Large Lindelöf spaces with points G_{δ}

Toshimichi Usuba (薄葉 季路)

Kobe University

April 8, 2015 Sets and Computations, IMS, Singapore

Arhangel'skii's inequality

All topological spaces are assumed to be T_1 .

A space X is Lindelöf if every open cover has a countable subcover.

Fact 1 (Arhangel'skii (1969))

If X is Hausdorff, Lindelöf, and first countable, then the cardinality of X is $\leq 2^{\omega}$.

Fact 2 (Arhangel'skii)

```
If X is Hausdorff, then |X| \leq 2^{L(X)+\chi(X)}.
```

- L(X), Lindelöf degree of X, is the least infinite cardinal κ such that every open cover of X has a subcover of size ≤ κ
- $\chi(X)$: the character of X.

Arhangel'skii's inequality

All topological spaces are assumed to be T_1 .

A space X is Lindelöf if every open cover has a countable subcover.

Fact 1 (Arhangel'skii (1969))

If X is Hausdorff, Lindelöf, and first countable, then the cardinality of X is $\leq 2^{\omega}$.

Fact 2 (Arhangel'skii)

```
If X is Hausdorff, then |X| \leq 2^{L(X) + \chi(X)}.
```

- L(X), Lindelöf degree of X, is the least infinite cardinal κ such that every open cover of X has a subcover of size ≤ κ
- $\chi(X)$: the character of X.

Arhangel'skii's inequality

All topological spaces are assumed to be T_1 .

A space X is Lindelöf if every open cover has a countable subcover.

Fact 1 (Arhangel'skii (1969))

If X is Hausdorff, Lindelöf, and first countable, then the cardinality of X is $\leq 2^{\omega}$.

Fact 2 (Arhangel'skii)

```
If X is Hausdorff, then |X| \leq 2^{L(X) + \chi(X)}.
```

- L(X), Lindelöf degree of X, is the least infinite cardinal κ such that every open cover of X has a subcover of size ≤ κ.
- $\chi(X)$: the character of X.

Arhangel'skii's question

Question 3 (Arhangel'skii (1969))

Can the first countability be weakened to be points G_{δ} ? A space X is points G_{δ} if for each $x \in X$, the set $\{x\}$ is a G_{δ} -set.

Fact 4 (Arhangel'skii (19??))

If X is Lindelöf and with points G_{δ} , then the cardinality of X is strictly less than the least measurable cardinal.

Fact 5 (Shelah (19??))

If κ is weakly compact, then there is no Lindelöf space X with point G_{δ} such that $|X| = \kappa$.

Fact 6 (Juhasz (19??))

Fact 4 (Arhangel'skii (19??))

If X is Lindelöf and with points G_{δ} , then the cardinality of X is strictly less than the least measurable cardinal.

Fact 5 (Shelah (19??))

If κ is weakly compact, then there is no Lindelöf space X with point G_{δ} such that $|X| = \kappa$.

Fact 6 (Juhasz (19??))

Fact 4 (Arhangel'skii (19??))

If X is Lindelöf and with points G_{δ} , then the cardinality of X is strictly less than the least measurable cardinal.

Fact 5 (Shelah (19??))

If κ is weakly compact, then there is no Lindelöf space X with point G_{δ} such that $|X| = \kappa$.

Fact 6 (Juhasz (19??))

Fact 4 (Arhangel'skii (19??))

If X is Lindelöf and with points G_{δ} , then the cardinality of X is strictly less than the least measurable cardinal.

Fact 5 (Shelah (19??))

If κ is weakly compact, then there is no Lindelöf space X with point G_{δ} such that $|X| = \kappa$.

Fact 6 (Juhasz (19??))

Fact 7 (Arhangel'skii, Shapirovskii)

If X is Hausdorff, then $|X| \leq 2^{L(X)+t(X)+\psi(X)}$.

Definition 8

- For x ∈ X, ψ(x, X) = min{|U| : U is a family of open sets, ∩U = {x}} + ℵ₀.
- The pseudocharacter of X, $\psi(X)$, is sup{ $\psi(x, X) : x \in X$ }.
- t(X), the titghtness number of X, is the least infinite cardinal κ such that for every A ⊆ X and x ∈ A
 is B ⊆ A of size ≤ κ such that |B| ≤ κ and x ∈ B
 .

Note that $\psi(X) + t(X) \leq \chi(x)$.

Fact 7 (Arhangel'skii, Shapirovskii)

If X is Hausdorff, then $|X| \leq 2^{L(X)+t(X)+\psi(X)}$.

Definition 8

- For x ∈ X, ψ(x, X) = min{|U| : U is a family of open sets, ∩U = {x}} + ℵ₀.
- The pseudocharacter of X, $\psi(X)$, is sup{ $\psi(x, X) : x \in X$ }.
- t(X), the titghtness number of X, is the least infinite cardinal κ such that for every A ⊆ X and x ∈ A
 is B ⊆ A of size ≤ κ such that |B| ≤ κ and x ∈ B
 .

Note that $\psi(X) + t(X) \leq \chi(x)$.

Fact 7 (Arhangel'skii, Shapirovskii)

If X is Hausdorff, then $|X| \leq 2^{L(X)+t(X)+\psi(X)}$.

Definition 8

- For x ∈ X, ψ(x, X) = min{|U| : U is a family of open sets, ∩ U = {x}} + ℵ₀.
- The pseudocharacter of X, $\psi(X)$, is $\sup\{\psi(x, X) : x \in X\}$.
- t(X), the titghtness number of X, is the least infinite cardinal κ such that for every A ⊆ X and x ∈ A
 is B ⊆ A of size ≤ κ such that |B| ≤ κ and x ∈ B
 .

Note that $\psi(X) + t(X) \leq \chi(x)$.

Fact 9

For each cardinal κ , there are X and Y such that

1. X is normal, $\psi(X) = t(X) = \omega$, but $|X| = \kappa$.

2. Y is Hausdorff, compact (so
$$L(Y) = \omega$$
), $t(Y) = \omega$, but $|Y| = \kappa$.

Hence L(X) + t(X) and $t(X) + \psi(X)$ cannot give an upper bound of the cardinality of the space X.

Question 10 (rephrased)

If X is Hausdorff, does $|X| \leq 2^{L(X)+\psi(X)}$?

Fact 9

For each cardinal κ , there are X and Y such that

1. X is normal, $\psi(X) = t(X) = \omega$, but $|X| = \kappa$.

2. Y is Hausdorff, compact (so
$$L(Y) = \omega$$
), $t(Y) = \omega$, but $|Y| = \kappa$.

Hence L(X) + t(X) and $t(X) + \psi(X)$ cannot give an upper bound of the cardinality of the space X.

Question 10 (rephrased)

If X is Hausdorff, does $|X| \leq 2^{L(X)+\psi(X)}$?

Consistency results

Fact 11 (Shelah (1978), Gorelic (1993))

It is consistent that ZFC+Continuum Hypothesis+ "there exists a regular Lindelöf space with points G_{δ} and of size 2^{ω_1} ".

Question 12 (still open)

Is it consistent that that ZFC+ "every regular (or Hausdorff) Lindelöf space with points G_{δ} has cardinality $\leq 2^{\omega}$ "?

Shelah's and Gorelic's spaces are constructed by forcing methods.

Consistency results

Fact 11 (Shelah (1978), Gorelic (1993))

It is consistent that ZFC+Continuum Hypothesis+ "there exists a regular Lindelöf space with points G_{δ} and of size 2^{ω_1} ".

Question 12 (still open)

Is it consistent that that ZFC+ "every regular (or Hausdorff) Lindelöf space with points G_{δ} has cardinality $\leq 2^{\omega}$ "?

Shelah's and Gorelic's spaces are constructed by forcing methods.

Shelah's and Gorelic's spaces are constructed by forcing methods.

Fact 13 (Dow (2014?))

Suppose \Diamond^* holds, that is, there exists $\langle \mathcal{A}_{\alpha} : \alpha < \omega_1 \rangle$ such that

1.
$$\mathcal{A}_{\alpha} \subseteq \mathcal{P}(\alpha)$$
, $|\mathcal{A}_{\alpha}| \leq \omega$.

2. For every $A \subseteq \omega_1$, the set $\{\alpha < \omega_1 : A \cap \alpha \in \mathcal{A}_{\alpha}\}$ contains a club in ω_1 .

Then there exists a zero-dimensional Hausdorff Lindelöf space with points G_{δ} and of size 2^{ω_1} .

Inspired by Dow's construction, we introduce a new construction of large regular Lindelöf spaces with points G_{δ} , and we show that the statement that no large regular Lindelöf space with points G_{δ} is a large cardinal property (if it is consistent).

Shelah's and Gorelic's spaces are constructed by forcing methods.

Fact 13 (Dow (2014?))

Suppose \diamond^* holds, that is, there exists $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ such that

1.
$$\mathcal{A}_{\alpha} \subseteq \mathcal{P}(\alpha)$$
, $|\mathcal{A}_{\alpha}| \leq \omega$.

2. For every $A \subseteq \omega_1$, the set $\{\alpha < \omega_1 : A \cap \alpha \in \mathcal{A}_\alpha\}$ contains a club in ω_1 .

Then there exists a zero-dimensional Hausdorff Lindelöf space with points G_{δ} and of size 2^{ω_1} .

Inspired by Dow's construction, we introduce a new construction of large regular Lindelöf spaces with points G_{δ} , and we show that the statement that no large regular Lindelöf space with points G_{δ} is a large cardinal property (if it is consistent).

Main theorem

Theorem 14

Suppose that either:

- 1. There exists a regular Lindelöf P-space with pseudocharacter $\leq \omega_1$ and of size $>2^\omega$,
- 2. CH+there exists an ω_1 -Kurepa tree, or
- 3. CH+ $\Box(\omega_2)$ holds.

Then there exists a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Fact 15 (Jensen (197?))

If $\Box(\kappa)$ fails for some regular uncountable κ , then κ is weakly compact in *L*.

Corollary 16

lf

• ZFC+CH+ "every regular Lindelöf space with points G_{δ} has cardinality $\leq 2^{\omega}$ "

is consistent, then so is

• ZFC+ "there exists a weakly compact cardinal".

Fact 15 (Jensen (197?))

If $\Box(\kappa)$ fails for some regular uncountable κ , then κ is weakly compact in *L*.

Corollary 16

lf

- ZFC+CH+ "every regular Lindelöf space with points G_{δ} has cardinality $\leq 2^{\omega}$ "
- is consistent, then so is
 - ZFC+ "there exists a weakly compact cardinal".

Key lemma

Lemma 17

Let Y be a regular Lindelöf space such that:

- 1. $\psi(Y) \leq \omega_1$.
- 2. For $y \in Y$, if $\psi(y, Y) = \omega_1$ then there exists $\langle O_{\alpha}^y : \alpha < \omega_1 \rangle$ such that
 - 2.1 O_{α}^{y} is clopen. 2.2 $O_{\alpha}^{y} \supseteq O_{\alpha+1}^{y}$. 2.3 $O_{\alpha}^{y} = \bigcap_{\beta < \alpha} O_{\beta}^{y}$ if α is a limit ordinal. 2.4 $\bigcap_{\alpha < \omega_{1}} O_{\alpha}^{y} = \{y\}$.

Then there exists a regular Lindelöf space with points G_{δ} and of size max $\{2^{\omega}, |Y|\}$.

If Y is a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$, then Y satisfies the assumptions of Lemma 17.

Theorem 19

Suppose that there exists a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$ and of size $> 2^{\omega}$, Then there exists a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Remark 20

The statement that "there exists a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$ and of size $> 2^{\omega}$ " is independent from ZFC.

If Y is a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$, then Y satisfies the assumptions of Lemma 17.

Theorem 19

Suppose that there exists a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$ and of size $> 2^{\omega}$, Then there exists a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Remark 20

The statement that "there exists a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$ and of size $> 2^{\omega}$ " is independent from ZFC.

If Y is a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$, then Y satisfies the assumptions of Lemma 17.

Theorem 19

Suppose that there exists a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$ and of size $> 2^{\omega}$, Then there exists a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Remark 20

The statement that "there exists a regular Lindelöf P-space of pseudocharacter $\leq \omega_1$ and of size $> 2^{\omega}$ " is independent from ZFC.

Theorem 21

Suppose that either:

- 1. CH + there exists an $\omega_1\text{-}\mathsf{Kurepa}$ tree, or
- 2. $CH + \Box(\omega_2)$ holds.

Then there exists a regular Lindelöf space of size $> 2^{\omega}$ which satisfies the assumption of key Lemma, In particular there exists a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Fact 22

- 1. The statement that "there is an ω_1 -Kurepa tree" is independent from ZFC (Silver).
- The statement that "□(ω₂) holds" is independet from ZFC (Jensen).

Theorem 21

Suppose that either:

- 1. CH + there exists an $\omega_1\text{-}\mathsf{Kurepa}$ tree, or
- 2. $CH + \Box(\omega_2)$ holds.

Then there exists a regular Lindelöf space of size $> 2^{\omega}$ which satisfies the assumption of key Lemma, In particular there exists a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Fact 22

- 1. The statement that "there is an ω_1 -Kurepa tree" is independent from ZFC (Silver).
- The statement that "□(ω₂) holds" is independet from ZFC (Jensen).

Outline of a proof of the lemma

Fix a space Y and sequences $\langle O^y_\alpha : \alpha < \omega_1 \rangle$ for $y \in Y$ with $\psi(y, Y) = \omega_1$. Let

•
$$Y_0 = \{y \in Y : \psi(y, Y) \le \omega\}.$$

•
$$Y_1 = \{y \in Y : \psi(y, Y) = \omega_1\}.$$

Let $Z = {}^{\omega}2$ (Cantor space)

The underlying set of our space X is $Y_0 \cup (Y_1 \times Z)$. (Clearly $|X| = \max\{|Y|, 2^{\omega}\}$.)

cont.

For $A \subseteq Y$, let

•
$$\llbracket A \rrbracket = (A \cap Y_0) \cup ((A \cap Y_1) \times Z).$$

Note that:

- For $\gamma < \omega_1$, $\bigcup_{\gamma \le \alpha < \omega_1} \llbracket O_{\alpha}^y \rrbracket \setminus \llbracket O_{\alpha+1}^y \rrbracket$ is a (clopen) partition of $\llbracket O_{\gamma}^y \rrbracket \setminus (\{y\} \times Z)$.
- $x \in \llbracket O_0^y \rrbracket \setminus (\{y\} \times Z)$

 \Rightarrow there is a unique $\alpha < \omega_1$ with $x \in \llbracket O_{\alpha}^y \rrbracket \setminus \llbracket O_{\alpha+1}^y \rrbracket$.

Fix an injection $\pi : \omega_1 \to Z$, and let $z_\alpha = \pi(\alpha)$ for $\alpha < \omega_1$. For $y \in Y_1$, $\gamma < \omega_1$, and an open $W \subseteq Z$, let

• $U(y, \gamma, W) = (\{y\} \times W) \cup \{\llbracket O_{\alpha}^{y} \rrbracket \setminus \llbracket O_{\alpha+1}^{y} \rrbracket : \alpha \ge \gamma, z_{\alpha} \in W\}.$

cont.

Then the topology on X is generated by the family:

 $\{\llbracket V \rrbracket : V \subseteq Y \text{ is open} \}$ $\cup \{ U(y, \gamma, W) : y \in Y_1, \ \gamma < \omega_1, \ W \subseteq Z \text{ is open} \}.$

- For y ∈ Y₀, the family { [[V]] : V ⊆ Y is an open neighborhood of y} is a local base at y.
- For y ∈ Y₁ and z ∈ Z, the family
 {U(y, γ, W) : γ < ω₁, W ⊆ Z is an open neighborhood of z}
 is a local base at ⟨y, z⟩.

Lemma 23

X is regular.

Lemma 24

X is points G_{δ}

If y ∈ Y₀, fix open sets V_n ⊆ Y (n < ω) with {y} = ∩_{n<ω} V_n. Then {y} = ∩_{n<ω} [[V_n]].
 Suppose ⟨y, z⟩ ∈ X.

Point: If $x \in \llbracket O_{\alpha}^{y} \rrbracket \setminus \llbracket O_{\alpha+1}^{y} \rrbracket$ and $z_{\alpha} \notin W \subseteq Z$, then $x \notin U(y, \gamma, W)$.

Fix open sets $W_n \subseteq Z$ with $\{z\} = \bigcap_{n < \omega} W_n$, and a large $\gamma < \omega_1$. Then we have $\{\langle y, z \rangle\} = \bigcap_{n < \omega} U(y, \gamma, W_n)$.

Lemma 25

X is Lindelöf.

Let \mathcal{U} be an open cover of X.

- For $y \in Y_0$, we can take an open $V_y \subseteq Y$ with $y \in V_y$ and $\llbracket V_y \rrbracket \subseteq U$ for some $U \in \mathcal{U}$.
- For y ∈ Y₁, since {y} × Z is homeomorphic to Z, we can find countably many U_n ∈ U with {y} × Z ⊆ ∪_{n<ω} U_n. Then we can find an open V_y ⊆ Y with {y} × Z ⊆ [[V_y]] ⊆ ∪_{n<ω} U_n.
- Y is Lindelöf and {V_y : y ∈ Y} is an open cover of Y, hence there are countably many y_n ∈ Y with Y ⊆ U_{n<ω} V_n.
- The family $\llbracket V_n \rrbracket$ $(n < \omega)$ induces a countable subcover of \mathcal{U} .

How to construct a space satisfying the assumptions of Key lemma

 $T \subseteq {}^{<\omega_2}$ 2: tree

A branch of T is a maximal chain of T.

Lemma 26

Suppose that there exists a tree $T \subseteq {}^{<\omega_2}2$ such that:

1. T has no branch of size ω_2 .

2. T does not contain an isomorphic copy of Cantor tree $\leq \omega 2$. Suppose T has κ cofinal branches. Then there exists a zero-dimensional Hausdorff Lindelöf space Y of size max{ $|T|, \kappa$ } such that Y satisfies the assumptions in Lemma 17.

Suppose CH. If T is an ω_1 -Kurepa tree, then

- 1. T has more than 2^{ω} many branches,
- 2. T does not have a branch of size ω_2 , and
- 3. T does not contain an isomorphic copy of Cantor tree.

Fact 28 (Todorcevic)

Suppose $\Box(\omega_2)$ holds. Then there exists a tree $T \subseteq {}^{<\omega_2}$ such that

- 1. T is an ω_2 -Aronszajn tree.
- 2. T does not contain an isomorphic copy of Cantor tree.

Corollary 29

Suppose CH"+ ω_1 -Kurepa tree exists", or CH+ $\Box(\omega_2)$ holds, then there is a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Suppose CH. If T is an ω_1 -Kurepa tree, then

- 1. T has more than 2^{ω} many branches,
- 2. T does not have a branch of size ω_2 , and
- 3. T does not contain an isomorphic copy of Cantor tree.

Fact 28 (Todorcevic)

Suppose $\Box(\omega_2)$ holds. Then there exists a tree $T \subseteq {}^{<\omega_2}$ such that

- 1. T is an ω_2 -Aronszajn tree.
- 2. T does not contain an isomorphic copy of Cantor tree.

Corollary 29

Suppose CH"+ ω_1 -Kurepa tree exists", or CH+ $\Box(\omega_2)$ holds, then there is a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Suppose CH. If T is an ω_1 -Kurepa tree, then

- 1. ${\cal T}$ has more than 2^ω many branches,
- 2. T does not have a branch of size ω_2 , and
- 3. T does not contain an isomorphic copy of Cantor tree.

Fact 28 (Todorcevic)

Suppose $\Box(\omega_2)$ holds. Then there exists a tree $T \subseteq {}^{<\omega_2}$ such that

- 1. T is an ω_2 -Aronszajn tree.
- 2. T does not contain an isomorphic copy of Cantor tree.

Corollary 29

Suppose CH " $+\omega_1$ -Kurepa tree exists", or CH $+\Box(\omega_2)$ holds, then there is a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega}$.

Constructing a space from tree

Fix a tree $T \subseteq \omega_2 2$. For $\alpha < \omega_2$, let $T_{\alpha} = T \cap \alpha^2$, the α -th level of T. Let B be the set of all branches of T.

Our space Y is $B \cup T$.

For $t \in T \cup B$, let $[t] = \{s \in T \cup B : t \subseteq s\}$.

Then the topology of Y is generated by the following family:

$$\{\{t\} : t \in T, \operatorname{cf}(\operatorname{dom}(t)) \leq \omega\} \\ \cup\{[\rho \upharpoonright \xi] : \rho \in B, \xi < \operatorname{dom}(\rho), \operatorname{cf}(\xi) \leq \omega\} \\ \cup\{[\rho \upharpoonright \xi] \setminus ([\rho \cap 0] \cup [\rho \cap 1]) : \rho \in \bigcup\{T_{\alpha} : \operatorname{cf}(\alpha) = \omega_1\}, \xi < \operatorname{dom}(\rho), \operatorname{cf}(\xi) \leq \omega\}.$$

It is easy to check that Y is T_1 and zero-dimensional.

- If $t \in T_{\alpha}$ with $cf(\alpha) \leq \omega$, then t is an isolated points of Y.
- If t ∈ B with cf(dom(t)) = ω, then fix an increasing cofinal sequence (ξ_i : i < ω) with limit dom(t). Then {t} = ∩_{i<ω}[t ↾ ξ_i + 1], so ψ(t, Y) = ω.
- If t ∈ B ∪ T with cf(dom(t)) = ω₁, then ψ(t, Y) = ω₁. Fix an increasing continuous sequence ⟨ξ_i : i < ω₁⟩ with limit dom(t). Then [t ↾ ξ_i] \ ([t⁰] ∪ [t¹]) (i < ω₁) are clopen, continuously decreasing, and
 (t) Q = ([t ↾ ζ]) ([t⁰] ∪ [t¹]))

$$\{t\} = \bigcap_{i < \omega_1} ([t \upharpoonright \xi_i] \setminus ([t \frown 0] \cup [t \frown 1])).$$

Lemma 30

Y is Lindelöf.

Fix an open cover \mathcal{U} of Y. Let T' be the set of all $t \in T \cup B$ such that [t] cannot be covered by countable subfamily of \mathcal{U} . We see that T' is empty, then \mathcal{U} has a countable subfamily which covers $[\emptyset] = Y$.

If T' is non-empty, we can check that T' is downward closed and branching. Hence we can define $f: {}^{<\omega}2 \to T'$ such that

•
$$\sigma \subseteq \tau \Rightarrow f(\sigma) \subseteq f(\tau).$$

• $f(\sigma^{-}0) \neq f(\sigma^{-}1)$.

Since T does not have an isomorphic copy of the Cantor tree, there is $\rho \in {}^{\omega}2$ such that $t^* = \bigcup_{n < \omega} f(\rho \upharpoonright n) \notin T$. Then $t^* \in B$, and there is $O \in \mathcal{U}$ and $\xi < \operatorname{dom}(t^*)$ with $[t^* \upharpoonright \xi] \subseteq O$. Then there is σ with $t^* \upharpoonright \xi \subseteq \sigma$ and $[f(\sigma)] \subseteq O$, this contradicts to $f(\sigma) \in T'$.

Lemma 30

Y is Lindelöf.

Fix an open cover \mathcal{U} of Y. Let T' be the set of all $t \in T \cup B$ such that [t] cannot be covered by countable subfamily of \mathcal{U} . We see that T' is empty, then \mathcal{U} has a countable subfamily which covers $[\emptyset] = Y$.

If T' is non-empty, we can check that T' is downward closed and branching. Hence we can define $f: {}^{<\omega}2 \to T'$ such that

•
$$\sigma \subseteq \tau \Rightarrow f(\sigma) \subseteq f(\tau).$$

• $f(\sigma^{-}0) \neq f(\sigma^{-}1)$.

Since *T* does not have an isomorphic copy of the Cantor tree, there is $\rho \in {}^{\omega}2$ such that $t^* = \bigcup_{n < \omega} f(\rho \upharpoonright n) \notin T$. Then $t^* \in B$, and there is $O \in \mathcal{U}$ and $\xi < \operatorname{dom}(t^*)$ with $[t^* \upharpoonright \xi] \subseteq O$. Then there is σ with $t^* \upharpoonright \xi \subseteq \sigma$ and $[f(\sigma)] \subseteq O$, this contradicts to $f(\sigma) \in T'$.

Forcing which adds a large Lindelöf space

Proposotion 31

Cohen forcing \mathbb{C} (actually any c.c.c. forcing adding new reals) forces the statement that "there exists a regular Lindelöf space with points G_{δ} and of size $(2^{\omega_1})^V$.

Proof.

In $V^{\mathbb{C}}$, the tree $({}^{<\omega_1}2)^V$ does not contain an isomorphic copy of Cantor tree.

Proposotion 32

Suppose V = L. For each regular cardinal κ , there is a regular Lindelöf space X with points G_{δ} , $L(X) = \kappa$, and $|X| = \kappa^{++} (> 2^{\kappa})$.

Hence, under V = L, the inequality $|X| \le 2^{L(X)+\psi(X)}$ does not hold.

Question 33

1. Is it consistent that that ZFC+ "every regular Lindelöf space with points G_{δ} has cardinality $\leq 2^{\omega}$ "?

Is it consistent that that ZFC+ "every regular Lindelöf c.c.c. space with points G_δ has cardinality ≤ 2^ω"?
 (Gorelic's space satisfies the c.c.c.)

3. Is it consistent that TFC+ "there is a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega_1}$?

Thank you for your attention!

Question 33

1. Is it consistent that that ZFC+ "every regular Lindelöf space with points G_{δ} has cardinality $\leq 2^{\omega}$ "?

Is it consistent that TFC+ "every regular Lindelöf c.c.c. space with points G_δ has cardinality ≤ 2^ω"?
 (Gorelic's space satisfies the c.c.c.)

3. Is it consistent that that ZFC+ "there is a regular Lindelöf space with points G_{δ} and of size $> 2^{\omega_1}$?

Thank you for your attention!