleph_1 dense sets and ccc posets that preserve the tree S (respectively, proper posets that preserve S).

Proposition

 $\omega_1
ightarrow (\omega_1, \; \omega: 2)^2$ does not imply SH.

Definition

A coherent Souslin tree is a downward closed subtree S of $\omega^{<\omega_1}$ such that $\{\xi < \alpha : s(\xi) \neq t(\xi)\}$ is finite for all $\alpha < \omega_1$ and $s, t \in S \cap \omega^{\alpha}$.

Definition

Fix a coherent Souslin tree S. By $MA_{\aleph_1}(S)$ (respectively, PFA(S)) we denote the forcing axiom for \aleph_1 dense sets and ccc posets that preserve the tree S (respectively, proper posets that preserve S).

Proposition

$$\omega_1
ightarrow (\omega_1, \; \omega: 2)^2$$
 does not imply SH.

Proof.

Observe that the proof of Laver's theorem above shows that $MA_{\aleph_1}(S)$ implies $\omega_1 \to (\omega_1, \ \omega : 2)^2$.

Theorem (Raghavan - T., 2014) PFA(S) implies that S forces $\omega_1 \rightarrow (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

PFA(S) implies that S forces $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$.

Definition

The **P-ideal dichotomy** is the consequence of PFA stating that for every *P*-ideal I of countable subsets of some index-set X, either there is uncountable $Y \subseteq X$ such that all countable subsets of Y belong to I or the set X can be decomposed into countably many subsets that contain no infinite subsets that are in I.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PFA(S) implies that S forces $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$.

Definition

The **P-ideal dichotomy** is the consequence of PFA stating that for every P-ideal I of countable subsets of some index-set X, either there is uncountable $Y \subseteq X$ such that all countable subsets of Y belong to I or the set X can be decomposed into countably many subsets that contain no infinite subsets that are in I.

```
Theorem (T., 1985, 2011)
```

PID and $\mathfrak{p} > \omega_1$ implies $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$.

PFA(S) implies that S forces $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$.

Definition

The **P-ideal dichotomy** is the consequence of PFA stating that for every *P*-ideal I of countable subsets of some index-set X, either there is uncountable $Y \subseteq X$ such that all countable subsets of Y belong to I or the set X can be decomposed into countably many subsets that contain no infinite subsets that are in I.

```
Theorem (T., 1985, 2011)
```

```
PID and \mathfrak{p} > \omega_1 implies \omega_1 \to (\omega_1, \alpha)^2 for all \alpha < \omega_1.
```

Theorem (T., 2001, 2012)

PFA(S) implies that the Souslin tree S forces PID.

PFA(S) implies that S forces $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$.

Definition

The **P-ideal dichotomy** is the consequence of PFA stating that for every *P*-ideal I of countable subsets of some index-set X, either there is uncountable $Y \subseteq X$ such that all countable subsets of Y belong to I or the set X can be decomposed into countably many subsets that contain no infinite subsets that are in I.

```
Theorem (T., 1985, 2011)
```

```
PID and \mathfrak{p} > \omega_1 implies \omega_1 \to (\omega_1, \alpha)^2 for all \alpha < \omega_1.
```

Theorem (T., 2001, 2012)

PFA(S) implies that the Souslin tree S forces PID.

Problem (T., 2011)

Assume PID. Is $\mathfrak{b} = \omega_2$ equivalent to the statement that $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$?

Recall the following that has been mentioned above

Proposition (Folklore?)

If γ carries an \aleph_1 -saturated normal ideal then $\gamma \to (\gamma, \ \omega : 2)^2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall the following that has been mentioned above

Proposition (Folklore?)

If γ carries an \aleph_1 -saturated normal ideal then $\gamma \to (\gamma, \ \omega : 2)^2$.

Theorem (Kunen 1971)

If γ is a real-valued measurable cardinal then $\gamma\to (\gamma,\alpha)^2$ for all $\alpha<\omega_1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall the following that has been mentioned above

Proposition (Folklore?)

If γ carries an \aleph_1 -saturated normal ideal then $\gamma \to (\gamma, \ \omega : 2)^2$.

Theorem (Kunen 1971)

If γ is a real-valued measurable cardinal then $\gamma\to (\gamma,\alpha)^2$ for all $\alpha<\omega_1$

Remark

Recall that we have established above that γ simply carrying an \aleph_1 -saturated normal ideal does not imply $\gamma \rightarrow (\gamma, \omega + 2)^2$.

Definition

Given infinite cardinals α, β, γ , recall that a poset \mathcal{P} has caliber (γ, β, α) if for every $\mathcal{X} \subseteq \mathcal{P}$ of cardinality γ there exists $\mathcal{Y} \subseteq \mathcal{X}$ of cardinality β such that all subsets of \mathcal{Y} of cardinality α have extensions in \mathcal{P} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Given infinite cardinals α, β, γ , recall that a poset \mathcal{P} has caliber (γ, β, α) if for every $\mathcal{X} \subseteq \mathcal{P}$ of cardinality γ there exists $\mathcal{Y} \subseteq \mathcal{X}$ of cardinality β such that all subsets of \mathcal{Y} of cardinality α have extensions in \mathcal{P} .

Definition

An ideal I of subsets of some cardinal δ is (γ, β, α) -saturated is the quotient algebra $\mathcal{P}(\delta)/I$ has caliber (γ, β, α) .

Definition

Given infinite cardinals α, β, γ , recall that a poset \mathcal{P} has caliber (γ, β, α) if for every $\mathcal{X} \subseteq \mathcal{P}$ of cardinality γ there exists $\mathcal{Y} \subseteq \mathcal{X}$ of cardinality β such that all subsets of \mathcal{Y} of cardinality α have extensions in \mathcal{P} .

Definition

An ideal I of subsets of some cardinal δ is (γ, β, α) -saturated is the quotient algebra $\mathcal{P}(\delta)/I$ has caliber (γ, β, α) .

Theorem (Laver, 1978)

If γ is a measurable cardinal then there is a forcing notion (that preserves cardinals if GCH holds) that adds at least γ reals and forces that γ supports a normal $(\gamma, \gamma, \aleph_0)$ -saturated ideal. Moreover, $2^{\aleph_0} = \gamma$ can be arranged.

Theorem (Laver, 1978)

If γ supports a normal $(\gamma, \gamma, \aleph_0)$ -saturated ideal then $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Theorem (Laver, 1978)

If γ supports a normal $(\gamma, \gamma, \aleph_0)$ -saturated ideal then $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Remark

Unlike Kunen's assumption that $\mathcal{P}(\gamma)/I$ supports a measure, Laver's assumption generalizes to higher cardinals. So we have, for example, the following.
Theorem (Laver, 1978)

If γ supports a normal $(\gamma, \gamma, \aleph_0)$ -saturated ideal then $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Remark

Unlike Kunen's assumption that $\mathcal{P}(\gamma)/I$ supports a measure, Laver's assumption generalizes to higher cardinals. So we have, for example, the following.

Theorem (Laver, 1978)

 $2^{\aleph_1} \rightarrow (2^{\aleph_1}, \alpha)^2$ for all $\alpha < \omega_2$ is consistent relative the consistency of a measurable cardinal.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition

Recall that a poset \mathcal{P} satisfies the σ -finite chain condition if it can be decomposed into countably many subsets \mathcal{P}_n so than no \mathcal{P}_n contains an infinite set of pairwise incompatible conditions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Recall that a poset \mathcal{P} satisfies the σ -finite chain condition if it can be decomposed into countably many subsets \mathcal{P}_n so than no \mathcal{P}_n contains an infinite set of pairwise incompatible conditions.

Theorem (Raghavan - T, 2014)

If γ supports a normal ideal I so that the quotient algebra $\mathcal{P}(\gamma)/I$ satisfies the σ -finite chain condition then $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Definition

Recall that a poset \mathcal{P} satisfies the σ -finite chain condition if it can be decomposed into countably many subsets \mathcal{P}_n so than no \mathcal{P}_n contains an infinite set of pairwise incompatible conditions.

Theorem (Raghavan - T, 2014)

If γ supports a normal ideal I so that the quotient algebra $\mathcal{P}(\gamma)/I$ satisfies the σ -finite chain condition then $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Corollary

 $\mathfrak{b} \to (\mathfrak{b}, \alpha)^2$ for all $\alpha < \omega_1$ is consistent relative the consistency of the existence of one measurable cardinal.

Definition

Recall that a poset \mathcal{P} satisfies the σ -finite chain condition if it can be decomposed into countably many subsets \mathcal{P}_n so than no \mathcal{P}_n contains an infinite set of pairwise incompatible conditions.

Theorem (Raghavan - T, 2014)

If γ supports a normal ideal I so that the quotient algebra $\mathcal{P}(\gamma)/I$ satisfies the σ -finite chain condition then $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Corollary

 $\mathfrak{b} \to (\mathfrak{b}, \alpha)^2$ for all $\alpha < \omega_1$ is consistent relative the consistency of the existence of one measurable cardinal.

Question

What is the consistency strength of the statement that $\mathfrak{b} \to (\mathfrak{b}, \alpha)^2$ for all $\alpha < \omega_1$?

From now on γ is assumed to be an uncountable cardinal.

From now on γ is assumed to be an uncountable cardinal. Recall, that γ is **weakly compact** iff $\gamma \rightarrow (\gamma, \gamma)^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From now on γ is assumed to be an uncountable cardinal. Recall, that γ is **weakly compact** iff $\gamma \to (\gamma, \gamma)^2$. Let C_{δ} be the the standard poset for adding δ Cohen reals.

From now on γ is assumed to be an uncountable cardinal. Recall, that γ is **weakly compact** iff $\gamma \to (\gamma, \gamma)^2$. Let C_{δ} be the the standard poset for adding δ Cohen reals. Theorem (T., 1985) $\gamma \to (\gamma, \gamma)^2$ implies that C_{δ} forces $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

From now on γ is assumed to be an uncountable cardinal. Recall, that γ is **weakly compact** iff $\gamma \to (\gamma, \gamma)^2$. Let C_{δ} be the the standard poset for adding δ Cohen reals.

Theorem (T., 1985)

 $\gamma \to (\gamma, \gamma)^2$ implies that \mathcal{C}_{δ} forces $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Corollary

 $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$ is consistent relative the consistency of a weakly compact cardinal.

From now on γ is assumed to be an uncountable cardinal. Recall, that γ is **weakly compact** iff $\gamma \to (\gamma, \gamma)^2$. Let C_{δ} be the the standard poset for adding δ Cohen reals.

Theorem (T., 1985)

 $\gamma \to (\gamma, \gamma)^2$ implies that \mathcal{C}_{δ} forces $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Corollary

 $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$ is consistent relative the consistency of a weakly compact cardinal.

Question

What is the consistency strength of the statement that $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

Let \mathcal{S}_{δ} be the standard poset for adding side-by-side δ Sacks reals.

Let S_{δ} be the standard poset for adding side-by-side δ Sacks reals. Theorem (T., 1985) $\gamma \rightarrow (\gamma, \gamma)^2$ implies that S_{δ} forces $\gamma \rightarrow (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let S_{δ} be the standard poset for adding side-by-side δ Sacks reals. Theorem (T., 1985) $\gamma \rightarrow (\gamma, \gamma)^2$ implies that S_{δ} forces $\gamma \rightarrow (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Remark

The same result hold for any α -support product of posets of cardinalities at most β for any pair of cardinals $\alpha, \beta < \gamma$.

Let S_{δ} be the standard poset for adding side-by-side δ Sacks reals. Theorem (T., 1985)

 $\gamma \to (\gamma, \gamma)^2$ implies that \mathcal{S}_{δ} forces $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$.

Remark

The same result hold for any α -support product of posets of cardinalities at most β for any pair of cardinals $\alpha, \beta < \gamma$.

Question

Assume CH. What does S_{ω_2} force about $\gamma = \aleph_2 = 2^{\aleph_0}$? For example, does S_{ω_2} force

$$2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$$
 for all $\alpha < \omega_1$?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

For a cardinal δ let $S_{\delta}(\omega_1)$ be the standard poset of adding side-by-side δ Sacks subsets of ω_1 .

For a cardinal δ let $S_{\delta}(\omega_1)$ be the standard poset of adding side-by-side δ Sacks subsets of ω_1 . As customary in this context, we assume \Diamond on ω_1 .

For a cardinal δ let $S_{\delta}(\omega_1)$ be the standard poset of adding side-by-side δ Sacks subsets of ω_1 . As customary in this context, we assume \Diamond on ω_1 .

Theorem (T., 1985)

 $\gamma \to (\gamma, \gamma)^2$ implies that $\mathcal{S}_{\delta}(\omega_1)$ forces $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_2$.

For a cardinal δ let $S_{\delta}(\omega_1)$ be the standard poset of adding side-by-side δ Sacks subsets of ω_1 . As customary in this context, we assume \Diamond on ω_1 .

Theorem (T., 1985)

 $\gamma \to (\gamma, \gamma)^2$ implies that $\mathcal{S}_{\delta}(\omega_1)$ forces $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_2$.

Corollary

 $2^{\aleph_1} \rightarrow (2^{\aleph_1}, \alpha)^2$ for all $\alpha < \omega_2$ is consistent relative the consistency of a weakly compact cardinal.

For a cardinal δ let $S_{\delta}(\omega_1)$ be the standard poset of adding side-by-side δ Sacks subsets of ω_1 . As customary in this context, we assume \Diamond on ω_1 .

Theorem (T., 1985)

 $\gamma \to (\gamma, \gamma)^2$ implies that $\mathcal{S}_{\delta}(\omega_1)$ forces $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_2$.

Corollary

 $2^{\aleph_1} \rightarrow (2^{\aleph_1}, \alpha)^2$ for all $\alpha < \omega_2$ is consistent relative the consistency of a weakly compact cardinal.

Similarly, working with Sacks subsets of ω_2 , we get

Theorem (T., 1985)

 $2^{\aleph_2} \rightarrow (2^{\aleph_2}, \alpha)^2$ for all $\alpha < \omega_3$ is consistent relative the consistency of a weakly compact cardinal.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Problem Does $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \omega + 1)^2$ hold?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem Does $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \omega + 1)^2$ hold?

Problem

Is $2^{\aleph_0} = \aleph_2$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem Does $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \omega + 1)^2$ hold?

Problem

Is $2^{\aleph_0} = \aleph_2$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

Problem

Are MA plus $2^{\aleph_0} = \aleph_3$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem Does $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \omega + 1)^2$ hold?

Problem

Is $2^{\aleph_0} = \aleph_2$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

Problem

Are MA plus $2^{\aleph_0} = \aleph_3$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

Problem

Is there any ω -accessible $\gamma > \omega_1$ for which $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$ does not require any consistency strength beyond ZFC?

Problem Does $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \omega + 1)^2$ hold?

Problem

Is $2^{\aleph_0} = \aleph_2$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

Problem

Are MA plus $2^{\aleph_0} = \aleph_3$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

Problem

Is there any ω -accessible $\gamma > \omega_1$ for which $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$ does not require any consistency strength beyond ZFC?

Problem

Is $\aleph_{\omega+1}
eq (\aleph_{\omega+1}, \ \omega: 2)^2$ consistent?

Problem Does $2^{\aleph_0} \rightarrow (2^{\aleph_0}, \omega + 1)^2$ hold?

Problem

Is $2^{\aleph_0} = \aleph_2$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

Problem

Are MA plus $2^{\aleph_0} = \aleph_3$ consistent with $2^{\aleph_0} \to (2^{\aleph_0}, \alpha)^2$ for all $\alpha < \omega_1$?

Problem

Is there any ω -accessible $\gamma > \omega_1$ for which $\gamma \to (\gamma, \alpha)^2$ for all $\alpha < \omega_1$ does not require any consistency strength beyond ZFC?

Problem

Is
$$\aleph_{\omega+1}
eq (\aleph_{\omega+1}, \ \omega: 2)^2$$
 consistent?

Problem

Is $\aleph_{\omega+1} \to (\aleph_{\omega+1}, \alpha)^2$ for all $\alpha < \omega_1$ consistent?

(I) While $\gamma \to (\gamma, \alpha)$ is relatively well understood when $\gamma = \omega_1$ this is much less so for larger $\gamma \leq 2^{\aleph_0}$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- (I) While $\gamma \to (\gamma, \alpha)$ is relatively well understood when $\gamma = \omega_1$ this is much less so for larger $\gamma \leq 2^{\aleph_0}$.
- (II) If we analyze $2^{\aleph_0} \to (2^{\aleph_0}, \ \omega : 2)^2$ under Martin's axiom there is a difference when $2^{\aleph_0} \leq \aleph_2$ and when $2^{\aleph_0} > \aleph_2$.

- (I) While $\gamma \to (\gamma, \alpha)$ is relatively well understood when $\gamma = \omega_1$ this is much less so for larger $\gamma \leq 2^{\aleph_0}$.
- (II) If we analyze $2^{\aleph_0} \to (2^{\aleph_0}, \ \omega : 2)^2$ under Martin's axiom there is a difference when $2^{\aleph_0} \leq \aleph_2$ and when $2^{\aleph_0} > \aleph_2$.

(III) While $\mathfrak{b} \not\to (\mathfrak{b}, \ \omega : 2)^2$ when $\mathfrak{b} = \omega_1$ it is consistent that $\mathfrak{b} \to (\mathfrak{b}, \alpha)^2$ for all $\alpha < \omega_1$.

- (I) While $\gamma \to (\gamma, \alpha)$ is relatively well understood when $\gamma = \omega_1$ this is much less so for larger $\gamma \leq 2^{\aleph_0}$.
- (II) If we analyze $2^{\aleph_0} \to (2^{\aleph_0}, \ \omega : 2)^2$ under Martin's axiom there is a difference when $2^{\aleph_0} \leq \aleph_2$ and when $2^{\aleph_0} > \aleph_2$.
- (III) While $\mathfrak{b} \not\to (\mathfrak{b}, \ \omega : 2)^2$ when $\mathfrak{b} = \omega_1$ it is consistent that $\mathfrak{b} \to (\mathfrak{b}, \alpha)^2$ for all $\alpha < \omega_1$.
- (IV) There are many natural open problems whose solution might require blends of techniques from different areas of set theory. For example, the consistency of $\aleph_{\omega+1} \rightarrow (\aleph_{\omega+1}, \omega+2)^2$ might be one such problem.