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Let B ∗α(X) be the Banach algebra of bounded real valued Baire class α
functions on X w.r.t. the supremum norm and pointwise operation.
.
Main Problem (Motto Ros)
..

......

Suppose that X is an uncountable Polish space.
Is the Banach algebra B∗n(X) linearly isometric (ring isomorphic)
to either B∗n(R) or B∗n(R

N) for some n ∈ ω?

.

......

We apply Recursion Theory (a.k.a. Computability Theory) to solve
Motto Ros’ problem!

More specifically, an invariant which we call degree co-spectrum, a
collection of Turing ideals realized as lower Turing cones of points of
a Polish space, plays a key role.

The key idea is measuring the quantity of all possible Scott ideals
(ω-models of WKL0) realized within the degree co-spectrum (on a
cone) of a given space.
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.
Background in Banach Space Theory
..

......

The basic theory on the Banach spaces Bα(X) has been studied by
Bade, Dachiell, Jayne and others in 1970s.

Jayne (1974) proved an analogue of the Banach-Stone Theorem
and the Gel’fand-Kolmogorov Theorem for Baire classes, that is,
the α-th level Baire structure of a space X is determined by
the ring structure of the Banach algebra B∗α(X), and vice versa.

.

......
(Jayne) An α-th level Baire isomorphism is a bijection f : X → Y s.t.
E ⊆ X is of additive Baire class α iff f [E] ⊆ Y is of additive Baire class α.

.
Theorem (Jayne 1974)
..

......

The following are equivalent for a realcompact space X :
...1 X is α-th level Baire isomorphic to Y .
...2 B∗α(X) is linearly isometric to B∗α(Y).
...3 B∗α(X) is ring isomorphic to B∗α(Y).
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Recall that Baire classes and Borel classes coincide in separable
metrizable spaces (Lebesgue-Hausdorff).
.

......

An n-th level Borel isomorphism is a bijection f : X → Y s.t.

E ⊆ X is Σ
∼

0
n+1

⇐⇒ f [E] ⊆ Y is Σ
∼

0
n+1

.

By Jayne’s theorem (1974), Motto Ros’ problem is reformulated as:

.
The Second-Level Borel Isomorphism Problem
..

......

Find an uncountable Polish space which is second-level Borel
isomorphic neither to R nor to RN.
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.

......
Consequently, Motto Ros’ problem is the problem on the second level
Borel isomorphic classification of Polish spaces.

.

......

“We show that any two uncountable Polish spaces that are countable
unions of sets of finite dimension are Borel isomorphic at the second
level, and consequently at all higher levels. Thus the first level and
zero-th level (i.e. homeomorphisms) appear to be the only levels giving
rise to nontrivial classifications of Polish spaces.”

J. E. Jayne and C. A. Rogers, Borel isomorphisms at the first level I,
Mathematika 26 (1979), 125-156.

.

......

At that time, almost no nontrivial proper infinite dimensional Polish
spaces had been discovered yet.

Perhaps, it had been expected that the structure of proper infinite
dim. Polish spaces is simple

By using Recursion Theory, we reveal that the second level Borel
isomorphic classification of Polish spaces is highly nontrivial!
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.

......

“We show that any two uncountable Polish spaces that are countable
unions of sets of finite dimension are Borel isomorphic at the second
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Mathematika 26 (1979), 125-156.

.

......

At that time, almost no nontrivial proper infinite dimensional Polish
spaces had been discovered yet.

Perhaps, it had been expected that the structure of proper infinite
dim. Polish spaces is simple — this conclusion was too hasty!

By using Recursion Theory, we reveal that the second level Borel
isomorphic classification of Polish spaces is highly nontrivial!
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.
Main Theorem (K. and Pauly)
..

......

There exists a 2ℵ0 collection (Xα)α<2ℵ0 of topological spaces s.t.
...1 Xα is an infinite dimensional Cantor manifold for any α < 2ℵ0 ,

i.e., Xα is compact metrizable, and if Xα \ C = U1 ⊔ U2 for some
nonempty open U1,U2, then C must be infinite dimensional.

...2 Xα possesses Haver’s property C (hence, weakly infinite
dimensional) for any α < 2ℵ0 .

...3 If α , β, then Xα is not n-th level Borel isomorphic to Xβ.

...4 If α , β, then the Banach algebra B∗n(Xα) is not linearly
isometric (not ring isomorphic etc.) to B∗n(Xβ) for any n ∈ ω.
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.
Decomposition Theorem (K.; Gregoriades and K.; K. and Ng)
..

......

If f : X → Y is a function from analytic sp. X into Polish sp. Y s.t.

A ⊆ Σ
∼

0
m+1

(Y) ⇒ f −1[A ] ∈ Σ
∼

0
n+1

(X)

then, there exists a countable partition (Xi)i∈ω of X such that the
restriction f |Xi is Σ

∼
0
n−m+1

-measurable for every i ∈ ω.

.
Recursion Theoretic Proof
..

......

By the Louveau separation theorem, we have a Borel measurable
transition of a Σ

∼
0
m+1

-code of A into a Σ
∼

0
n+1

-code of f −1[A ].

We then have (f (x) ⊕ z)(m) ≤T (x ⊕ (z ⊕ p)(ξ))(n) for all z ∈ 2ω,
where ≤T is generalized Turing reducibility on represented spaces.

By the Shore-Slaman join theorem for any Polish degree structure,
we have f (x) ≤T (x ⊕ p (ξ))(n−m).

Therefore, f is decomposed into countably many
Σ
∼

0
n−m+1

-measurable functions x 7→ Φe((x ⊕ p (ξ))(n−m)), e ∈ ω.
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The role of the Decomposition Theorem here is for showing that every
n-th Borel isomorphism is covered by ω-many partial homeomorphisms.
.

......

X ⪯pw Y means that there is a countable cover {Xi }i∈ω of X s.t.
Xi is topologically embedded into Y for every i ∈ ω.

.
Main Problem
..

......

Does there exist an uncountable Polish space X satisfying
either of the following equivalent conditions?

...1 B ∗
2
(X) is linearly isometric neither to B ∗

2
(R) nor to B ∗

2
(RN).

...2 B ∗
2
(X) is ring isomorphic neither to B ∗

2
(R) nor to B ∗

2
(RN).

...3 X is 2nd level Borel isomorphic neither to R nor to RN.

...4 R ≺pw X ≺pw RN.
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Compared to the Borel isomorphism problem in 1970s:
.

......

The Borel isomorphism problem on analytic spaces was able to be
reduced to the same problem on zero-dimensional analytic spaces.

The second-level Borel isomorphism problem is inescapably tied to
infinite dimensional topology.

.

......

Recall: Jayne-Rogers (1979) showed that any two uncountable
Polish spaces that are countable unions of sets of finite dimension
are 2nd -level Borel isomorphic.

Indeed, Hurewicz-Wallman (1941) showed that

X ≃pw R ⇐⇒ trind (X) < ∞,

where trind is transfinite inductive dimension.
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.

......

(Alexandrov 1948) X is weakly infinite dimensional (w.i.d.) if
for each sequence (A i , B i) of pairs of disjoint closed sets in X
there are separations L i in X of A i and B i s.t.

∩
i L i = ∅.

(Haver 1973, Addis-Gresham 1978) X is a C-space (Sc(O,O)) if
for each sequence (Ui) of open covers of X there is a pairwise
disjoint open family (Vi) refining (Ui) s.t.

∪
i Vi covers X .

X ⪯pw 2N ⇔ trind (X) < ∞ ⇒ X is C ⇒ X is w.i.d.

.

......

(Alexandrov 1951) ∃ a w.i.d. metrizable compactum X ≻pw 2N?

(R. Pol 1981) There exists a metrizable C-compactum X ≻pw 2N.

(E. Pol 1997) There exists an infinite dimensional C-Cantor
manifold, i.e., a C-compactum which cannot be separated by any
hereditarily weakly infinite dimensional closed subspaces.

(Chatyrko 1999) There is a collection {Xα}α<2ℵ0 of continuum many
infinite dimensional C-Cantor manifolds such that Xα cannot be
embedded into Xβ whenever α , β.
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An infinite dimensional C-Cantor manifold is a C-compactum
which cannot be separated by any hereditarily weakly infinite
dimensional closed subspace.
.
Main Lemma (K. and Pauly)
..

......

LetM∞ be the class of all infinite dimensional C-Cantor manifolds.
Then, there is an order embedding of ([ℵ1]ω,⊆) into (M∞,⪯pw ).

.

......

This solves Motto Ros’ problem (and the second level Borel
isomorphism problem) in Banach Space Theory.

This strengthen R. Pol’s theorem and Chatyrko’s theorem in
Infinite Dimensional Topology.

.

......To show Main Lemma, we again use Recursion Theory!
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.. Idea of Proof: Upper/Lower Approximation by Zero Dim Spaces

.

...... (a) Any point in Rn (b) Some point in [0, 1]N

.

......

By approximating each point in a space X by a zero-dim space,
we measure “how similar the space X is to a zero-dim space”.

(a) Upper and lower approximations by a zero-dim space meet.

(b) There is a gap between upper and lower approximations by a
zero-dim space
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.. Idea of Proof: Upper/Lower Approximation by Zero Dim Spaces

.

......
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T
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(a) Any point in Rn (b) Some point in [0, 1]N

.

......

Spec(x) = {p ∈ 2N : x ≤T p}.
coSpec(x) = {p ∈ 2N : p ≤T x }.
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.
Key Idea
..

......

Classification of topological spaces by degrees of unsolvability:

...1 The Turing degrees ≃ the degree structure on Cantor space 2N and
Euclidean spaces Rn .

...2 The enumeration degrees ≃ the degree structure on the Scott
domain P(N).

...3 Hinman (1973): degrees of unsolvability of continuous functionals
≃ the degree structure on the space NN

N
of Kleene-Kreisel

continuous functionals.

...4 J. Miller (2004): continuous degrees ≃ the degree structure on the
function space C([0, 1]) and the Hilbert cube [0, 1]N.
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.
Definition
..

......

Let X and Y be second-countable T0 spaces with
fixed countable open basis {B X

n }n∈ω and {B Y
n }n∈ω.

A point x ∈ X is “Turing reducible” to a point y ∈ Y (x ≤T y ) if

{n ∈ ω : x ∈ B X
n } ≤e {n ∈ ω : y ∈ B Y

n }.

In other words, we identify the “Turing degree” of x ∈ X with
the enumeration degree of the (coded) neighborhood filter of x .

.
Example
..

......

The degree structure of Cantor space is exactly the same as the
Turing degrees.

The degree structure of Hilbert cube (a universal Polish space) is
exactly the same as the continuous degrees.

The degree structure of the Scott domain O(N) (a universal
quasi-Polish space) is exactly the same as the enumeration
degrees.
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.

......

Spec(x) = {p ∈ 2N : x ≤T p}; Spec(X) = {Spec(x) : x ∈ X}.
coSpec(x)= {p ∈ 2N : p ≤T x };coSpec(X)= {coSpec(x) : x ∈ X}

.
Lemma (K. and Pauly)
..

......

X ≃pw Y =⇒ Spec r (X) = Spec r (Y) for some oracle r ∈ 2ω.
=⇒ coSpec r (X) = coSpec r (Y) for some oracle r ∈ 2ω.

.

......

...1 A Turing ideal J ⊆ 2ω is realized by x if J = coSpec(x).

...2 A countable set J ⊆ 2ω is a Scott ideal
⇐⇒ (ω,J ) |= RCA + WKL .

.
Realizability of Scott ideals (J. Miller 2004)
..

......

...1 2ω ≃pw ω
ω ≃pw Rn ≃pw

⊕
n∈ω R

n . (Turing degrees.)
No Scott ideal is realized in these spaces!

...2 [0, 1]ω ≃pw C([0, 1]) ≃pw ℓ
2. (full continuous degrees.)

Every countable Scott ideal is realized in these spaces!
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=⇒ coSpec r (X) = coSpec r (Y) for some oracle r ∈ 2ω.

.

......

...1 A Turing ideal J ⊆ 2ω is realized by x if J = coSpec(x).

...2 A countable set J ⊆ 2ω is a Scott ideal
⇐⇒ (ω,J ) |= RCA + WKL .

.
Realizability of Scott ideals (J. Miller 2004)
..

......

...1 2ω ≃pw ω
ω ≃pw Rn ≃pw

⊕
n∈ω R

n . (Turing degrees.)
No Scott ideal is realized in these spaces!

...2 [0, 1]ω ≃pw C([0, 1]) ≃pw ℓ
2. (full continuous degrees.)

Every countable Scott ideal is realized in these spaces!
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.. Idea of Proof: Upper/Lower Approximation by Zero Dim Spaces

.

......

Spe(x)

oSpe(x)

x y
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oSpe(y)

Spe(x) = fp 2 2

N

: x �

T

pg

oSpe(x) = fp 2 2

N

: p �

T

xg

(a) Any point in Rn (b) Some point in [0, 1]N

.

......

Spec determines the pw-homeomorphism type of a space,
and coSpec is invariant under pw-homeomorphism.

The coSpec of any point in a space of dim < ∞ has to be a
principal Turing ideal.

(Miller) Every countable Scott ideal is realized as coSpec of a point
in Hilbert cube.
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.
Definition
..

......

Γ : 2N → [0, 1]N is ω-left-CEA operator if the infinite sequence
Γ(y) = (x0, x1, x2, . . . ) is generated in a uniformly left-computably
enumerable manner by a single Turing machine, that is,
there is a left-c.e. operator γ such that for all i ,

x i := Γ(y)(i) = γ(y , i , x0, x1, . . . , x i−1).

An ω-left-CEA operator Γ : N × 2N → [0, 1]N is universal if for
every ω-left-CEA operator Ψ, there is e such that Ψ = λy .Γ(e, y).
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.

......Let ωCEA denote the graph of a universal ω-left-CEA operator.

.
Theorem (K.-Pauly)
..

......

The space ωCEA (as a subspace of Hilbert cube) is an
intermediate Polish space:

2N ≺pw ωCEA ≺pw [0, 1]N

.
Remark
..

......

Furthermore, ωCEA is pw-homeomorphic to the following:

Rubin-Schori-Walsh (1979)’s strongly infinite dimensional totally
disconnected Polish space.

Roman Pol (1981)’s weakly infinite dimensional compactum which is
not decomposable into countably many finite-dim subspaces
(a solution to Alexandrov’s problem).
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Spe(x)

oSpe(x)

x y

Spe(y)

oSpe(y)

Spe(z)

oSpe(z)

z

The !-th Turing jump

(a) 2N (b) ωCEA (c) [0, 1]N

.

......

(a) coSpec is principal, and meets with Spec .

(b) coSpec is not always principal, but the “distance” between Spec
and coSpec has to be at most the ω-th Turing jump.

(c) coSpec can realize an arbitrary countable Scott ideal, hence
Spec and coSpec can be separated by an arbitrary distance.
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.. Proof Sketch of 2 N ≺pw ωCEA ≺pw [0, 1]N

.

......

ωCEA = {(e, p , x0, x1, . . . ) ∈ ω × 2ω × [0, 1]ω :

(∀i) x i is the e-th left-c.e. real in (p , x0, x1, . . . , x i−1).}

.
Lemma
..

......

For any p ∈ 2ω, the following Scott ideal is not realized in ωCEA:

J p = {z ∈ 2ω : (∃n) z ≤T p (ω·n)}.

.

......

Pick z = (e, p , x0, x1, . . . ) ∈ ωCEA.

Then, p ∈ coSpec (z) and p (ω) ∈ Spec(z).

Clearly, p (ω+1) < coSpec (z).

.

......

Since coSpec (up to an oracle) is invariant under
pw-homeomorphism, we have ωCEA ≺pw [0, 1]N.
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Another separation is based on Kakutani’s fixed point theorem.
.
Theorem (J. Miller 2004)
..

......

There is a nonempty convex-valued computable function
Ψ : [0, 1]N → P([0, 1]N) with a closed graph such that for every
fixed point ⟨x0, x1, . . . ⟩ ∈ Fix(Ψ),

coSpec (⟨x0, x1, x2, . . . ⟩) = {x0, x1, x2, . . . }.

Moreover, such an x realizes a Scott ideal.

.

......

Fix(Ψ) is a Π0
1

subset of [0, 1]ω.

Inductively find (x0, x1, . . . ) ∈ Fix(Ψ), where x i+1 is the “leftmost”
value s.t. (x0, x1, . . . , x i+1) is extendible in Fix(Ψ).

Then, x i+1 is left-c.e. in (x0, x1, . . . , x i), uniformly.

x i+1 does not depend on the choice of a name of (x0, . . . , x i).
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......

...1 coSpec (2N) = all principal Turing ideals.

...2 coSpec ([0, 1]N) = all principal Turing ideals and Scott ideals.

...3 What do we know about coSpec (ωCEA)?

It cannot realize an ω-jump ideal.
It realizes a non-principal Turing ideal.
We know absolutely nothing about what kind of Turing ideals it
realizes; even whether it realizes a jump ideal or not.

.

......

How can we control coSpec of a Polish space?

For instance, given α << β < ω1, we need a technique for constructing a
Polish space such that

it cannot realize a β-jump ideal,

it realizes an α-jump ideal.
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......

We say that G : 2N → 2N is an oracle Π0
2

singleton if it has a Π0
2

graph.

For instance, the α-th Turing jump operator TJα is an oracle Π0
2

singleton.

.
Definition (Modified ωCEA Space)
..

......

The space ωCEA(G) consists of (d , e, r , x) ∈ N2 × 2N × [0, 1]N

such that for every i ,
...1 either x i = Gi(r), or
...2 there are u ≤ v ≤ i such that

x i ∈ [0, 1] is the e-th left-c.e. real in ⟨r , x<i , x l(u)⟩
and x l(u) = Gl(u)(r), where l(u) = Φd(u, r , x<v ).

Here: G0(x) = x and Gn+1(x) = Gn(x) ⊕ G(Gn(x)).

.

......

We define Ref(G) = ωCEA(G) ∩ (N2 × Fix(Ψ)).
The subspace Ref(G) (as a subspace of [0, 1]N) is Polish
whenever G is an oracle Π0

2
singleton.
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......

Suppose that G is an oracle Π0
2
-singleton. For every oracle r ∈ 2N,

consider two Turing ideals defined as

JT(G, r) = {z ∈ 2N : (∃n ∈ N) x ≤T Gn(r)},
Ja(G, r) = {z ∈ 2N : (∃n ∈ N) x ≤a Gn(r)}.

Here: ≤a is the arithmetical reducibility.

.
Main Lemma (coSpec -Controlling)
..

......

...1 For every x ∈ Ref(G), there is r ∈ 2N such that

coSpec (x) ⊆ Ja(G, r).
...2 For every r ∈ 2N, there is x ∈ Ref(G) such that

JT(G, r) ⊆ coSpec (x).

.

......

If G = TJα is the α-th Turing jump operator for α ≥ ω,

...1 coSpec (Ref(TJα)) realizes no β-jump ideal for β ≥ α · ω,

...2 coSpec (Ref(TJα)) realizes an α-jump ideal.

Takayuki Kihara “Degree Spectra on a Cone” for Polish Spaces



.

......

...1 By coSpec -Controlling Lemma, given an oracle Π0
2

singleton G
we can construct a Polish space which realizes all Turing ideals
closed under G.

...2 Ref(G) is strongly infinite dimensional and totally disconnected.

...3 Hence, its compactification γRef(G) (in the sense of Lelek) is a
“Pol-type space”, hence, a metrizable C-compacta.

...4 Note that Lelek’s compactification preserves Spec and coSpec .

...5 By combining Elzbieta Pol’s construction, our spaces can be
assumed to be infinite dimensional C-Cantor manifolds.

.
Main Lemma (K. and Pauly)
..

......

LetM∞ be the class of all infinite dimensional C-Cantor manifolds.
Then, there is an order embedding of ([ℵ1]ω,⊆) into (M∞,⪯pw ).
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.
Main Theorem (K. and Pauly)
..

......

There exists a 2ℵ0 collection (Xα)α<2ℵ0 of topological spaces s.t.
...1 Xα is an infinite dimensional Cantor manifold for any α < 2ℵ0 ,
...2 Xα possesses Haver’s property C for any α < 2ℵ0 .
...3 If α , β, then Xα is not n-th level isomorphic to Xβ for any

n ∈ ω.
...4 If α , β, then the Banach space Bn(Xα) is not linearly

isometric to Bn(Xβ) for any n ∈ ω.

.
Summary of This Work
..

......

...1 Defining the notion of Spec and coSpec .

...2 Using Spec and coSpec as “pw -topological” invariant.

...3 Proving coSpec -Controlling Lemma.

...4 Solving the second-level Borel isomorpshim problem.
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.
Open Question
..

......

...1 What is the role of B2(X) in Banach Space Theory?
Note: B1(X) for Polish X has a great role in Banach Space
Theory, in particular, in the context of Rosenthal’s ℓ1 Theorem.
A compact subspace of B1(X) for Polish X is known as a
Rosenthal compactum.

...2 Does there exist a strongly infinite dimensional compactum X
s.t. R ≺pw X ≺pw RN?

Our spaces are all Pol-type spaces.
...3 Develop the degree theory on non-second-countable spaces.

e.g., the space NN
N

of Kleene-Kreisel continuous functionals.
computability theory on the spaces Bα(X)?

...4 Develop the notion of a hyperdegree spectrum of a space.
Gregoriades and K. have already studied co-Souslin-F
isomorphisms as counterpart of hyperdegree spectra, and
obtained a few results based on classical works on the Borel
isomorphism problem, Kleene degrees (real computability
relative to 2E) and so on.
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