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A set-theoretic function f(a) is ¥i-definable in a fragment T
if there exists a Yi-formula ¢(a, b) such that f(ad) =b < V =
©(a,b) for any @, b, and T+ Va3lbp(d, b).

A formal system axiomatizes a class of functions iff >J;-definable

functions in it are exactly functions in the class.
1. rudimentary functions |[Jensen|, pp. 3-7.
2. primitive recursive functions [Jensen-Karp], pp. 8-9.

3. safe recursive set functions |Beckmann-Buss-Friedman],
pp. 10-14.

4. predicatively computable set functions [A.| augmented with an
t-operator, pp. 15-30.



1 Rudimentary functions

Theorem 1 A set-theoretic function is rudimentary iff it is X1-
definable in the fragment KP minus Foundation schema.

KP™ := KP-Foundation

The set of rudimentary functions are generated from projections,
pair, difference a — b by operating composition and (Bounded
Union):

f(#2) = Ho(@y) y € 2}



(31-definability of rudimentary functions in KP™)
For the bounded union

f(&2) = J{g(@y) :y € 2}

assume that ¢(Z,y) = a is defined by a Xj-formula ¢,(Z,y, a),
Vy € z3la p,(Z,y,a). Pick a bsuch that Vy € z3a € bp,(Z,y, a)
by (Ag-Collection). Then f(Z,2) =U{a € b: Jy € 2 ¢, (T, y,a)}.



The ‘only-if” part is proved by a witnessing argument |Buss].
idea: given an implication da p(x, a) — by (x, b) of Xi-formulas,

find a function f such that V, alo(x,a) — ¥(z, f(x,a))).

a € clx) N p(r,a) — Iby(x,b)
da € c¢(x) p(x,a) — FbY(z,b)
Problem. Given a € c(x) A p(x,a) — Y(x, f(x,a)), find a g(x)
such that da € c(z) p(z,a) — Y(x, g(x)).
Suppose da € c¢(x) p(x,a). Pick an a € c¢(x) such that o(x, a),
and put g(x) = f(x,a)??
A choice function a = a(x) € {a € c(x) : p(x,a)}!




Solution. Find a non-empty set of witnesses.

a € c(x) Np(x,a) = 0 # flx,a) C {b:Y(x,b)}
Ja € co(x,a) — 0 # g(x) C {b: Y(x,b)}

forg(z) = {f(x,a): a € c(x),p(r,a)} by (Bounded Union).

Assume that 3la p(x,a) is derivable in KP™. We can find a
rudimentary function g(x) such that

D #g(x) C{a: ez, a)}

Since the set {a : p(x,a)} is a singleton for each x, f(x) = Ug(x)
enjoys YV o(x, f(x)) as desired.



Corollary 2 A predicate is rudimentary iff it is Ay ift
it 1s Aq-definable in KP.

Proof. Suppose VZ|—3a vo(Z, a) < da p1(Z, a)| is derivable for
some Ag-formulas g, ©1.
Pick rudimentary functions fy, f1 such that

(07 fo(Z) C{a:wo(d;a)}) or (0 # fi(T) C{a: il a)})

Then Jda € fi(%) (%, a) — 3@901(

(0 F# fo(@) C{a:@o(Z,a)}) — (0 fi
da € f1(Z) p1(Z,a). Hence da € fi1(X)

a) — —3daw(T,a) —
r) C{a:¢i(T,a)}) —

(@
¥1 ( ) N 3a¢1(x7a)°
[]



2 Primitive recursive functions

The set of primitive recursive functions is generated from projec-
tions, null, conditional, and M (a,b) = a U {b}, and operating
composition and set recursion:

flz,9) = h(x,y,{f(2,9) : z € x}).

Theorem 3 [Rathjen|
A set-theoretic function is primitive recursive in a Ag-function g(r)
iff it is X1-definable in KP™+X-Foundation+VZ3ly(g(¥) = y).

>1-Foundation+Ag-Collection suffices for the existence of the tran-
sitive closure TC(x) of x, and Y-recursion of functions.
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Theorem 3 and Corollary 2 are extended to [Ii-functions g.

1. A function is primitive recursive in g(&) iff it is X1 (g)-definable
in KP™(g)+X1(g)-Foundation+Vzrdly(g(¥) = y).

2. A predicate is primitive recursive in g() iff it is A (g)-definable
in KP™ (g)+X1(g)-Foundation+Vzdly(g(¥) = y).

As for rudimentary functions, the ‘only-if’ parts are shown by a
witnessing argument with non-empty sets of witnesses.



3 Safe recursive functions

Arguments of each function f(Z/d) in the class are divided to
normal arguments Z and safe arguments @ a la |[Bellantoni-Cook].
The class SRSF of safe recursive set functions, is obtained from
rudimentary set functions on safe arguments by sate composition
schema and predicative set (primitive) recursion schema.
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(Bounded Union)
f(f/c_iv b) — Ug(f/fi, C)

cEb

(Safe Composition Scheme)
f(Z/d@) = h(F(@/-)/t(Z/a)).
(Safe Set Recursion Scheme)

flz,y/a) = h(z,y/d,1f(z,9/a): z € x}).
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Expand the language by augmenting a predicate D, denoting a
transitive class for normal arguments.

We say that a set-theoretic function f(Z/d) is X7-definable in
T if there exists a Yi-formula (in the language of set theory)
(T, a,b) such that f(¥/a) =b <V = o(Z,a,b) for any Z,d, b,
and T+ V2 C DVa3dlb (T, a,b).
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3.1 A fragment T for SRSF
T, := KP™+(XP-Foundation)+(X;-Submodel Rule)
(XP-Foundation)

Vy € DVx € yda p(x,a) — Jap(y,a)] — Yy € DIa p(y, a)

(X1-Submodel Rule)

VX C Dda (X, a)
VX C Dda € D (%, a)

and an axiom saying that D is transitive.
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Theorem 4 A set-theoretic function is in SRSF iff
it is Y P-definable in Tb.

(XP-definability of SRSF-functions in T5)
(XP-Foundation) suffices for (Predicative Set Recursion)

f(a, /) = hx, 5/a, {f (2 5/3) - = € z})
(Bounded Union) by (Ay-Coll).
(X1-Submodel Rule) suffices for(Safe Composition)

f(&@/@) = WF(Z/—)/HT/a))
Corollary 5 A predicate is in SRSF iff it is AP-definable in T5.
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4 Predicatively computable set functions with -~operator

PCSF-functions are generated from projections, pair, null, union
U(—/a), conditional, (Safe Separation)

f(=/d,c)={be c:h(=/d,b) # 0}
(Safe Composition) and (Predicative Set Recursion).
A function on HIF is poly time computable iff it is in PCSF.

Theorem 6 (Polysize)

For each f(Z/a) € PCSF, the size of the transitive closure
TC(f(X/A)) of f(X/A) for X, A C HF is bounded by the sum
of the sizes of TC(A) and a polynomial of the sizes of TC(X).
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Difficulty in axiomatizing PCSF is due to lack of (Bounded
Union). Without it we can not collect witnesses to a set.

a € c(x)Npx,a) = 0# flx,a) C{b:Y(z,b)}

S0 € cpl,a) — 0 £ U{f(w,a) : a € c(z), plz,a)} C {b: ¥(x,b)}
Let us restrict our attention to derivations in which existential
quantifiers occur only as uniqueness quantifires 3!b.

a € clx)Np(x,a) — b(x,b)

da € c(x) p(x,a) — FbY(x,b)

If f(x,a) is the unique witness of b in ¥ (x,b) for any a € c(x)
with (x, a), then for g(x) = «b|Fa € c(x)(p(x,a)A f(x,a) =b)],
we obtain da € c(x) p(x,a) — ¥(x, g(x)).
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We are going to enlarge the class PCSF by introducing Russell’s
r-operator (definite description), cf. PCSF™ in [Beckmann-Buss-

Friedman-Miiller-Thapen]|.
The t-operator describes an object tx. A(x) for a predicate A(x):
vx.A(x) denotes the unique element x enjoying A(x) if there exists

a unique such x. Otherwise put tz.A(z) = (.

There remains some room for the class PCSF to be extended,

still holding Theorem 6(Polysize), and keeping the extensionality

of functions under encoding: if the codes G and H encode the

same set (in H

7), then the codes F/(G) and F'(H) should encode

the same set.
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The class PCSF" is closed under (¢): if g € PCSF, then so is
(¢) f(Z/d, c) = 1d(Fb € c(g(T/d, b) = d)).

This means that when the range ¢”c¢ = {g(Z/a,b) : b € ¢} is a
singleton, f(Z/d,c) denotes the unique element, and f(Z/a, c) =
) otherwise.
Obviously Theorem 6(Polysize) holds for the enlarged class PCSF’,
and each function in this class enjoys the extensionality under en-
coding.

Let Ag(PCSF*) denote the set of bounded formulas in the lan-
guage with function symbols in the class PCSF*. X;!(PCSF) de-
notes the set of formulas dla ¢ with @ € Ay(PCSF*).
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A formal system T3 for axiomatizing PCSF": ¢ € Ay(PCSF).
1. Vo € Dda(a = TC(x)) and (Ag(PCSF*)-Sep).
2. (AP (PCSF")-Replacement): y € D is a ‘domain’ of a function.
Vy € DVx € yFlap(x,a) — AcVx € yp(z, ).
3. (UPYPCSF')-Fund): D is weakly wellfounded.
Vy € DVz € yAlap(x,a) — lap(y,a)] — Vy € DIlav(y, a).
4. (31!(PCSF")-Submodel Rule)

VZ C D3Ala (%, a)
VX C Dy € D (L, y)

Problem. It is open for us how to axiomatize PCSF*-predicates.
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A function f(#/a) is X7 -definable in T if there exists a ;-
formula o(Z, d, b) such that f(¥/a) = b < V = ¢(¥,d,b) and
THVYZE C DVadlb (%, d,b).

1. T3 := TC + (Ag-Sep) + (AF-Rpl) + (EP1-Fund) + (3;!-SmR)
Y Pl defines PCSF-functions.

2. Bach YPl-definable function in T3 is in PCSF*, but not shown
in PCSF.
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Actually T% in a language L) = U, L") is a union of increasing

formal systems Tg(m in £,

T3 = TC + (Ag(L™)-Sep) 4+ (AD(L™)-Rpl) + (SPUL™)-Fund) + (21!(£™)-SmR)

Enlarge the language £ to get £ by adding function sym-
bols f(#/@) when T.") - V& C DVa3lb 0(Z, @, b) for b5 € $,1(L™),
and add an axiom V¥ C DVa 0¢(, a, f(z, a)).

The introduced function symbol f for ¥;1(£"™)-definable func-

tions in 7. ?)(n) may occur in bounded formulas of Separation, Re-

placement, Foundation and Submodel rule of T ?)(n+1).
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A function f(#/@) is LP!I(L“))-definable in T% if there exists
a 21(LW)-formula o(Z,a,b) such that f(Z/a) = b & V E
p(Z,a,b) and T§ = VZ C DVa3lb (%, d,b).

Theorem 7 A set-theoretic function is in PCSF* iff it is Z?!(ﬁ(“’))—
definable in T5.

(311(L«)-definability of PCSF'-functions)
f(Z/a,c) = 1d(3b € c(g(7/a,b) = d))

pr(x,a,c,d)iff Ile[db € c(g(z,a,b) =e)] A (b € c(g(z,d,b) =
d)ord=0A(c#£0— by, by € c(g(Z,d, by) # g(Z,d, b))
o is a Uy!(LE)-formula with a function symbol g.
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The converse of Theorem 7:

if a set-theoretic function is YP!(L™)-definable in T, S(n),
then it is in PCSF".

is proved by induction on n. Let us assume that each function
in £ as well as each Ag(L™)-formula is in PCSF".

Uniqueness conditions involve unbounded universal quantifiers
Unique, () < Va, blp(a) A p(b) — a =1).
To control the unbounded universal quantifiers, we introduce

classes X, i.e.. Va, b is restricted to Va,b € X. Classes are gener-
ated recursively.
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1. Each singleton { f(Z/a)} for f € PCSF* is a class.
2. For classes X, Y, X UY is a class.
3. If X(a)isaclassand f € PCSF', then | J{ X (a) : a € f(Z/d)}

1S a class.

If ¢ is a bounded formula in £L(PCSF"), then so is the formula
Vd € X p(d) for each class X.
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A witness b of a X !-formula d'a ¢ wrt X is a unique witness in

X,ie,be X Npb) ANVa € X(p(a) — a=Db).
L. w!3 (b) & ¢ if ¢ is a bounded formula.

2. Wl (D) & b€ X Ath(b) A Unique; (¢(b))
where Unique? (1(b)) 1< Ve € X(¢(c) — b =c).

C

3. w!W)’(LI;EyH!cw(x,c)(b) iff bis a functionon y s.t. Vo € y[w!gfcw(%c)(b’x)]

w!? (b) is a bounded formula in the language L£(PCSF") for each
class X.
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A witnessing function fx(x/a,b) for derivable implications of
> !-formulas o(x,a) — ¥(x,a) may depend uniformly on classes

X, w3 (b) — w!ff(fx(aj/a, b)).

When f is defined from j, k, g,h € PCSFy and (&, ad) € 3!

by cases
1(#/d) = { j(Z/a) it Vo € g(f/(i’)[w!f(h(f, r/d))]

k(Z/d) otherwise

then f € PCSF.
Fach f € PCSF' denotes a function in PCSF* depending uni-
formly on classes X.
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The following Lemma 8 yields the converse of Theorem 7.
Lemma 8 Assume that an implication
D(x) N o — =Unique,(0) V ¢

is derivable in T S(n) for 33;!1(L™)-formulas o, ¢ and bounded 6.
Then there exist a class X = X (Z/a, b) and a function

fx(Z/d,b) € PCSF' such that
W (b) - ~UniqueX ) VulX (fx(@/as) (0
a

where ~Unique: (0) < Ja,b € X(0(a) ANO(b) Aa # D).
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Proof.
Case 0.

The case when two occurrences of a formula ¢ is contracted. Let
e be defined by cases from ¢, d and a bounded formula w!? (c).

©
: X
e:{c 1fw!¢(c)

d otherwise

Then w!? () Vw!} (d) — w!3 (e).

Note that w!Z (c) is in PCSF* for each X.
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Case 1.
o — (0(sg) NO(s1) Asg#s1) Vo

o — = Unique,(0) V ¢ 3)
For =Unique: () it suffices to have {sg, s1} C X.

a
This means that we need to augment two elements sy, s to a class
X of the upper sequent, X = Xy U {sq, s1}.
Although the function fx(x/a,b) may differ fx (z/a,b), these de-
pend classes X, X uniformly in the sense that the ‘definitions’ of

these functions coincide.
Furthermore as we shall see it, requirements on classes are mono-
tonic, i.e., if X and fx enjoys (1), then so does a larger class

Y OX (and fy)
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Case 2. For an eigenvariable d (suppressing =Unique,(8))
detNvy(d)—
deetvy(c) — @

Let X = | { Xo(d) : d € t} for a class Xy(d) of the upper sequent.
Assume that if v(d) and d € ¢, then w!} (hx(z/a,d)). We have
Vdy, dy € t(\;v(d;) = hx(x/a,dy) = hx(x/a,dy)). Let

fx(x/a)=1e|Ad € t(y(d) N hx(x/a,d) = e)]
We obtain 3¢ € ty(c) — w2 (fx(z/a)).
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Thank you for your attention!
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Case 3. For t' = TC(t U{t})

Vy € t'(Vx € yFlay(z,a) — Flay(y,a)) V¢
D(t) — Jla~v(t,a) Vo

(XP1-Fund)

For X = X(y,b) assume that for any b:y — V and y € ¢/
VI € yw'ﬂ'av( )(b/ ) — w'ﬂ'aﬂy( (hX(y/b)) v w'g(kX<y/b))
Let g(y/) = hx(y/b,) for b, = gy = {{z,9(x/)) : x € y}.

Let Y = {X(y,b,) :y €t'}. Forany y € ¥’
VI € yw'ﬂ'av( )(bé[E) 3'@7( (hy(y/b )) w'g(kY(y/by»
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Equivalently

Vi € yw!y, o (9(x/)) = wi, ) (9(y/) v wll (ky (y/by))
If Vo € ¢fwk, . (g(x/))], then 3z € t'w!), (ky(z/b,))

la~(x
Otherwise we obtain w'%/,cw (g(t))).
Therefore w'g (g (t/))\/w'Y( ), where
U{ky(x/b ) - wl (ky(x/by)),z € t'} with a singleton

{ky(x/bx) ! (ky(2/b,), @ € '),
L]
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