Axiomatizing some small classes of set functions

Toshiyasu Arai (Chiba)

15 Apr. 2015

A set-theoretic function $f(\vec{a})$ is Σ_1 -definable in a fragment Tif there exists a Σ_1 -formula $\varphi(\vec{a}, b)$ such that $f(\vec{a}) = b \Leftrightarrow V \models \varphi(\vec{a}, b)$ for any \vec{a}, b , and $T \vdash \forall \vec{a} \exists ! b \varphi(\vec{a}, b)$.

A formal system axiomatizes a class of functions iff Σ_1 -definable functions in it are exactly functions in the class.

- 1. rudimentary functions [Jensen], pp. 3-7.
- 2. primitive recursive functions [Jensen-Karp], pp. 8-9.
- 3. safe recursive set functions [Beckmann-Buss-Friedman], pp. 10-14.
- 4. predicatively computable set functions [A.] augmented with an $\iota\text{-operator, pp. 15-30.}$

1 Rudimentary functions

Theorem 1 A set-theoretic function is rudimentary iff it is Σ_1 definable in the fragment KP *minus* Foundation schema.

$$KP^{-} := KP$$
-Foundation

The set of rudimentary functions are generated from projections, pair, difference a - b by operating composition and (Bounded Union):

$$f(\vec{x}, z) = \bigcup \{ g(\vec{x}, y) : y \in z \}.$$

 $(\Sigma_1$ -definability of rudimentary functions in KP⁻) For the bounded union

$$f(\vec{x}, z) = \bigcup \{ g(\vec{x}, y) : y \in z \}$$

assume that $g(\vec{x}, y) = a$ is defined by a Σ_1 -formula $\varphi_g(\vec{x}, y, a)$, $\forall y \in z \exists ! a \varphi_g(\vec{x}, y, a)$. Pick a *b* such that $\forall y \in z \exists a \in b \varphi_g(\vec{x}, y, a)$ by (Δ_0 -Collection). Then $f(\vec{x}, z) = \bigcup \{a \in b : \exists y \in z \varphi_g(\vec{x}, y, a)\}$. The 'only-if' part is proved by a witnessing argument [Buss]. <u>idea</u>: given an implication $\exists a \varphi(x, a) \to \exists b \psi(x, b)$ of Σ_1 -formulas, find a function f such that $\forall x, a[\varphi(x, a) \to \psi(x, f(x, a))]$.

$$\frac{a \in c(x) \land \varphi(x, a) \to \exists b \, \psi(x, b)}{\exists a \in c(x) \, \varphi(x, a) \to \exists b \, \psi(x, b)}$$

<u>Problem</u>. Given $a \in c(x) \land \varphi(x, a) \to \psi(x, f(x, a))$, find a g(x) such that $\exists a \in c(x) \varphi(x, a) \to \psi(x, g(x))$.

Suppose $\exists a \in c(x) \varphi(x, a)$. Pick an $a \in c(x)$ such that $\varphi(x, a)$, and put g(x) := f(x, a)??

A choice function $a = a(x) \in \{a \in c(x) : \varphi(x, a)\}!$

Solution. Find a non-empty set of witnesses. $\frac{a \in c(x) \land \varphi(x, a) \to \emptyset \neq f(x, a) \subset \{b : \psi(x, b)\}}{\exists a \in c \, \varphi(x, a) \to \emptyset \neq g(x) \subset \{b : \psi(x, b)\}}$

for $g(x) = \bigcup \{ f(x, a) : a \in c(x), \varphi(x, a) \}$ by (Bounded Union).

Assume that $\exists ! a \varphi(x, a)$ is derivable in KP⁻. We can find a rudimentary function g(x) such that

$$\emptyset \neq g(x) \subset \{a: \varphi(x,a)\}$$

Since the set $\{a: \varphi(x, a)\}$ is a singleton for each $x, f(x) = \bigcup g(x)$ enjoys $\forall x \varphi(x, f(x))$ as desired. **Corollary 2** A predicate is rudimentary iff it is Δ_0 iff it is Δ_1 -definable in KP⁻.

Proof. Suppose $\forall \vec{x} [\neg \exists a \varphi_0(\vec{x}, a) \leftrightarrow \exists a \varphi_1(\vec{x}, a)]$ is derivable for some Δ_0 -formulas φ_0, φ_1 .

Pick rudimentary functions f_0, f_1 such that

 $(\emptyset \neq f_0(\vec{x}) \subset \{a : \varphi_0(\vec{x}, a)\}) \text{ or } (\emptyset \neq f_1(\vec{x}) \subset \{a : \varphi_1(\vec{x}, a)\})$

Then $\exists a \in f_1(\vec{x}) \varphi_1(\vec{x}, a) \to \exists a \varphi_1(\vec{x}, a) \to \neg \exists a \varphi_0(\vec{x}, a) \to \neg (\emptyset \neq f_0(\vec{x}) \subset \{a : \varphi_0(\vec{x}, a)\}) \to (\emptyset \neq f_1(\vec{x}) \subset \{a : \varphi_1(\vec{x}, a)\}) \to \exists a \in f_1(\vec{x}) \varphi_1(\vec{x}, a).$ Hence $\exists a \in f_1(\vec{x}) \varphi_1(\vec{x}, a) \leftrightarrow \exists a \varphi_1(\vec{x}, a).$

2 Primitive recursive functions

The set of primitive recursive functions is generated from projections, null, conditional, and $M(a, b) = a \cup \{b\}$, and operating composition and set recursion:

$$f(x,\vec{y})=h(x,\vec{y},\{f(z,\vec{y}):z\in x\}).$$

Theorem 3 [Rathjen]

A set-theoretic function is primitive recursive in a Δ_0 -function $\mathbf{g}(\vec{x})$ iff it is Σ_1 -definable in KP⁻+ Σ_1 -Foundation+ $\forall \vec{x} \exists ! y(\mathbf{g}(\vec{x}) = y)$.

 Σ_1 -Foundation+ Δ_0 -Collection suffices for the existence of the transitive closure TC(x) of x, and Σ -recursion of functions. Theorem 3 and Corollary 2 are extended to Π_1 -functions g.

- 1. A function is primitive recursive in $\mathbf{g}(\vec{x})$ iff it is $\Sigma_1(\mathbf{g})$ -definable in KP⁻(\mathbf{g})+ $\Sigma_1(\mathbf{g})$ -Foundation+ $\forall \vec{x} \exists ! y(\mathbf{g}(\vec{x}) = y)$.
- 2. A predicate is primitive recursive in $\mathbf{g}(\vec{x})$ iff it is $\Delta_1(\mathbf{g})$ -definable in KP⁻(\mathbf{g})+ $\Sigma_1(\mathbf{g})$ -Foundation+ $\forall \vec{x} \exists ! y(\mathbf{g}(\vec{x}) = y)$.

As for rudimentary functions, the 'only-if' parts are shown by a witnessing argument with non-empty sets of witnesses.

3 Safe recursive functions

Arguments of each function $f(\vec{x}/\vec{a})$ in the class are divided to normal arguments \vec{x} and safe arguments \vec{a} a là [Bellantoni-Cook]. The class SRSF of safe recursive set functions, is obtained from rudimentary set functions on safe arguments by safe composition schema and predicative set (primitive) recursion schema.

(Bounded Union)

$$f(\vec{x}/\vec{a}, b) = \bigcup_{c \in b} g(\vec{x}/\vec{a}, c).$$

(Safe Composition Scheme)

$$f(\vec{x}/\vec{a}) = h(\vec{r}(\vec{x}/-)/\vec{t}(\vec{x}/\vec{a})).$$

(Safe Set Recursion Scheme)

$$f(x,\vec{y}/\vec{a}) = h(x,\vec{y}/\vec{a}, \{f(z,\vec{y}/\vec{a}) : z \in x\}).$$

Expand the language by augmenting a predicate \mathcal{D} , denoting a transitive class for normal arguments.

We say that a set-theoretic function $f(\vec{x}/\vec{a})$ is $\Sigma_1^{\mathcal{D}}$ -definable in T if there exists a Σ_1 -formula (in the language of set theory) $\varphi(\vec{x}, \vec{a}, b)$ such that $f(\vec{x}/\vec{a}) = b \Leftrightarrow V \models \varphi(\vec{x}, \vec{a}, b)$ for any \vec{x}, \vec{a}, b , and $T \vdash \forall \vec{x} \subset \mathcal{D} \forall \vec{a} \exists ! b \varphi(\vec{x}, \vec{a}, b)$.

3.1 A fragment T_2 for SRSF

$T_2 := \mathrm{KP}^- + (\Sigma_1^{\mathcal{D}} - \mathrm{Foundation}) + (\Sigma_1 - \mathrm{Submodel \ Rule})$ $(\Sigma_1^{\mathcal{D}} - \mathbf{Foundation})$

$$\forall y \in \mathcal{D}[\forall x \in y \exists a \, \varphi(x, a) \to \exists a \, \varphi(y, a)] \to \forall y \in \mathcal{D} \exists a \, \varphi(y, a)$$

(Σ_1 -Submodel Rule)

$$\frac{\forall \vec{x} \subset \mathcal{D} \exists a \, \varphi(\vec{x}, a)}{\forall \vec{x} \subset \mathcal{D} \exists a \in \mathcal{D} \, \varphi(\vec{x}, a)}$$

and an axiom saying that \mathcal{D} is transitive.

Theorem 4 A set-theoretic function is in SRSF iff it is $\Sigma_1^{\mathcal{D}}$ -definable in T_2 .

(Σ₁^D-definability of SRSF-functions in T₂)
(Σ₁^D-Foundation) suffices for (Predicative Set Recursion)
f(x, y/d) = h(x, y/d, {f(z, y/d) : z ∈ x}).
(Bounded Union) by (Δ₀-Coll).

(Σ_1 -Submodel Rule) suffices for(Safe Composition) $f(\vec{x}/\vec{a}) = h(\vec{r}(\vec{x}/-)/\vec{t}(\vec{x}/\vec{a})).$

Corollary 5 A predicate is in SRSF iff it is $\Delta_1^{\mathcal{D}}$ -definable in T_2 .

4 Predicatively computable set functions with ι -operator

PCSF-functions are generated from projections, pair, null, union $\cup (-/a)$, conditional, (Safe Separation)

$$f(-/\vec{a},c)=\{b\in c:h(-/\vec{a},b)\neq 0\}$$

(Safe Composition) and (Predicative Set Recursion). A function on \mathbb{HF} is poly time computable iff it is in PCSF. Theorem 6 (Polysize) For each $f(\vec{x}/\vec{a}) \in \mathsf{PCSF}$, the size of the transitive closure $\mathrm{TC}(f(\vec{X}/\vec{A}))$ of $f(\vec{X}/\vec{A})$ for $\vec{X}, \vec{A} \subset \mathbb{HF}$ is bounded by the sum of the sizes of $\mathrm{TC}(\vec{A})$ and a polynomial of the sizes of $\mathrm{TC}(\vec{X})$. Difficulty in axiomatizing PCSF is due to lack of (Bounded Union). Without it we can not collect witnesses to a set.

 $\frac{a \in c(x) \land \varphi(x, a) \to \emptyset \neq f(x, a) \subset \{b : \psi(x, b)\}}{\exists a \in c \, \varphi(x, a) \to \emptyset \neq \bigcup \{f(x, a) : a \in c(x), \varphi(x, a)\} \subset \{b : \psi(x, b)\}}$

Let us restrict our attention to derivations in which existential quantifiers occur only as uniqueness quantifires $\exists !b$.

$$\frac{a \in c(x) \land \varphi(x, a) \to \exists ! b \, \psi(x, b)}{\exists a \in c(x) \, \varphi(x, a) \to \exists ! b \, \psi(x, b)}$$

If f(x, a) is the unique witness of b in $\psi(x, b)$ for any $a \in c(x)$ with $\varphi(x, a)$, then for $g(x) = \iota b[\exists a \in c(x)(\varphi(x, a) \land f(x, a) = b)]$, we obtain $\exists a \in c(x) \varphi(x, a) \to \psi(x, g(x))$. We are going to enlarge the class PCSF by introducing Russell's *ι*-operator (definite description), cf. PCSF^+ in [Beckmann-Buss-Friedman-Müller-Thapen].

The ι -operator describes an object $\iota x.A(x)$ for a predicate A(x): $\iota x.A(x)$ denotes the unique element x enjoying A(x) if there exists a unique such x. Otherwise put $\iota x.A(x) = \emptyset$.

There remains some room for the class PCSF to be extended, still holding Theorem 6(Polysize), and keeping the extensionality of functions under encoding: if the codes G and H encode the same set (in \mathbb{HF}), then the codes F(G) and F(H) should encode the same set. The class PCSF^{ι} is closed under (ι) : if $g \in \mathsf{PCSF}^{\iota}$, then so is $(\iota) \ f(\vec{x}/\vec{a},c) = \iota d(\exists b \in c(g(\vec{x}/\vec{a},b) = d)).$

This means that when the range $g''c = \{g(\vec{x}/\vec{a}, b) : b \in c\}$ is a singleton, $f(\vec{x}/\vec{a}, c)$ denotes the unique element, and $f(\vec{x}/\vec{a}, c) = \emptyset$ otherwise.

Obviously Theorem 6(Polysize) holds for the enlarged class PCSF^{ι} , and each function in this class enjoys the extensionality under encoding.

Let $\Delta_0(\mathsf{PCSF}^{\iota})$ denote the set of bounded formulas in the language with function symbols in the class PCSF^{ι} . $\Sigma_1!(\mathsf{PCSF}^{\iota})$ denotes the set of formulas $\exists ! a \varphi$ with $\varphi \in \Delta_0(\mathsf{PCSF}^{\iota})$.

- A formal system T_3^{ι} for axiomatizing PCSF^{ι} : $\varphi \in \Delta_0(\mathsf{PCSF}^{\iota})$. 1. $\forall x \in \mathcal{D} \exists a(a = \mathrm{TC}(x)) \text{ and } (\Delta_0(\mathsf{PCSF}^{\iota})\text{-}\mathrm{Sep}).$
- 2. $(\Delta_0^{\mathcal{D}}(\mathsf{PCSF}^{\iota})\text{-Replacement}): y \in \mathcal{D} \text{ is a 'domain' of a function.}$ $\forall y \in \mathcal{D}[\forall x \in y \exists ! a \varphi(x, a) \to \exists c \forall x \in y \varphi(x, c'x)].$
- 3. $(\Sigma_1^{\mathcal{D}}!(\mathsf{PCSF}^{\iota})\text{-Fund})$: \mathcal{D} is weakly wellfounded. $\forall y \in \mathcal{D}[\forall x \in y \exists ! a \, \varphi(x, a) \to \exists ! a \, \varphi(y, a)] \to \forall y \in \mathcal{D} \exists ! a \, \varphi(y, a).$

4. $(\Sigma_1!(\mathsf{PCSF}^{\iota})\text{-Submodel Rule})$

$$\frac{\forall \vec{x} \subset \mathcal{D} \exists ! a \, \varphi(\vec{x}, a)}{\forall \vec{x} \subset \mathcal{D} \exists y \in \mathcal{D} \, \varphi(\vec{x}, y)}$$

Problem. It is open for us how to axiomatize PCSF^{ι} -predicates.

A function $f(\vec{x}/\vec{a})$ is $\Sigma_1^{\mathcal{D}}$!-definable in T if there exists a Σ_1 !formula $\varphi(\vec{x}, \vec{a}, b)$ such that $f(\vec{x}/\vec{a}) = b \Leftrightarrow V \models \varphi(\vec{x}, \vec{a}, b)$ and $T \vdash \forall \vec{x} \subset \mathcal{D} \forall \vec{a} \exists ! b \varphi(\vec{x}, \vec{a}, b).$

- 1. $T_3 := \text{TC} + (\Delta_0 \text{-Sep}) + (\Delta_0^{\mathcal{D}} \text{-Rpl}) + (\Sigma_1^{\mathcal{D}} \text{-Fund}) + (\Sigma_1 \text{!-SmR})$ $\Sigma_1^{\mathcal{D}} \text{!-defines PCSF-functions.}$
- 2. Each $\Sigma_1^{\mathcal{D}}$!-definable function in T_3 is in PCSF^{ι} , but not shown in PCSF .

Actually T_3^{ι} in a language $\mathcal{L}^{(\omega)} = \bigcup_n \mathcal{L}^{(n)}$ is a union of increasing formal systems $T_3^{(n)}$ in $\mathcal{L}^{(n)}$.

 $T_3^{(n)} = \mathrm{TC} + (\Delta_0(\mathcal{L}^{(n)}) - \mathrm{Sep}) + (\Delta_0^{\mathcal{D}}(\mathcal{L}^{(n)}) - \mathrm{Rpl}) + (\Sigma_1^{\mathcal{D}}!(\mathcal{L}^{(n)}) - \mathrm{Fund}) + (\Sigma_1!(\mathcal{L}^{(n)}) - \mathrm{SmR})$

Enlarge the language $\mathcal{L}^{(n)}$ to get $\mathcal{L}^{(n+1)}$ by adding function symbols $\mathbf{f}(\vec{x}/\vec{a})$ when $T_3^{(n)} \vdash \forall \vec{x} \subset \mathcal{D} \forall \vec{a} \exists ! b \, \theta_{\mathbf{f}}(\vec{x}, \vec{a}, b)$ for $\theta_{\mathbf{f}} \in \Sigma_1 ! (\mathcal{L}^{(n)})$, and add an axiom $\forall \vec{x} \subset \mathcal{D} \forall \vec{a} \, \theta_{\mathbf{f}}(\vec{x}, \vec{a}, \mathbf{f}(\vec{x}, \vec{a}))$.

The introduced function symbol **f** for $\Sigma_1!(\mathcal{L}^{(n)})$ -definable functions in $T_3^{(n)}$ may occur in bounded formulas of Separation, Replacement, Foundation and Submodel rule of $T_3^{(n+1)}$. A function $f(\vec{x}/\vec{a})$ is $\Sigma_1^{\mathcal{D}}!(\mathcal{L}^{(\omega)})$ -definable in T_3^{ι} if there exists a $\Sigma_1!(\mathcal{L}^{(\omega)})$ -formula $\varphi(\vec{x},\vec{a},b)$ such that $f(\vec{x}/\vec{a}) = b \Leftrightarrow V \models \varphi(\vec{x},\vec{a},b)$ and $T_3^{\iota} \vdash \forall \vec{x} \subset \mathcal{D} \forall \vec{a} \exists ! b \varphi(\vec{x},\vec{a},b).$

Theorem 7 A set-theoretic function is in PCSF^{ι} iff it is $\Sigma_1^{\mathcal{D}}!(\mathcal{L}^{(\omega)})$ definable in T_3^{ι} .

 $(\Sigma_{1}!(\mathcal{L}^{(\omega)})\text{-definability of }\mathsf{PCSF}^{\iota}\text{-functions})$ $f(\vec{x}/\vec{a},c) = \iota d(\exists b \in c(g(\vec{x}/\vec{a},b)=d))$ $\varphi_{f}(\vec{x},\vec{a},c,d) \text{ iff } \exists !e[\exists b \in c(\mathbf{g}(\vec{x},\vec{a},b)=e)] \land (\exists b \in c(\mathbf{g}(\vec{x},\vec{a},b)=d))$ $d) \text{ or } d = \emptyset \land (c \neq \emptyset \to \exists b_{0}, b_{1} \in c(\mathbf{g}(\vec{x},\vec{a},b_{0}) \neq \mathbf{g}(\vec{x},\vec{a},b_{1})).$ $\varphi_{f} \text{ is a } \Sigma_{1}!(\mathcal{L}^{(\omega)})\text{-formula with a function symbol } \mathbf{g}.$

The converse of Theorem 7:

if a set-theoretic function is $\Sigma_1^{\mathcal{D}}!(\mathcal{L}^{(n)})$ -definable in $T_3^{(n)}$, then it is in PCSF^{ι} .

is proved by induction on n. Let us assume that each function in $\mathcal{L}^{(n)}$ as well as each $\Delta_0(\mathcal{L}^{(n)})$ -formula is in PCSF^{ι} .

 $\underbrace{\text{Uniqueness conditions involve unbounded universal quantifiers}}_{\text{Unique}_a(\varphi) :\Leftrightarrow \forall a, b[\varphi(a) \land \varphi(b) \to a = b].$

To control the unbounded universal quantifiers, we introduce classes X, i.e., $\forall a, b$ is restricted to $\forall a, b \in X$. Classes are generated recursively.

- 1. Each singleton $\{f(\vec{x}/\vec{a})\}$ for $f \in \mathsf{PCSF}^{\iota}$ is a class.
- 2. For classes $X, Y, X \cup Y$ is a class.
- 3. If X(a) is a class and $f \in \mathsf{PCSF}^{\iota}$, then $\bigcup \{X(a) : a \in f(\vec{x}/\vec{a})\}$ is a class.
- If φ is a bounded formula in $\mathcal{L}(\mathsf{PCSF}^{\iota})$, then so is the formula $\forall d \in X \varphi(d)$ for each class X.

A witness b of a Σ_1 !-formula $\exists ! a \varphi$ wrt X is a unique witness in X, i.e., $b \in X \land \varphi(b) \land \forall a \in X(\varphi(a) \to a = b)$.

- 1. $w!_{\varphi}^{X}(b) :\Leftrightarrow \varphi \text{ if } \varphi \text{ is a bounded formula.}$
- 2. $w!^X_{\exists c \psi(c)}(b) :\Leftrightarrow b \in X \land \psi(b) \land \text{Unique}_c^X(\psi(b))$ where $\text{Unique}_c^X(\psi(b)) :\Leftrightarrow \forall c \in X(\psi(c) \to b = c).$

3. $w!^X_{\forall x \in y \exists ! c \ \psi(x,c)}(b)$ iff b is a function on y s.t. $\forall x \in y[w!^X_{\exists ! c \ \psi(x,c)}(b'x)]$. $w!^X_{\varphi}(b)$ is a bounded formula in the language $\mathcal{L}(\mathsf{PCSF}^{\iota})$ for each class X. A witnessing function $f_X(x/a, b)$ for derivable implications of Σ_1 !-formulas $\varphi(x, a) \to \psi(x, a)$ may depend uniformly on classes $X, w!^X_{\varphi}(b) \to w!^X_{\psi}(f_X(x/a, b)).$

When f is defined from $j, k, g, h \in \mathsf{PCSF}_X^\iota$ and $\varphi(\vec{x}, \vec{a}) \in \Sigma_1!$ by cases

$$f(\vec{x}/\vec{a}) = \begin{cases} j(\vec{x}/\vec{a}) & \text{if } \forall x \in g(\vec{x}/\vec{a})[w!_{\varphi}^{X}(h(\vec{x}, x/\vec{a}))] \\ k(\vec{x}/\vec{a}) & \text{otherwise} \end{cases}$$

then $f \in \mathsf{PCSF}_X^{\iota}$. Each $f \in \mathsf{PCSF}_X^{\iota}$ denotes a function in PCSF^{ι} depending uniformly on classes X. The following Lemma 8 yields the converse of Theorem 7. Lemma 8 Assume that an implication

$$\mathcal{D}(\vec{x}) \land \sigma \to \neg \text{Unique}_a(\theta) \lor \varphi$$

is derivable in $T_3^{(n)}$ for $\Sigma_1!(\mathcal{L}^{(n)})$ -formulas σ, φ and bounded θ . Then there exist a class $X = X(\vec{x}/\vec{a}, b)$ and a function $f_X(\vec{x}/\vec{a}, b) \in \mathsf{PCSF}_X^\iota$ such that

$$w!^{X}_{\sigma}(b) \to \neg \text{Unique}^{X}_{a}(\theta) \lor w!^{X}_{\varphi}(f_{X}(\vec{x}/\vec{a}, b))$$
(1)
where $\neg \text{Unique}^{X}_{a}(\theta) :\Leftrightarrow \exists a, b \in X(\theta(a) \land \theta(b) \land a \neq b).$

Proof. Case 0.

The case when two occurrences of a formula φ is contracted. Let *e* be defined by cases from *c*, *d* and a bounded formula $w!_{\varphi}^{X}(c)$.

$$e = \begin{cases} c & \text{if } w!_{\varphi}^{X}(c) \\ d & \text{otherwise} \end{cases}$$

Then $w!_{\varphi}^{X}(c) \lor w!_{\varphi}^{X}(d) \to w!_{\varphi}^{X}(e)$. Note that $w!_{\varphi}^{X}(c)$ is in PCSF^{ι} for each X. Case 1.

$$\frac{\sigma \to (\theta(s_0) \land \theta(s_1) \land s_0 \neq s_1) \lor \varphi}{\sigma \to \neg \text{Unique}_a(\theta) \lor \varphi} (\exists)$$

For \neg Unique^X_a(θ) it suffices to have $\{s_0, s_1\} \subset X$. This means that we need to augment two elements s_0, s_1 to a class X_0 of the upper sequent, $X = X_0 \cup \{s_0, s_1\}$.

Although the function $f_X(x/a, b)$ may differ $f_{X_0}(x/a, b)$, these depend classes X, X_0 uniformly in the sense that the 'definitions' of these functions coincide.

Furthermore as we shall see it, requirements on classes are monotonic, i.e., if X and f_X enjoys (1), then so does a larger class $Y \supset X$ (and f_Y). **Case 2**. For an eigenvariable d (suppressing \neg Unique_a(θ)) $\frac{d \in t \land \gamma(d) \rightarrow \varphi}{\exists c \in t \gamma(c) \rightarrow \varphi}$

Let $X = \bigcup \{X_0(d) : d \in t\}$ for a class $X_0(d)$ of the upper sequent. Assume that if $\gamma(d)$ and $d \in t$, then $w!_{\varphi}^X(h_X(x/a, d))$. We have $\forall d_0, d_1 \in t(\bigwedge_i \gamma(d_i) \to h_X(x/a, d_0) = h_X(x/a, d_1))$. Let $f_X(x/a) = \iota e[\exists d \in t(\gamma(d) \land h_X(x/a, d) = e)]$ We obtain $\exists c \in t \gamma(c) \to w!_{\varphi}^X(f_X(x/a))$.

Thank you for your attention!

Case 3. For
$$t' = \operatorname{TC}(t \cup \{t\})$$

$$\frac{\forall y \in t'(\forall x \in y \exists ! a \ \gamma(x, a) \to \exists ! a \ \gamma(y, a)) \lor \varphi}{\mathcal{D}(t) \to \exists ! a \ \gamma(t, a) \lor \varphi} (\Sigma_1^{\mathcal{D}}!\text{-Fund})$$

For X = X(y, b) assume that for any $b : y \to V$ and $y \in t'$ $\forall x \in y \, w!^X_{\exists ! a \, \gamma(x)}(b'x) \to w!^X_{\exists ! a \, \gamma(y)}(h_X(y/b)) \lor w!^X_{\varphi}(k_X(y/b))$ Let $g(y/) = h_X(y/b_y)$ for $b_y = g \upharpoonright y = \{\langle x, g(x/) \rangle : x \in y\}.$ Let $Y = \bigcup \{X(y, b_y) : y \in t'\}$. For any $y \in t'$

 $\forall x \in y \, w!_{\exists ! a \, \gamma(x)}^Y(b'_y x) \to w!_{\exists ! a \, \gamma(y)}^Y(h_Y(y/b_y)) \lor w!_{\varphi}^Y(k_Y(y/b_y))$

Equivalently

 $\forall x \in y \, w!_{\exists ! a \, \gamma(x)}^{Y}(g(x/)) \to w!_{\exists ! a \, \gamma(y)}^{Y}(g(y/)) \lor w!_{\varphi}^{Y}(k_{Y}(y/b_{y}))$ If $\neg \forall x \in t'[w!_{\exists ! a \, \gamma(x)}^{Y}(g(x/))]$, then $\exists x \in t' \, w!_{\varphi}^{Y}(k_{Y}(x/b_{x})))$. Otherwise we obtain $w!_{\exists ! a \, \gamma(t)}^{Y}(g(t/))$. Therefore $w!_{\exists ! a \, \gamma(t)}^{Y}(g(t/)) \lor w!_{\varphi}^{Y}(K)$, where $K = \bigcup \{k_{Y}(x/b_{x}) : w!_{\varphi}^{Y}(k_{Y}(x/b_{x})), x \in t'\}$ with a singleton $\{k_{Y}(x/b_{x}) : w!_{\varphi}^{Y}(k_{Y}(x/b_{x})), x \in t'\}.$