Axiomatizing some small classes of set functions

Toshiyasu Arai (Chiba)
15 Apr. 2015

A set-theoretic function $f(\vec{a})$ is Σ_{1}-definable in a fragment T if there exists a Σ_{1}-formula $\varphi(\vec{a}, b)$ such that $f(\vec{a})=b \Leftrightarrow V \models$ $\varphi(\vec{a}, b)$ for any \vec{a}, b, and $T \vdash \forall \vec{a} \exists!b \varphi(\vec{a}, b)$.

A formal system axiomatizes a class of functions iff Σ_{1}-definable functions in it are exactly functions in the class.

1. rudimentary functions [Jensen], pp. 3-7.
2. primitive recursive functions [Jensen-Karp], pp. 8-9.
3. safe recursive set functions [Beckmann-Buss-Friedman], pp. 10-14.
4. predicatively computable set functions [A.] augmented with an ι-operator, pp. 15-30.

1 Rudimentary functions

Theorem 1 A set-theoretic function is rudimentary iff it is $\Sigma_{1^{-}}$ definable in the fragment KP minus Foundation schema.

$$
\mathrm{KP}^{-}:=\text {KP-Foundation }
$$

The set of rudimentary functions are generated from projections, pair, difference $a-b$ by operating composition and (Bounded Union):

$$
f(\vec{x}, z)=\bigcup\{g(\vec{x}, y): y \in z\}
$$

(Σ_{1}-definability of rudimentary functions in KP^{-})
For the bounded union

$$
f(\vec{x}, z)=\bigcup\{g(\vec{x}, y): y \in z\}
$$

assume that $g(\vec{x}, y)=a$ is defined by a Σ_{1}-formula $\varphi_{g}(\vec{x}, y, a)$, $\forall y \in z \exists!a \varphi_{g}(\vec{x}, y, a)$. Pick a b such that $\forall y \in z \exists a \in b \varphi_{g}(\vec{x}, y, a)$ by $\left(\Delta_{0}\right.$-Collection $)$. Then $f(\vec{x}, z)=\cup\left\{a \in b: \exists y \in z \varphi_{g}(\vec{x}, y, a)\right\}$.

The 'only-if' part is proved by a witnessing argument [Buss]. idea: given an implication $\exists a \varphi(x, a) \rightarrow \exists b \psi(x, b)$ of Σ_{1}-formulas, find a function f such that $\forall x, a[\varphi(x, a) \rightarrow \psi(x, f(x, a))]$.

$$
\frac{a \in c(x) \wedge \varphi(x, a) \rightarrow \exists b \psi(x, b)}{\exists a \in c(x) \varphi(x, a) \rightarrow \exists b \psi(x, b)}
$$

Problem. Given $a \in c(x) \wedge \varphi(x, a) \rightarrow \psi(x, f(x, a))$, find a $g(x)$ such that $\exists a \in c(x) \varphi(x, a) \rightarrow \psi(x, g(x))$.

Suppose $\exists a \in c(x) \varphi(x, a)$. Pick an $a \in c(x)$ such that $\varphi(x, a)$, and put $g(x):=f(x, a)$??
A choice function $a=a(x) \in\{a \in c(x): \varphi(x, a)\}$!

Solution. Find a non-empty set of witnesses.

$$
\frac{a \in c(x) \wedge \varphi(x, a) \rightarrow \emptyset \neq f(x, a) \subset\{b: \psi(x, b)\}}{\exists a \in c \varphi(x, a) \rightarrow \emptyset \neq g(x) \subset\{b: \psi(x, b)\}}
$$

for $g(x)=\bigcup\{f(x, a): a \in c(x), \varphi(x, a)\}$ by (Bounded Union).
Assume that $\exists!a \varphi(x, a)$ is derivable in KP^{-}. We can find a rudimentary function $g(x)$ such that

$$
\emptyset \neq g(x) \subset\{a: \varphi(x, a)\}
$$

Since the set $\{a: \varphi(x, a)\}$ is a singleton for each $x, f(x)=\cup g(x)$ enjoys $\forall x \varphi(x, f(x))$ as desired.

Corollary 2 A predicate is rudimentary iff it is Δ_{0} iff it is Δ_{1}-definable in KP^{-}.

Proof. Suppose $\forall \vec{x}\left[\neg \exists a \varphi_{0}(\vec{x}, a) \leftrightarrow \exists a \varphi_{1}(\vec{x}, a)\right]$ is derivable for some Δ_{0}-formulas φ_{0}, φ_{1}.

Pick rudimentary functions f_{0}, f_{1} such that

$$
\left(\emptyset \neq f_{0}(\vec{x}) \subset\left\{a: \varphi_{0}(\vec{x}, a)\right\}\right) \text { or }\left(\emptyset \neq f_{1}(\vec{x}) \subset\left\{a: \varphi_{1}(\vec{x}, a)\right\}\right)
$$

Then $\exists a \in f_{1}(\vec{x}) \varphi_{1}(\vec{x}, a) \rightarrow \exists a \varphi_{1}(\vec{x}, a) \rightarrow \neg \exists a \varphi_{0}(\vec{x}, a) \rightarrow$
$\neg\left(\emptyset \neq f_{0}(\vec{x}) \subset\left\{a: \varphi_{0}(\vec{x}, a)\right\}\right) \rightarrow\left(\emptyset \neq f_{1}(\vec{x}) \subset\left\{a: \varphi_{1}(\vec{x}, a)\right\}\right) \rightarrow$ $\exists a \in f_{1}(\vec{x}) \varphi_{1}(\vec{x}, a)$. Hence $\exists a \in f_{1}(\vec{x}) \varphi_{1}(\vec{x}, a) \leftrightarrow \exists a \varphi_{1}(\vec{x}, a)$.

2 Primitive recursive functions

The set of primitive recursive functions is generated from projections, null, conditional, and $M(a, b)=a \cup\{b\}$, and operating composition and set recursion:

$$
f(x, \vec{y})=h(x, \vec{y},\{f(z, \vec{y}): z \in x\}) .
$$

Theorem 3 [Rathjen]
A set-theoretic function is primitive recursive in a Δ_{0}-function $\mathrm{g}(\vec{x})$ iff it is Σ_{1}-definable in $\mathrm{KP}^{-}+\Sigma_{1}$-Foundation $+\forall \vec{x} \exists!y(\mathrm{~g}(\vec{x})=y)$.
Σ_{1}-Foundation $+\Delta_{0}$-Collection suffices for the existence of the transitive closure $\mathrm{TC}(x)$ of x, and Σ-recursion of functions.

Theorem 3 and Corollary 2 are extended to Π_{1}-functions \mathbf{g}.

1. A function is primitive recursive in $\mathrm{g}(\vec{x})$ iff it is $\Sigma_{1}(\mathrm{~g})$-definable in $\mathrm{KP}^{-}(\mathrm{g})+\Sigma_{1}(\mathrm{~g})$-Foundation $+\forall \vec{x} \exists!y(\mathrm{~g}(\vec{x})=y)$.
2. A predicate is primitive recursive in $\mathbf{g}(\vec{x})$ iff it is $\Delta_{1}(\mathrm{~g})$-definable in $\mathrm{KP}^{-}(\mathrm{g})+\Sigma_{1}(\mathrm{~g})$-Foundation $+\forall \vec{x} \exists!y(\mathrm{~g}(\vec{x})=y)$.

As for rudimentary functions, the 'only-if' parts are shown by a witnessing argument with non-empty sets of witnesses.

3 Safe recursive functions

Arguments of each function $f(\vec{x} / \vec{a})$ in the class are divided to normal arguments \vec{x} and safe arguments \vec{a} a là [Bellantoni-Cook]. The class SRSF of safe recursive set functions, is obtained from rudimentary set functions on safe arguments by safe composition schema and predicative set (primitive) recursion schema.
(Bounded Union)

$$
f(\vec{x} / \vec{a}, b)=\bigcup_{c \in b} g(\vec{x} / \vec{a}, c)
$$

(Safe Composition Scheme)

$$
f(\vec{x} / \vec{a})=h(\vec{r}(\vec{x} /-) / \vec{t}(\vec{x} / \vec{a})) .
$$

(Safe Set Recursion Scheme)

$$
f(x, \vec{y} / \vec{a})=h(x, \vec{y} / \vec{a},\{f(z, \vec{y} / \vec{a}): z \in x\})
$$

Expand the language by augmenting a predicate \mathcal{D}, denoting a transitive class for normal arguments.

We say that a set-theoretic function $f(\vec{x} / \vec{a})$ is $\Sigma_{1}^{\mathcal{D}}$-definable in T if there exists a Σ_{1}-formula (in the language of set theory) $\varphi(\vec{x}, \vec{a}, b)$ such that $f(\vec{x} / \vec{a})=b \Leftrightarrow V \models \varphi(\vec{x}, \vec{a}, b)$ for any \vec{x}, \vec{a}, b, and $T \vdash \forall \vec{x} \subset \mathcal{D} \forall \vec{a} \exists!b \varphi(\vec{x}, \vec{a}, b)$.
3.1 A fragment T_{2} for SRSF
$T_{2}:=\mathrm{KP}^{-}+\left(\sum_{1}^{\mathcal{D}}\right.$-Foundation $)+\left(\Sigma_{1}\right.$-Submodel Rule $)$
($\Sigma_{1}^{\mathcal{D}}$-Foundation)

$$
\forall y \in \mathcal{D}[\forall x \in y \exists a \varphi(x, a) \rightarrow \exists a \varphi(y, a)] \rightarrow \forall y \in \mathcal{D} \exists a \varphi(y, a)
$$

(Σ_{1}-Submodel Rule)

$$
\frac{\forall \vec{x} \subset \mathcal{D} \exists a \varphi(\vec{x}, a)}{\forall \vec{x} \subset \mathcal{D} \exists a \in \mathcal{D} \varphi(\vec{x}, a)}
$$

and an axiom saying that \mathcal{D} is transitive.

Theorem 4 A set-theoretic function is in SRSF iff
it is $\Sigma_{1}^{\mathcal{D}}$-definable in T_{2}.
($\Sigma_{1}^{\mathcal{D}}$-definability of SRSF-functions in T_{2})
($\Sigma_{1}^{\mathcal{D}}$-Foundation) suffices for (Predicative Set Recursion)
$f(x, \vec{y} / \vec{a})=h(x, \vec{y} / \vec{a},\{f(z, \vec{y} / \vec{a}): z \in x\})$.
(Bounded Union) by (Δ_{0}-Coll).
(Σ_{1}-Submodel Rule) suffices for(Safe Composition)
$f(\vec{x} / \vec{a})=h(\vec{r}(\vec{x} /-) / \vec{t}(\vec{x} / \vec{a}))$.
Corollary 5 A predicate is in SRSF iff it is $\Delta_{1}^{\mathcal{D}}$-definable in T_{2}.

4 Predicatively computable set functions with ι-operator
PCSF-functions are generated from projections, pair, null, union $\cup(-/ a)$, conditional, (Safe Separation)

$$
f(-/ \vec{a}, c)=\{b \in c: h(-/ \vec{a}, b) \neq 0\}
$$

(Safe Composition) and (Predicative Set Recursion).
A function on $\mathbb{H H}$ is poly time computable iff it is in PCSF.
Theorem 6 (Polysize)
For each $f(\vec{x} / \vec{a}) \in \mathrm{PCSF}$, the size of the transitive closure $\mathrm{TC}(f(\vec{X} / \vec{A}))$ of $f(\vec{X} / \vec{A})$ for $\vec{X}, \vec{A} \subset \mathbb{H} \mathbb{F}$ is bounded by the sum of the sizes of $\operatorname{TC}(\vec{A})$ and a polynomial of the sizes of $\operatorname{TC}(\vec{X})$.

Difficulty in axiomatizing PCSF is due to lack of (Bounded Union). Without it we can not collect witnesses to a set.
$\frac{a \in c(x) \wedge \varphi(x, a) \rightarrow \emptyset \neq f(x, a) \subset\{b: \psi(x, b)\}}{\exists a \in c \varphi(x, a) \rightarrow \emptyset \neq \bigcup\{f(x, a): a \in c(x), \varphi(x, a)\} \subset\{b: \psi(x, b)\}}$
Let us restrict our attention to derivations in which existential quantifiers occur only as uniqueness quantifires $\exists!b$.

$$
\frac{a \in c(x) \wedge \varphi(x, a) \rightarrow \exists!b \psi(x, b)}{\exists a \in c(x) \varphi(x, a) \rightarrow \exists!b \psi(x, b)}
$$

If $f(x, a)$ is the unique witness of b in $\psi(x, b)$ for any $a \in c(x)$ with $\varphi(x, a)$, then for $g(x)=\iota b[\exists a \in c(x)(\varphi(x, a) \wedge f(x, a)=b)]$, we obtain $\exists a \in c(x) \varphi(x, a) \rightarrow \psi(x, g(x))$.

We are going to enlarge the class PCSF by introducing Russell's ι-operator (definite description), cf. PCSF^{+}in [Beckmann-Buss-Friedman-Müller-Thapen].

The ι-operator describes an object $\iota x . A(x)$ for a predicate $A(x)$: $\iota x . A(x)$ denotes the unique element x enjoying $A(x)$ if there exists a unique such x. Otherwise put $\iota x \cdot A(x)=\emptyset$.

There remains some room for the class PCSF to be extended, still holding Theorem 6(Polysize), and keeping the extensionality of functions under encoding: if the codes G and H encode the same set (in $\mathbb{H H}$), then the codes $F(G)$ and $F(H)$ should encode the same set.

The class PCSF^{ι} is closed under (ι) : if $g \in \mathrm{PCSF}^{\iota}$, then so is ($) f(\vec{x} / \vec{a}, c)=\iota d(\exists b \in c(g(\vec{x} / \vec{a}, b)=d))$.

This means that when the range $g " c=\{g(\vec{x} / \vec{a}, b): b \in c\}$ is a singleton, $f(\vec{x} / \vec{a}, c)$ denotes the unique element, and $f(\vec{x} / \vec{a}, c)=$ \emptyset otherwise.

Obviously Theorem 6(Polysize) holds for the enlarged class PCSF^{ι}, and each function in this class enjoys the extensionality under encoding.

Let $\Delta_{0}\left(\mathrm{PCSF}^{\prime}\right)$ denote the set of bounded formulas in the language with function symbols in the class $\mathrm{PCSF}^{\iota} . \Sigma_{1}!\left(\mathrm{PCSF}^{\iota}\right)$ denotes the set of formulas $\exists!a \varphi$ with $\varphi \in \Delta_{0}\left(\mathrm{PCSF}^{\iota}\right)$.

A formal system T_{3}^{ℓ} for axiomatizing $\mathrm{PCSF}^{\iota}: \varphi \in \Delta_{0}\left(\mathrm{PCSF}^{\iota}\right)$.

1. $\forall x \in \mathcal{D} \exists a(a=\mathrm{TC}(x))$ and $\left(\Delta_{0}\left(\mathrm{PCSF}^{\iota}\right)\right.$-Sep $)$.
2. $\left(\Delta_{0}^{\mathcal{D}}\left(\mathrm{PCSF}^{\iota}\right)\right.$-Replacement $): y \in \mathcal{D}$ is a 'domain' of a function. $\forall y \in \mathcal{D}\left[\forall x \in y \exists!a \varphi(x, a) \rightarrow \exists c \forall x \in y \varphi\left(x, c^{\prime} x\right)\right]$.
3. $\left(\Sigma_{1}^{\mathcal{D}}!\left(\mathrm{PCSF}^{\iota}\right)\right.$-Fund $): \mathcal{D}$ is weakly wellfounded. $\forall y \in \mathcal{D}[\forall x \in y \exists!a \varphi(x, a) \rightarrow \exists!a \varphi(y, a)] \rightarrow \forall y \in \mathcal{D} \exists!a \varphi(y, a)$.
4. $\left(\Sigma_{1}!\left(\mathrm{PCSF}^{\iota}\right)\right.$-Submodel Rule $)$

$$
\frac{\forall \vec{x} \subset \mathcal{D} \exists!a \varphi(\vec{x}, a)}{\forall \vec{x} \subset \mathcal{D} \exists y \in \mathcal{D} \varphi(\vec{x}, y)}
$$

Problem. It is open for us how to axiomatize PCSF^{ι}-predicates.

A function $f(\vec{x} / \vec{a})$ is $\Sigma_{1}^{\mathcal{D}}$!-definable in T if there exists a Σ_{1} !formula $\varphi(\vec{x}, \vec{a}, b)$ such that $f(\vec{x} / \vec{a})=b \Leftrightarrow V \models \varphi(\vec{x}, \vec{a}, b)$ and $T \vdash \forall \vec{x} \subset \mathcal{D} \forall \vec{a} \exists!b \varphi(\vec{x}, \vec{a}, b)$.

1. $T_{3}:=\mathrm{TC}+\left(\Delta_{0}\right.$-Sep $)+\left(\Delta_{0}^{\mathcal{D}}-\mathrm{Rpl}\right)+\left(\Sigma_{1}^{\mathcal{D}}!-\mathrm{Fund}\right)+\left(\Sigma_{1}!-\mathrm{SmR}\right)$ $\Sigma_{1}^{\mathcal{D}}$!-defines PCSF-functions.
2. Each $\Sigma_{1}^{\mathcal{D}}$!-definable function in T_{3} is in PCSF^{ι}, but not shown in PCSF.

Actually T_{3}^{ι} in a language $\mathcal{L}^{(\omega)}=\bigcup_{n} \mathcal{L}^{(n)}$ is a union of increasing formal systems $T_{3}^{(n)}$ in $\mathcal{L}^{(n)}$.

$$
T_{3}^{(n)}=\mathrm{TC}+\left(\Delta_{0}\left(\mathcal{L}^{(n)}\right) \text {-Sep }\right)+\left(\Delta_{0}^{\mathcal{D}}\left(\mathcal{L}^{(n)}\right) \text {-Rpl }\right)+\left(\Sigma_{1}^{D}!\left(\mathcal{L}^{(n)}\right) \text {-Fund }\right)+\left(\Sigma_{1}!\left(\mathcal{L}^{(n)}\right) \text {-SmR }\right)
$$

Enlarge the language $\mathcal{L}^{(n)}$ to get $\mathcal{L}^{(n+1)}$ by adding function symbols $\mathrm{f}(\vec{x} / \vec{a})$ when $T_{3}^{(n)} \vdash \forall \vec{x} \subset \mathcal{D} \forall \vec{a} \exists!b \theta_{\mathrm{f}}(\vec{x}, \vec{a}, b)$ for $\theta_{\mathrm{f}} \in \Sigma_{1}!\left(\mathcal{L}^{(n)}\right)$, and add an axiom $\forall \vec{x} \subset \mathcal{D} \forall \vec{a} \theta_{\mathrm{f}}(\vec{x}, \vec{a}, \mathrm{f}(\vec{x}, \vec{a}))$.

The introduced function symbol f for $\Sigma_{1}!\left(\mathcal{L}^{(n)}\right)$-definable functions in $T_{3}^{(n)}$ may occur in bounded formulas of Separation, Replacement, Foundation and Submodel rule of $T_{3}^{(n+1)}$.

A function $f(\vec{x} / \vec{a})$ is $\Sigma_{1}^{\mathcal{D}}!\left(\mathcal{L}^{(\omega)}\right)$-definable in T_{3}^{L} if there exists a $\Sigma_{1}!\left(\mathcal{L}^{(\omega)}\right)$-formula $\varphi(\vec{x}, \vec{a}, b)$ such that $f(\vec{x} / \vec{a})=b \Leftrightarrow V \models$ $\varphi(\vec{x}, \vec{a}, b)$ and $T_{3}^{\iota} \vdash \forall \vec{x} \subset \mathcal{D} \forall \vec{a} \exists!b \varphi(\vec{x}, \vec{a}, b)$.

Theorem 7 A set-theoretic function is in $\operatorname{PCSF}^{\iota}$ iff it is $\Sigma_{1}^{\mathcal{D}}!\left(\mathcal{L}^{(\omega)}\right)$ definable in T_{3}^{ι}.
$\left(\Sigma_{1}!\left(\mathcal{L}^{(\omega)}\right)\right.$-definability of PCSF $^{\iota}$-functions)

$$
f(\vec{x} / \vec{a}, c)=\iota d(\exists b \in c(g(\vec{x} / \vec{a}, b)=d))
$$

$\varphi_{f}(\vec{x}, \vec{a}, c, d)$ iff $\exists!e[\exists b \in c(\mathrm{~g}(\vec{x}, \vec{a}, b)=e)] \wedge(\exists b \in c(\mathrm{~g}(\vec{x}, \vec{a}, b)=$ $d)$ or $d=\emptyset \wedge\left(c \neq \emptyset \rightarrow \exists b_{0}, b_{1} \in c\left(\mathrm{~g}\left(\vec{x}, \vec{a}, b_{0}\right) \neq \mathrm{g}\left(\vec{x}, \vec{a}, b_{1}\right)\right)\right.$.
φ_{f} is a $\Sigma_{1}!\left(\mathcal{L}^{(\omega)}\right)$-formula with a function symbol g.

The converse of Theorem 7:
if a set-theoretic function is $\Sigma_{1}^{\mathcal{D}}!\left(\mathcal{L}^{(n)}\right)$-definable in $T_{3}^{(n)}$, then it is in PCSF^{ι}.
is proved by induction on n. Let us assume that each function in $\mathcal{L}^{(n)}$ as well as each $\Delta_{0}\left(\mathcal{L}^{(n)}\right)$-formula is in PCSF^{ι}.

Uniqueness conditions involve unbounded universal quantifiers $\operatorname{Unique}_{a}(\varphi): \Leftrightarrow \forall a, b[\varphi(a) \wedge \varphi(b) \rightarrow a=b]$.

To control the unbounded universal quantifiers, we introduce classes X, i.e., $\forall a, b$ is restricted to $\forall a, b \in X$. Classes are generated recursively.

1. Each singleton $\{f(\vec{x} / \vec{a})\}$ for $f \in \mathrm{PCSF}^{\iota}$ is a class.
2. For classes $X, Y, X \cup Y$ is a class.
3. If $X(a)$ is a class and $f \in \operatorname{PCSF}^{\iota}$, then $\bigcup\{X(a): a \in f(\vec{x} / \vec{a})\}$ is a class.

If φ is a bounded formula in $\mathcal{L}\left(\mathrm{PCSF}^{\iota}\right)$, then so is the formula $\forall d \in X \varphi(d)$ for each class X.

A witness b of a Σ_{1} !-formula \exists ! $a \varphi$ wrt X is a unique witness in X, i.e., $b \in X \wedge \varphi(b) \wedge \forall a \in X(\varphi(a) \rightarrow a=b)$.

1. $w!_{\varphi}^{X}(b): \Leftrightarrow \varphi$ if φ is a bounded formula.
2. $w!_{\exists!c \psi(c)}^{X}(b): \Leftrightarrow b \in X \wedge \psi(b) \wedge$ Unique $_{c}^{X}(\psi(b))$
where Unique ${ }_{c}^{X}(\psi(b)): \Leftrightarrow \forall c \in X(\psi(c) \rightarrow b=c)$.
3. $w!_{\forall x \in y \exists!c \psi(x, c)}^{X}(b)$ iff b is a function on y s.t. $\forall x \in y\left[w!_{\exists!c \psi(x, c)}^{X}\left(b^{\prime} x\right)\right]$. $w!_{\varphi}^{X}(b)$ is a bounded formula in the language $\mathcal{L}\left(\mathrm{PCSF}^{\iota}\right)$ for each class X.

A witnessing function $f_{X}(x / a, b)$ for derivable implications of Σ_{1} !-formulas $\varphi(x, a) \rightarrow \psi(x, a)$ may depend uniformly on classes $X, w!_{\varphi}^{X}(b) \rightarrow w!{ }_{\psi}^{X}\left(f_{X}(x / a, b)\right)$.

When f is defined from $j, k, g, h \in \operatorname{PCSF}_{X}^{\iota}$ and $\varphi(\vec{x}, \vec{a}) \in \Sigma_{1}$! by cases

$$
f(\vec{x} / \vec{a})= \begin{cases}j(\vec{x} / \vec{a}) & \text { if } \forall x \in g(\vec{x} / \vec{a})\left[w!{ }_{\varphi}^{X}(h(\vec{x}, x / \vec{a}))\right] \\ k(\vec{x} / \vec{a}) & \text { otherwise }\end{cases}
$$

then $f \in \operatorname{PCSF}_{X}^{l}$.
Each $f \in \operatorname{PCSF}_{X}^{\iota}$ denotes a function in PCSF^{ι} depending uniformly on classes X.

The following Lemma 8 yields the converse of Theorem 7 .
Lemma 8 Assume that an implication

$$
\mathcal{D}(\vec{x}) \wedge \sigma \rightarrow \neg \operatorname{Unique}_{a}(\theta) \vee \varphi
$$

is derivable in $T_{3}^{(n)}$ for $\Sigma_{1}!\left(\mathcal{L}^{(n)}\right)$-formulas σ, φ and bounded θ.
Then there exist a class $X=X(\vec{x} / \vec{a}, b)$ and a function $f_{X}(\vec{x} / \vec{a}, b) \in \operatorname{PCSF}_{X}^{\iota}$ such that

$$
\begin{equation*}
w!_{\sigma}^{X}(b) \rightarrow \neg \operatorname{Unique}_{a}^{X}(\theta) \vee w!_{\varphi}^{X}\left(f_{X}(\vec{x} / \vec{a}, b)\right) \tag{1}
\end{equation*}
$$

where $\neg \operatorname{Unique}_{a}^{X}(\theta): \Leftrightarrow \exists a, b \in X(\theta(a) \wedge \theta(b) \wedge a \neq b)$.

Proof.

Case 0.

The case when two occurrences of a formula φ is contracted. Let e be defined by cases from c, d and a bounded formula $w!_{\varphi}^{X}(c)$.

$$
e= \begin{cases}c & \text { if } w!{ }_{\varphi}^{X}(c) \\ d & \text { otherwise }\end{cases}
$$

Then $w!_{\varphi}^{X}(c) \vee w!_{\varphi}^{X}(d) \rightarrow w!_{\varphi}^{X}(e)$. Note that $w!_{\varphi}^{X}(c)$ is in PCSF^{ι} for each X.

Case 1.

$$
\frac{\sigma \rightarrow\left(\theta\left(s_{0}\right) \wedge \theta\left(s_{1}\right) \wedge s_{0} \neq s_{1}\right) \vee \varphi}{\sigma \rightarrow \neg \operatorname{Unique}_{a}(\theta) \vee \varphi}(\exists)
$$

For \neg Unique ${ }_{a}^{X}(\theta)$ it suffices to have $\left\{s_{0}, s_{1}\right\} \subset X$.
This means that we need to augment two elements s_{0}, s_{1} to a class X_{0} of the upper sequent, $X=X_{0} \cup\left\{s_{0}, s_{1}\right\}$.
Although the function $f_{X}(x / a, b)$ may differ $f_{X_{0}}(x / a, b)$, these depend classes X, X_{0} uniformly in the sense that the 'definitions' of these functions coincide.
Furthermore as we shall see it, requirements on classes are monotonic, i.e., if X and f_{X} enjoys (1), then so does a larger class $Y \supset X\left(\right.$ and $\left.f_{Y}\right)$.

Case 2. For an eigenvariable d (suppressing $\neg \operatorname{Unique}_{a}(\theta)$)

$$
\frac{d \in t \wedge \gamma(d) \rightarrow \varphi}{\exists c \in t \gamma(c) \rightarrow \varphi}
$$

Let $X=\bigcup\left\{X_{0}(d): d \in t\right\}$ for a class $X_{0}(d)$ of the upper sequent.
Assume that if $\gamma(d)$ and $d \in t$, then $w!_{\varphi}^{X}\left(h_{X}(x / a, d)\right)$. We have $\forall d_{0}, d_{1} \in t\left(\bigwedge_{i} \gamma\left(d_{i}\right) \rightarrow h_{X}\left(x / a, d_{0}\right)=h_{X}\left(x / a, d_{1}\right)\right)$. Let

$$
f_{X}(x / a)=\iota e\left[\exists d \in t\left(\gamma(d) \wedge h_{X}(x / a, d)=e\right)\right]
$$

We obtain $\exists c \in t \gamma(c) \rightarrow w!_{\varphi}^{X}\left(f_{X}(x / a)\right)$.

Thank you for your attention!

Case 3. For $t^{\prime}=\mathrm{TC}(t \cup\{t\})$

$$
\frac{\forall y \in t^{\prime}(\forall x \in y \exists!a \gamma(x, a) \rightarrow \exists!a \gamma(y, a)) \vee \varphi}{\mathcal{D}(t) \rightarrow \exists!a \gamma(t, a) \vee \varphi}\left(\Sigma_{1}^{\mathcal{D}!-F u n d}\right)
$$

For $X=X(y, b)$ assume that for any $b: y \rightarrow V$ and $y \in t^{\prime}$

$$
\forall x \in y w!_{\exists!a \gamma(x)}^{X}\left(b^{\prime} x\right) \rightarrow w!!_{\exists!a \gamma(y)}^{X}\left(h_{X}(y / b)\right) \vee w!_{\varphi}^{X}\left(k_{X}(y / b)\right)
$$

Let $g(y /)=h_{X}\left(y / b_{y}\right)$ for $b_{y}=g \upharpoonright y=\{\langle x, g(x /)\rangle: x \in y\}$.
Let $Y=\bigcup\left\{X\left(y, b_{y}\right): y \in t^{\prime}\right\}$. For any $y \in t^{\prime}$
$\forall x \in y w!\frac{Y}{Y!a \gamma(x)}\left(b_{y}^{\prime} x\right) \rightarrow w!!_{\exists!a \gamma(y)}^{Y}\left(h_{Y}\left(y / b_{y}\right)\right) \vee w!{ }_{\varphi}^{Y}\left(k_{Y}\left(y / b_{y}\right)\right)$

Equivalently
$\forall x \in y w!!_{\exists!a \gamma(x)}^{Y}(g(x /)) \rightarrow w!!_{\exists!a \gamma(y)}^{Y}(g(y /)) \vee w!{ }_{\varphi}^{Y}\left(k_{Y}\left(y / b_{y}\right)\right)$
If $\neg \forall x \in t^{\prime}\left[w!_{\exists!a \gamma(x)}^{Y}(g(x /))\right]$, then $\left.\exists x \in t^{\prime} w!{ }_{\varphi}^{Y}\left(k_{Y}\left(x / b_{x}\right)\right)\right)$.
Otherwise we obtain $w!!_{\exists!a \gamma(t)}^{Y}(g(t /))$.
Therefore $w!!_{\exists!a \gamma(t)}^{Y}(g(t /)) \vee w!_{\varphi}^{Y}(K)$, where
$K=\bigcup\left\{k_{Y}\left(x / b_{x}\right): w!{ }_{\varphi}^{Y}\left(k_{Y}\left(x / b_{x}\right)\right), x \in t^{\prime}\right\}$ with a singleton $\left\{k_{Y}\left(x / b_{x}\right): w!{ }_{\varphi}^{Y}\left(k_{Y}\left(x / b_{x}\right)\right), x \in t^{\prime}\right\}$.

