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A set-theoretic function f (!a) is Σ1-definable in a fragment T
if there exists a Σ1-formula ϕ(!a, b) such that f (!a) = b ⇔ V |=
ϕ(!a, b) for any !a, b, and T " ∀!a∃!b ϕ(!a, b).

A formal system axiomatizes a class of functions iff Σ1-definable
functions in it are exactly functions in the class.

1. rudimentary functions [Jensen], pp. 3-7.

2. primitive recursive functions [Jensen-Karp], pp. 8-9.

3. safe recursive set functions [Beckmann-Buss-Friedman],
pp. 10-14.

4. predicatively computable set functions [A.] augmented with an
ι-operator, pp. 15-30.
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1 Rudimentary functions

Theorem 1 A set-theoretic function is rudimentary iff it is Σ1-
definable in the fragment KP minus Foundation schema.

KP− := KP-Foundation

The set of rudimentary functions are generated from projections,
pair, difference a − b by operating composition and (Bounded
Union):

f(!x, z) =
⋃

{g(!x, y) : y ∈ z}.
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(Σ1-definability of rudimentary functions in KP−)
For the bounded union

f (!x, z) =
⋃

{g(!x, y) : y ∈ z}

assume that g(!x, y) = a is defined by a Σ1-formula ϕg(!x, y, a),
∀y ∈ z∃!aϕg(!x, y, a). Pick a b such that ∀y ∈ z∃a ∈ b ϕg(!x, y, a)
by (∆0-Collection). Then f (!x, z) = ∪{a ∈ b : ∃y ∈ z ϕg(!x, y, a)}.
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The ‘only-if’ part is proved by a witnessing argument [Buss].
idea: given an implication ∃aϕ(x, a) → ∃b ψ(x, b) of Σ1-formulas,
find a function f such that ∀x, a[ϕ(x, a) → ψ(x, f (x, a))].

a ∈ c(x) ∧ ϕ(x, a) → ∃b ψ(x, b)
∃a ∈ c(x)ϕ(x, a) → ∃b ψ(x, b)

Problem. Given a ∈ c(x) ∧ ϕ(x, a) → ψ(x, f (x, a)), find a g(x)
such that ∃a ∈ c(x)ϕ(x, a) → ψ(x, g(x)).

Suppose ∃a ∈ c(x)ϕ(x, a). Pick an a ∈ c(x) such that ϕ(x, a),
and put g(x) := f (x, a)??
A choice function a = a(x) ∈ {a ∈ c(x) : ϕ(x, a)}!
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Solution. Find a non-empty set of witnesses.

a ∈ c(x) ∧ ϕ(x, a) → ∅ += f(x, a) ⊂ {b : ψ(x, b)}
∃a ∈ c ϕ(x, a) → ∅ += g(x) ⊂ {b : ψ(x, b)}

for g(x) =
⋃
{f (x, a) : a ∈ c(x), ϕ(x, a)} by (Bounded Union).

Assume that ∃!aϕ(x, a) is derivable in KP−. We can find a
rudimentary function g(x) such that

∅ += g(x) ⊂ {a : ϕ(x, a)}

Since the set {a : ϕ(x, a)} is a singleton for each x, f (x) = ∪g(x)
enjoys ∀xϕ(x, f (x)) as desired.
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Corollary 2 A predicate is rudimentary iff it is ∆0 iff
it is ∆1-definable in KP−.

Proof. Suppose ∀!x[¬∃aϕ0(!x, a) ↔ ∃aϕ1(!x, a)] is derivable for
some ∆0-formulas ϕ0, ϕ1.

Pick rudimentary functions f0, f1 such that

(∅ += f0(!x) ⊂ {a : ϕ0(!x, a)}) or (∅ += f1(!x) ⊂ {a : ϕ1(!x, a)})

Then ∃a ∈ f1(!x)ϕ1(!x, a) → ∃aϕ1(!x, a) → ¬∃aϕ0(!x, a) →
¬(∅ += f0(!x) ⊂ {a : ϕ0(!x, a)}) → (∅ += f1(!x) ⊂ {a : ϕ1(!x, a)}) →
∃a ∈ f1(!x)ϕ1(!x, a). Hence ∃a ∈ f1(!x)ϕ1(!x, a) ↔ ∃aϕ1(!x, a).

!
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2 Primitive recursive functions

The set of primitive recursive functions is generated from projec-
tions, null, conditional, and M(a, b) = a ∪ {b}, and operating
composition and set recursion:

f (x, !y) = h(x, !y, {f(z, !y) : z ∈ x}).

Theorem 3 [Rathjen]
A set-theoretic function is primitive recursive in a ∆0-function g(!x)
iff it is Σ1-definable in KP−+Σ1-Foundation+∀!x∃!y(g(!x) = y).

Σ1-Foundation+∆0-Collection suffices for the existence of the tran-
sitive closure TC(x) of x, and Σ-recursion of functions.
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Theorem 3 and Corollary 2 are extended to Π1-functions g.

1. A function is primitive recursive in g(!x) iff it is Σ1(g)-definable
in KP−(g)+Σ1(g)-Foundation+∀!x∃!y(g(!x) = y).

2. A predicate is primitive recursive in g(!x) iff it is ∆1(g)-definable
in KP−(g)+Σ1(g)-Foundation+∀!x∃!y(g(!x) = y).

As for rudimentary functions, the ‘only-if’ parts are shown by a
witnessing argument with non-empty sets of witnesses.
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3 Safe recursive functions

Arguments of each function f (!x/!a) in the class are divided to
normal arguments !x and safe arguments !a a là [Bellantoni-Cook].
The class SRSF of safe recursive set functions, is obtained from
rudimentary set functions on safe arguments by safe composition
schema and predicative set (primitive) recursion schema.
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(Bounded Union)

f (!x/!a, b) =
⋃

c∈b

g(!x/!a, c).

(Safe Composition Scheme)

f (!x/!a) = h(!r(!x/−)/!t(!x/!a)).

(Safe Set Recursion Scheme)

f (x, !y/!a) = h(x, !y/!a, {f(z, !y/!a) : z ∈ x}).
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Expand the language by augmenting a predicate D, denoting a
transitive class for normal arguments.

We say that a set-theoretic function f(!x/!a) is ΣD
1 -definable in

T if there exists a Σ1-formula (in the language of set theory)
ϕ(!x,!a, b) such that f (!x/!a) = b ⇔ V |= ϕ(!x,!a, b) for any !x,!a, b,
and T " ∀!x ⊂ D∀!a∃!b ϕ(!x,!a, b).
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3.1 A fragment T2 for SRSF

T2 := KP−+(ΣD
1 -Foundation)+(Σ1-Submodel Rule)

(ΣD
1 -Foundation)

∀y ∈ D[∀x ∈ y∃aϕ(x, a) → ∃aϕ(y, a)] → ∀y ∈ D∃aϕ(y, a)

(Σ1-Submodel Rule)

∀!x ⊂ D∃aϕ(!x, a)
∀!x ⊂ D∃a ∈ D ϕ(!x, a)

and an axiom saying that D is transitive.
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Theorem 4 A set-theoretic function is in SRSF iff
it is ΣD

1 -definable in T2.

(ΣD
1 -definability of SRSF-functions in T2)
(ΣD

1 -Foundation) suffices for (Predicative Set Recursion)
f (x, !y/!a) = h(x, !y/!a, {f (z, !y/!a) : z ∈ x}).
(Bounded Union) by (∆0-Coll).

(Σ1-Submodel Rule) suffices for(Safe Composition)
f (!x/!a) = h(!r(!x/−)/!t(!x/!a)).

Corollary 5 A predicate is in SRSF iff it is ∆D
1 -definable in T2.
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4 Predicatively computable set functions with ι-operator

PCSF-functions are generated from projections, pair, null, union
∪(−/a), conditional, (Safe Separation)

f (−/!a, c) = {b ∈ c : h(−/!a, b) += 0}
(Safe Composition) and (Predicative Set Recursion).

A function on HF is poly time computable iff it is in PCSF.

Theorem 6 (Polysize)
For each f (!x/!a) ∈ PCSF, the size of the transitive closure
TC(f ( !X/ !A)) of f ( !X/ !A) for !X, !A ⊂ HF is bounded by the sum
of the sizes of TC( !A) and a polynomial of the sizes of TC( !X).
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Difficulty in axiomatizing PCSF is due to lack of (Bounded
Union). Without it we can not collect witnesses to a set.

a ∈ c(x) ∧ ϕ(x, a) → ∅ += f (x, a) ⊂ {b : ψ(x, b)}
∃a ∈ c ϕ(x, a) → ∅ +=

⋃
{f (x, a) : a ∈ c(x), ϕ(x, a)} ⊂ {b : ψ(x, b)}

Let us restrict our attention to derivations in which existential
quantifiers occur only as uniqueness quantifires ∃!b.

a ∈ c(x) ∧ ϕ(x, a) → ∃!b ψ(x, b)
∃a ∈ c(x)ϕ(x, a) → ∃!b ψ(x, b)

If f (x, a) is the unique witness of b in ψ(x, b) for any a ∈ c(x)
with ϕ(x, a), then for g(x) = ιb[∃a ∈ c(x)(ϕ(x, a)∧f(x, a) = b)],
we obtain ∃a ∈ c(x)ϕ(x, a) → ψ(x, g(x)).
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We are going to enlarge the class PCSF by introducing Russell’s
ι-operator (definite description), cf. PCSF+ in [Beckmann-Buss-
Friedman-Müller-Thapen].

The ι-operator describes an object ιx.A(x) for a predicate A(x):
ιx.A(x) denotes the unique element x enjoying A(x) if there exists
a unique such x. Otherwise put ιx.A(x) = ∅.

There remains some room for the class PCSF to be extended,
still holding Theorem 6(Polysize), and keeping the extensionality
of functions under encoding: if the codes G and H encode the
same set (in HF), then the codes F (G) and F (H) should encode
the same set.
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The class PCSFι is closed under (ι): if g ∈ PCSFι, then so is

(ι) f (!x/!a, c) = ιd(∃b ∈ c(g(!x/!a, b) = d)).

This means that when the range g”c = {g(!x/!a, b) : b ∈ c} is a
singleton, f (!x/!a, c) denotes the unique element, and f (!x/!a, c) =
∅ otherwise.

Obviously Theorem 6(Polysize) holds for the enlarged class PCSFι,
and each function in this class enjoys the extensionality under en-
coding.

Let ∆0(PCSFι) denote the set of bounded formulas in the lan-
guage with function symbols in the class PCSFι. Σ1!(PCSFι) de-
notes the set of formulas ∃!aϕ with ϕ ∈ ∆0(PCSFι).

18



A formal system T ι
3 for axiomatizing PCSFι: ϕ ∈ ∆0(PCSFι).

1. ∀x ∈ D∃a(a = TC(x)) and (∆0(PCSFι)-Sep).

2. (∆D
0 (PCSFι)-Replacement): y ∈ D is a ‘domain’ of a function.

∀y ∈ D[∀x ∈ y∃!aϕ(x, a) → ∃c∀x ∈ y ϕ(x, c′x)].

3. (ΣD
1 !(PCSFι)-Fund): D is weakly wellfounded.

∀y ∈ D[∀x ∈ y∃!aϕ(x, a) → ∃!aϕ(y, a)] → ∀y ∈ D∃!aϕ(y, a).

4. (Σ1!(PCSFι)-Submodel Rule)

∀!x ⊂ D∃!aϕ(!x, a)
∀!x ⊂ D∃y ∈ D ϕ(!x, y)

Problem. It is open for us how to axiomatize PCSFι-predicates.
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A function f (!x/!a) is ΣD
1 !-definable in T if there exists a Σ1!-

formula ϕ(!x,!a, b) such that f (!x/!a) = b ⇔ V |= ϕ(!x,!a, b) and
T " ∀!x ⊂ D∀!a∃!b ϕ(!x,!a, b).

1. T3 := TC + (∆0-Sep) + (∆D
0 -Rpl) + (ΣD

1 !-Fund) + (Σ1!-SmR)
ΣD

1 !-defines PCSF-functions.

2. Each ΣD
1 !-definable function in T3 is in PCSFι, but not shown

in PCSF.
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Actually T ι
3 in a language L(ω) =

⋃
n L(n) is a union of increasing

formal systems T (n)
3 in L(n).

T (n)
3 = TC + (∆0(L(n))-Sep) + (∆D

0 (L(n))-Rpl) + (ΣD
1 !(L(n))-Fund) + (Σ1!(L(n))-SmR)

Enlarge the language L(n) to get L(n+1) by adding function sym-
bols f(!x/!a) when T (n)

3 " ∀!x ⊂ D∀!a∃!b θf(!x,!a, b) for θf ∈ Σ1!(L(n)),
and add an axiom ∀!x ⊂ D∀!a θf(!x,!a, f(!x,!a)).

The introduced function symbol f for Σ1!(L(n))-definable func-

tions in T (n)
3 may occur in bounded formulas of Separation, Re-

placement, Foundation and Submodel rule of T (n+1)
3 .
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A function f (!x/!a) is ΣD
1 !(L(ω))-definable in T ι

3 if there exists
a Σ1!(L(ω))-formula ϕ(!x,!a, b) such that f (!x/!a) = b ⇔ V |=
ϕ(!x,!a, b) and T ι

3 " ∀!x ⊂ D∀!a∃!b ϕ(!x,!a, b).

Theorem 7 A set-theoretic function is in PCSFι iff it is ΣD
1 !(L(ω))-

definable in T ι
3.

(Σ1!(L(ω))-definability of PCSFι-functions)

f(!x/!a, c) = ιd(∃b ∈ c(g(!x/!a, b) = d))

ϕf(!x,!a, c, d) iff ∃!e[∃b ∈ c(g(!x,!a, b) = e)] ∧ (∃b ∈ c(g(!x,!a, b) =
d) or d = ∅ ∧ (c += ∅ → ∃b0, b1 ∈ c(g(!x,!a, b0) += g(!x,!a, b1)).
ϕf is a Σ1!(L(ω))-formula with a function symbol g.
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The converse of Theorem 7:

if a set-theoretic function is ΣD
1 !(L(n))-definable in T (n)

3 ,
then it is in PCSFι.

is proved by induction on n. Let us assume that each function
in L(n) as well as each ∆0(L(n))-formula is in PCSFι.

Uniqueness conditions involve unbounded universal quantifiers
Uniquea(ϕ) :⇔ ∀a, b[ϕ(a) ∧ ϕ(b) → a = b].

To control the unbounded universal quantifiers, we introduce
classes X , i.e., ∀a, b is restricted to ∀a, b ∈ X . Classes are gener-
ated recursively.
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1. Each singleton {f (!x/!a)} for f ∈ PCSFι is a class.

2. For classes X,Y , X ∪ Y is a class.

3. If X(a) is a class and f ∈ PCSFι, then
⋃
{X(a) : a ∈ f (!x/!a)}

is a class.

If ϕ is a bounded formula in L(PCSFι), then so is the formula
∀d ∈ X ϕ(d) for each class X .
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A witness b of a Σ1!-formula ∃!aϕ wrt X is a unique witness in
X , i.e., b ∈ X ∧ ϕ(b) ∧ ∀a ∈ X(ϕ(a) → a = b).

1. w!Xϕ (b) :⇔ ϕ if ϕ is a bounded formula.

2. w!X∃!c ψ(c)(b) :⇔ b ∈ X ∧ ψ(b) ∧ UniqueX
c (ψ(b))

where UniqueX
c (ψ(b)) :⇔ ∀c ∈ X(ψ(c) → b = c).

3. w!X∀x∈y∃!c ψ(x,c)(b) iff b is a function on y s.t. ∀x ∈ y[w!X∃!c ψ(x,c)(b
′x)].

w!Xϕ (b) is a bounded formula in the language L(PCSFι) for each
class X .
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A witnessing function fX(x/a, b) for derivable implications of
Σ1!-formulas ϕ(x, a) → ψ(x, a) may depend uniformly on classes
X , w!Xϕ (b) → w!Xψ (fX(x/a, b)).

When f is defined from j, k, g, h ∈ PCSFιX and ϕ(!x,!a) ∈ Σ1!
by cases

f(!x/!a) =

{
j(!x/!a) if ∀x ∈ g(!x/!a)[w!Xϕ (h(!x, x/!a))]
k(!x/!a) otherwise

then f ∈ PCSFιX .
Each f ∈ PCSFιX denotes a function in PCSFι depending uni-

formly on classes X .
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The following Lemma 8 yields the converse of Theorem 7.

Lemma 8 Assume that an implication

D(!x) ∧ σ → ¬Uniquea(θ) ∨ ϕ

is derivable in T (n)
3 for Σ1!(L(n))-formulas σ, ϕ and bounded θ.

Then there exist a class X = X(!x/!a, b) and a function
fX(!x/!a, b) ∈ PCSFιX such that

w!Xσ (b) → ¬UniqueX
a (θ) ∨ w!Xϕ (fX(!x/!a, b)) (1)

where ¬UniqueX
a (θ) :⇔ ∃a, b ∈ X(θ(a) ∧ θ(b) ∧ a += b).
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Proof.
Case 0.

The case when two occurrences of a formula ϕ is contracted. Let
e be defined by cases from c, d and a bounded formula w!Xϕ (c).

e =

{
c if w!Xϕ (c)
d otherwise

Then w!Xϕ (c) ∨ w!Xϕ (d) → w!Xϕ (e).
Note that w!Xϕ (c) is in PCSFι for each X .
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Case 1.
σ → (θ(s0) ∧ θ(s1) ∧ s0 += s1) ∨ ϕ

σ → ¬Uniquea(θ) ∨ ϕ
(∃)

For ¬UniqueX
a (θ) it suffices to have {s0, s1} ⊂ X .

This means that we need to augment two elements s0, s1 to a class
X0 of the upper sequent, X = X0 ∪ {s0, s1}.
Although the function fX(x/a, b) may differ fX0(x/a, b), these de-
pend classes X,X0 uniformly in the sense that the ‘definitions’ of
these functions coincide.
Furthermore as we shall see it, requirements on classes are mono-
tonic, i.e., if X and fX enjoys (1), then so does a larger class
Y ⊃ X (and fY ).
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Case 2. For an eigenvariable d (suppressing ¬Uniquea(θ))

d ∈ t ∧ γ(d) → ϕ
∃c ∈ t γ(c) → ϕ

Let X =
⋃
{X0(d) : d ∈ t} for a class X0(d) of the upper sequent.

Assume that if γ(d) and d ∈ t, then w!Xϕ (hX(x/a, d)). We have
∀d0, d1 ∈ t(

∧
i γ(di) → hX(x/a, d0) = hX(x/a, d1)). Let

fX(x/a) = ιe[∃d ∈ t(γ(d) ∧ hX(x/a, d) = e)]

We obtain ∃c ∈ t γ(c) → w!Xϕ (fX(x/a)).
!
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Thank you for your attention!
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Case 3. For t′ = TC(t ∪ {t})
∀y ∈ t′(∀x ∈ y∃!a γ(x, a) → ∃!a γ(y, a)) ∨ ϕ

D(t) → ∃!a γ(t, a) ∨ ϕ
(ΣD

1 !-Fund)

For X = X(y, b) assume that for any b : y → V and y ∈ t′

∀x ∈ y w!X∃!a γ(x)(b
′x) → w!X∃!a γ(y)(hX(y/b)) ∨ w!Xϕ (kX(y/b))

Let g(y/) = hX(y/by) for by = g !y = {〈x, g(x/)〉 : x ∈ y}.

Let Y =
⋃
{X(y, by) : y ∈ t′}. For any y ∈ t′

∀x ∈ y w!Y∃!a γ(x)(b
′
yx) → w!Y∃!a γ(y)(hY (y/by)) ∨ w!Yϕ (kY (y/by))
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Equivalently

∀x ∈ y w!Y∃!a γ(x)(g(x/)) → w!Y∃!a γ(y)(g(y/)) ∨ w!Yϕ (kY (y/by))

If ¬∀x ∈ t′[w!Y∃!a γ(x)(g(x/))], then ∃x ∈ t′ w!Yϕ (kY (x/bx))).

Otherwise we obtain w!Y∃!a γ(t)(g(t/)).

Therefore w!Y∃!a γ(t)(g(t/)) ∨ w!Yϕ (K), where

K =
⋃
{kY (x/bx) : w!Yϕ (kY (x/bx)), x ∈ t′} with a singleton

{kY (x/bx) : w!Yϕ (kY (x/bx)), x ∈ t′}.
!
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