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I A subset A ⊆ [κ]κ is said to be κ-a.d. if for all distinct
a,b ∈A |a∩b|< κ.

A κ-a.d. family of size ≥ κ is said to
be maximal if it is maximal with respect to inclusion.

I We denote by S(κ) the group of all permutations on κ. A
subgroup G of S(κ) is said to be κ-cofinitary if each of its
non-identity elements has less than κ-many fixed points. A
κ-cofinitary group is said to be a κ-maximal cofinitary
group (abbreviated κ-mcg), if it is maximal among the
κ-cofinitary groups under inclusion.
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Spectra

I Cκ (mad) = {|A | : A is a κ-mad family}

I Cκ (mcg) = {|G | : G is a κ-mcg}.

Thus a(κ) = minCκ (mad) and ag(κ) = minCκ (mcg).
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I The spectra of m.a.d. families and m.c.g. have been
studied by various authors. For example S. Hechler
showed that for every uncountable λ there is a generic
extension with a mad family of size λ .

I A. Blass showed that if GCH holds and C is a closed set of
cardinals such that ℵ1 ∈ C, ∀ν ∈ C(ν ≥ℵ1), [ℵ1, |C|]⊆ C
and ∀λ (λ ∈ C∧cof(λ ) = ω → λ + ∈ C), then there is a ccc
generic extension in which Cω (mad) = C.

I Brendle, Spinas and Zhang obtained an analogous result
regarding mcg’s: if C is as above (and GCH holds), then
there is a ccc generic extension in which Cω (mcg) = C.
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Theorem (V.F.)
(GCH) Let κ be a regular infinite cardinal and let C be a closed
set of cardinals such that

1. κ+ ∈ C, ∀ν ∈ C(ν ≥ κ+),
2. [κ+, |C|]⊆ C,
3. ∀ν ∈ C(cof(ν)≤ κ → ν+ ∈ C).

Then there is a generic extension in which cofinalities have not
been changed and such that C = Cκ (mcg).
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There are two major problems that have to be addressed, in
order to obtain the above result:
I adding a κ-m.c.g. of desired cardinality,

I excluding certain cardinals as possible values for κ-mcg.
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I A mapping ρ : B→ S(κ) induces a κ-cofinitary
representation of FB if the canonical extension of ρ to a
homomorphism ρ̂ : FB → S(κ) has the property that every
non-identity element of im(ρ̂) has < κ-many fixed points.

I Given a κ-cofinitary representation ρ with domain B and a
set A s.t. A∩B = /0, we will add generically a family of
κ-permutations {ga}a∈A such that the group G (ρ,A)
generated by im(ρ̂) and {ga}a∈A is κ-cofinitary.

I We will work with approximations to the new generators of
size < κ, i.e. with sets s ∈ [A×κ×κ]<κ . For each a ∈ A we
interpret sa = {(γ,β ) : (a,γ,β )} as a partial approximation
to the generator ga.
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I To describe arbitrary members of G (ρ,A), we work with the
set of words ŴA∪B (referred to as good words) on the
alphabet A∪B which start and end with a different letter, or
a power of a single letter. Every word on A∪B is a
conjugate of such a good word.

I Every approximation s to the new generators gives an
approximation to the permutations corresponding to
arbitrary words w ∈ ŴA∪B. This approximation is denoted
ew [s,ρ] and is obtained by substituting every appearance
of a letter b from B with ρ(b) and every appearance of a
letter a ∈ A with sa. We refer to ew [s,ρ] as the evaluation of
w given s and ρ.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

I To describe arbitrary members of G (ρ,A), we work with the
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set of words ŴA∪B (referred to as good words) on the
alphabet A∪B which start and end with a different letter, or
a power of a single letter. Every word on A∪B is a
conjugate of such a good word.

I Every approximation s to the new generators gives an
approximation to the permutations corresponding to
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Adding a κ-m.c.g. of desired cardinality
Let A and B be disjoint sets and let ρ : B→ S(κ) be a function
inducing a κ-cofinitary representation.

The forcing notion Qκ

A,ρ

consists of all pairs (s,F ) ∈ [A×κ×κ]<κ × [ŴA∪B]<κ such that
sa is injective for every a ∈ A. The extension relation states that
(s,F )≤QA,ρ (t ,E) if
I s ⊇ t , F ⊇ E and
I for all α ∈ κ and w ∈ E , if ew [s,ρ](α) = α then already

ew [t ,ρ](α) is defined and ew [t ,ρ](α) = α.
In case B = /0 then we write QA for QA,ρ .
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I The above poset is clearly < κ-closed. In analogy with the
Knaster property, we will say that a poset P has the
κ-Knaster property, if in every collection of κ-many
conditions from P there are κ many which are pairwise
compatible.

I The poset Qκ

A,ρ is κ+-Knaster.
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Some Basic Properties
Let (s,F ) ∈Qκ

A,ρ , a ∈ A.

1. Domain Extension Let α ∈ κ\dom(sa). Then there is an
index set I = Ia,α such that |κ\I|< κ and for all β ∈ I
(s∪{(a,α,β )},F ) extends (s,F ).

2. Range Extension Let β ∈ κ\ ran(sa). Then there is an
index set J = Ja,β such that |κ\J|< κ and for all α ∈ J
(s∪{(a,α,β )},F ) extends (s,F ).
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The generic cofinitary representation
If G is Qκ

A,ρ -generic, then the mapping ρG : A∪B→ S(κ), which
is defined by
I ρG�B = ρ and
I ρG(a) =

⋃
{sa : ∃F (s,F ) ∈G} for every a ∈ A,

induces a κ-cofinitary representation of A∪B which extends ρ.
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Complete Embeddings and Quotients
Let A0 ⊆ A and A1 = A\A0. Then:
I Qκ

A0,ρ
lQκ

A,ρ ,

I QA,ρ = QA0,ρ ∗QA1,ρĠ
, where Ġ is the canonical name for

the QA0,ρ -generic filter.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

Generic Hitting
Let ρ : B→ S(κ) induce a κ-cofinitary representation and let
σ ∈ S(κ)\ im(ρ̂) be such that 〈im(ρ̂)∪{σ}〉 is κ-cofinitary. Let
a /∈ B. Then for every Ω ∈ κ the set of all (s,F ) ∈Qκ

{a},ρ such
that for some α > Ω we have sa(α) = σ(α) is dense in Qκ

{a},ρ .

As an immediate corollary we obtain that if G is Qκ

{a},ρ -generic,
then there are κ-many α such that ρG(a)(α) = σ(α). Thus in
particular, in VQκ

{a},ρ the group 〈im(ρ̂G)∪{σ}〉 is not κ-cofinitary.
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Maximality
If |A|> κ then Qκ

A,ρ adds a maximal κ-cofinitary group.

Proof:
Let G be Qκ

A,ρ -generic. Suppose that im ρ̂G is not maximal.
Then there is a σ /∈ im(ρ̂G) such that 〈im(ρ̂G)∪{σ}〉 is
cofinitary. By the κ+-c.c., there is A0 ⊂ A, |A0|= κ such that
σ ∈ V [H] where H = G∩QA0,ρ . Take any a ∈ A\A0. Then by the
Generic Hitting Lemma in V [G] we have that ρG(a)(α) = σ(α)
for κ-many α, which is a contradiction.
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Proof of Lemma C

Theorem (V.F.)
(GCH) Let κ be a regular infinite cardinal and let C be a closed
set of cardinals such that

1. κ+ ∈ C, ∀ν ∈ C(ν ≥ κ+),
2. if |C| ≥ κ+ then [κ+, |C|]⊆ C,
3. ∀ν ∈ C(cof(ν)≤ κ → ν+ ∈ C).

Then there is a generic extension in which cofinalities have not
been changed and such that C = Cκ (mcg).
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Proof of Lemma C

Proof:
For each ξ ∈ C, let Iξ := {(γ,ξ ) : γ < ξ} and let I =

⋃
ξ∈C Iξ . Let

P = ∏ξ∈C Qκ

Iξ
with supports of size < κ.

Lemma A
P is < κ-closed and κ+-Knaster.
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Proof of Lemma C

Proof of Lemma A:
Let {pα}α<κ+ be given. Without loss of generality
{supt(pα )}α<κ+ form a ∆-system with root R0, where |R0|< κ.
I For p ∈ P and ξ ∈ supt(p) recall that p(ξ ) ∈Qκ

Iξ
. That is

p(ξ ) = (sξ ,F ξ ) where sξ ∈ [Iξ ×κ×κ]<κ and F ξ ∈ [ŴIξ ]<κ .
By oc(p(ξ )) we denote the set of all letters of Iξ which
occur in (sξ ,F ξ ). Thus in particular oc(p(ξ )) ∈ [Iξ ]<κ .

I Since {∏ξ∈R0
ocA(pα )(ξ )}α<κ+ are κ+-many sets each of

size < κ, by the ∆-system lemma we can assume that they
form a ∆-system with root ∆ where ∆ = ∏ξ∈R0

∆ξ .
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Proof of Lemma C

Proof cnt.’d:
I For every α let pα (ξ ) = (sα,ξ ,F α,ξ ). Then the sets
{∏ξ∈R0

sα,ξ �∆ξ ×κ×κ}α<κ+ must coincide on a set of size
κ+, since |∏ξ∈R0

(∆ξ ×κ×κ)|= κ.

I Thus there is some t = ∏ξ∈R0
tξ such that for all ξ ∈R0 and

(wlg) all α < κ+ we have that sα,ξ �∆×κ×κ = tξ .
I This implies that ∏ξ∈R0

(sα,ξ ∪sβ ,ξ ,F α,ξ ∪F β ,ξ ) is a
common extension of pα�R0 and pβ �R0. Thus we can find
a subset if size κ+ of pairwise compatible conditions.
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Lemma B
In VP there is a κ-mcg of size ξ for allξ ∈ C.

Proof
Let ξ0 ∈ C and let Gξ0

be the mcg added by Qκ

Iξ0
. We will show

that Gξ0
remains maximal in VP. If not then there are a p ∈ P

and a P-name for a κ-cofinitary permutation τ such that
p P 〈“ im(ρ̂ξ0

)∪{τ̇}〉 is a κ-cofin. group”. Wlg τ is a nice name.
Since P is κ+-cc there are κ-many antichains {Bα}α∈κ each of
size κ, such that ∀b ∈ Bα∃βb ∈ κ with b P τ̇(α) = β̌b.
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Proof of Lemma B, cnt.’d:

I For b ∈ Bα let Kα,b denote the support of b. Then the set
C ′ = [(

⋃
α∈κ,b∈Bα

Kα,b)∪supt(p)]\{ξ0} is of size at most κ.
I Let Aξ0

= [
⋃

α∈κ,b∈Bα
oc(b(ξ0))]∪oc(p(ξ0)). That is Aξ0

is
the collection of all letters from Iξ0

occurring in τ and p.
I Let P̄ = ∏ξ∈C′Qκ

ξ
with supports of size < κ and Q̄ = Qκ

Aξ0
.

Then Qκ

Aξ0
lQκ

Iξ0
. Also p is in P̄× Q̄ and τ is a P̄× Q̄-name

for a κ-cofinitary permutation. Furthermore

p P̄×Q̄ “〈im(ρ̂ξ0
)∪{τ̇}〉 is a κ-cofin. group”.
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Proof, cnt.’d:

I Since Aξ0
is of size at most κ and Iξ0

is of size ξ0 > κ, there
is some a ∈ Iξ0

\Aξ0
. Let G be P̄× Q̄ generic and p ∈G.

Then in V [G] by the Generic Hitting Lemma we have that
Qκ

I
ξ0
\A

ξ0
,ρA

ξ0

“∀Ω < κ∃β > Ω(ρIξ0
\Aξ0

(a)(β ) = τ(β ))”.

I However
(P̄×Qκ

Aξ0
)∗Qκ

Iξ0
\Aξ0

,ρA
ξ0

= P̄× (Qκ

Aξ0
∗Qκ

Iξ0
\Aξ0

,ρA
ξ0

) = P̄×Qκ

Iξ0
.

Therefore p P̄×Qκ

I
ξ0

“∀Ω < κ∃β > Ω(ρξ0
(a)(β ) = τ̇(β ))”.

Since ¯P×Qκ

Iξ0
lP, we reach a contradiction.
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Lemma C
In VP for every λ /∈ C there are no κ-maximal cofinitary groups
of size λ .

The proof follows very closely to Blass’s proof regarding the
spectrum of maximal almost disjoint families on ω and relies on
homogeneity properties shared by the two constructions.
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Proof of Lemma C:
We will show that for every λ /∈ C, λ is not OD(κκ) definable.
That is we will show that in V [G] if 〈Xα〉α∈λ is a sequence of
OD(κκ) definable sets which covers κκ, then there is a proper
subsequence which also covers κκ. Fix such a sequence and
for each α an ordinal Θα and a function uα ∈ κκ such that in
V [G], Xα is the Θα -th set definable from uα .

Let µ be the largest element of C below λ . Then cof (µ)≥ κ+.
By GCH (in V ) we have µκ = µ. Recursively we will define a
sequence 〈Mγ〉γ∈κ+ , where |Mγ | ≤ µ for all γ, such that the Xα ’s
with indexes in

⋃
Mγ cover κκ. Let M0 := /0 and for γ limit, let

Mγ :=
⋃

δ<γ Mδ .
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Proof of Lemma C

For each α ∈ λ choose Jα ⊆ I =
⋃

ξ∈C Iξ of size κ such that for
every p which is involved either in u̇α or in Θ̇α and each ξ in the
support of p we have that oc(p(ξ ))⊆ Jα . Let S be the union of
{Iγ : γ ∈ µ ∩C} and {Jα : α ∈ λ}. Then |S|= λ .

K -support
Let K ⊆ S be of size µ such that

⋃
γ∈µ∩C Iγ ⊆ K . A subset J of I

such that |J|= κ is called a K -support for the name ẋ of a
function in κκ if
I for every p involved in ẋ and every ξ in the support of p we

have that oc(p(ξ ))⊆ J and
I if J ∩ Iγ\K 6= /0 then |J ∩ Iγ\K |= κ.
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Since every γ ∈ C\(µ ∪{µ}), γ > λ , we have |Iγ\S|= |Iγ\K |= γ.
Thus whenever we are given a K as above and a name for a
function in κκ, we can assume that it has a K -support.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

Proof of Lemma C

Let G be the group of those permutations of I that map each Iγ
into itself and that fixes all members of K . Then G acts as a
group of automorphisms on the notion of forcing P by sending
each p to a condition g(p) naturally defined from g and p.

More precisely: let p ∈ P, ξ ∈ supt(p) and p(ξ ) = (sξ ,F ξ ) where
sξ ∈ [Iξ ×κ×κ]<κ , F ξ ∈ [WIξ ]<κ . Then let
supt(g(p)) := supt(p). For ξ ∈ supt(p), let
g(p(ξ )) := (g(sξ ),g(F ξ )) where oc(g(sξ )) = g(oc(sξ )) and for
every (α,ξ ) ∈ oc(g(sξ )) = g(oc(sξ )) if (α0,ξ ) 7→ (α,ξ ) then
[g(sξ )](α,ξ ] := sξ

(α0,ξ )
. Furthermore for a word w ∈ F ξ define

g(w) to be the word obtained by substituting every appearance
of a letter a = (α,ξ ) in w with g(α,ξ ). Then let g(F ξ ) be the set
of all g(w) for w ∈ F ξ .
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every (α,ξ ) ∈ oc(g(sξ )) = g(oc(sξ )) if (α0,ξ ) 7→ (α,ξ ) then
[g(sξ )](α,ξ ] := sξ

(α0,ξ )
. Furthermore for a word w ∈ F ξ define

g(w) to be the word obtained by substituting every appearance
of a letter a = (α,ξ ) in w with g(α,ξ ). Then let g(F ξ ) be the set
of all g(w) for w ∈ F ξ .
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Let G be the group of those permutations of I that map each Iγ
into itself and that fixes all members of K . Then G acts as a
group of automorphisms on the notion of forcing P by sending
each p to a condition g(p) naturally defined from g and p.

I Note that each such automorphism g preserves not only
maximal antichains, but also the forcing relation. In
particular, if J is a support of a name ẋ ,then g(J) is a
support of the name g(ẋ). If in addition g fixes all members
of J, then it also fixes the name ẋ .

I If J is a support then its G -orbit is determined by J ∩K and
J̄ = {γ ∈ C : J ∩ Iγ −K 6= /0}. That is, if J ′ is another support
with J ′∩K = J ∩K and J̄ ′ = J̄, then there is g ∈ G with
g(J) = J ′.
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This implies that there are only µ many orbits of supports.
Indeed:
I Since J ∩K is of size ≤ κ and |K |= µ = µκ , there are only

µ possibilities for J ∩K .
I If [κ+, |C|] 6= /0, then [κ+, |C|]⊆ C. Thus in this case
|C| ≤ µ.

I If [κ+, |C|] = /0, i.e. |C| ≤ κ, then since µ ≥ κ+ we have
again |C| ≤ µ. Thus there are no more than µκ = µ many
possibilities for J̄ ∈ [C]≤κ .
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For each G -orbit of supports, fix a member J such that
J ∩S = J ∩K . Such orbits are referred to as standard supports.
For each fixed support J there are only κκ = κ+ (by GCH in V )
many names. Since µ ≥ κ+, there are only µ-many names that
have standard supports.

For each name ẋ with a standard support, fix a set
A = A(ẋ) ∈ [λ ]≤κ ∩V such that P forces “(∃α ∈ Ǎ)ẋ ∈ Ẋα ”. Let
B =

⋃
{A(ẋ) : ẋ has a standard support}. Then |B| ≤ µ.
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We will proceed with the successor step in the inductive
definition of 〈Mσ 〉σ<κ+ . Let

Kσ =
⋃

α∈Mσ

Jα ∪
⋃

γ≤µ∩C

Iγ .

Then |Kσ |= µ. Let Mσ+1 be obtained from Kσ in the same way
that B was obtained from K above. Then |Mσ+1| ≤ µ. Define
M =

⋃
σ∈κ+ Mσ and K =

⋃
σ∈κ+ Kσ .

Let ẋ be a P-name for a function in κκ. We will show that P
forces that “(∃α ∈M)ẋ ∈ Ẋα ”.
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Let J ⊂ I of size κ such that for every p involved in ẋ and every
ξ in the support of p we have oc(p(ξ ))⊆ J. Fix σ < κ+ such
that J ∩K ⊆ Kσ . For each γ ∈ C such that J ∩ Iγ −Kσ 6= /0, we
have that γ > λ (> µ). Then |Iγ −K |= λ . Thus enlarging J is
necessary we can assume that it is a Kσ -support and
J ∩K ⊆ Kσ .

Consider the group of all permutations of I which fix Kσ and
map each Iγ to itself. There is g ∈ G such that g(J) is a
Kσ -standard support. Then neither J nor g(J) meets Kσ+1−Kσ

and so there is a permutation h which agrees with g on J and
with the identity map on Kσ+1−Kσ . In particular h(J) = g(J) is
standard and h leaves Kσ+1 pointwise fixed.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

Proof of Lemma C

Since h(ẋ) has standard support h(J), it is one of the µ names
for which we chose a set A = A(h(ẋ)) to include in Mσ+1. Thus

P “(∃α ∈ Ǎ)h(ẋ) ∈ Ẋα ”,

which implies that

P “∃α ∈ Ǎ[h(ẋ) is in the Θ̇α th set ordinal-definable from u̇α ]”.

However A⊆Mσ+1 and ∀α ∈ A(Jα ⊆ Kσ+1). Thus h fixes Jα

pointwise, and so h fixes Θ̇α and u̇α . Therefore

P “∃α ∈ Ǎ[h(ẋ) is in the h(Θ̇α )th set ordinal-definable from h(u̇α )]”.
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Now since h preserves the forcing relation, we have

P “∃α ∈ Ǎ[ẋ is in the Θ̇α th set ordinal-definable from u̇α ]”.

Now since Mσ+1 ⊆M we obtain that

P “∃α ∈ M̌(ẋ ∈ Ẋα )”,

which completes the proof that λ is not OD(κκ)-definable.
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Following standard notation, Fn<κ (κ,κ) denotes the κ-Cohen
poset, e.g. the poset of all partial functions from κ to κ of
cardinality < κ with extension relation superset.

Theorem (V.F.)
(GCH) There is a κ-Cohen indestructible κ-maximal cofinitary
group.
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Proof:
Let {〈pξ , τ̇ξ 〉 : κ ≤ ξ < κ+,ξ ∈ Succ(κ+)} enumerate all pairs
〈p,τ〉 where p ∈ Fn<κ (κ,κ) and τ is a name for a κ-cofinitary
permutation. Recursively we will construct a family {ρξ}κ≤ξ<κ+

of κ-cofinitary representations such that
1. for all ξ , ρξ : ξ → S(κ),
2. for all η < ξ ρη = ρξ �η , and
3.

⋃
κ≤ξ<κ+ ρξ : κ+→ S(κ) induces a cofinitary representation

ρ̂ such that im(ρ̂) is a κ-maximal cofinitary group, which is
Fn<κ (κ,κ)-indestructible.
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Proof cnt.’d:
Let ρκ be a cofinitary representation of κ given by Qκ

κ . Suppose
for all ξ : κ ≤ ξ < η , ρξ has been defined and η = ξ + 1 for
some ξ . Consider the pair 〈pξ , τ̇ξ 〉. If
I pξ Fn<κ (κ,κ)

“τξ /∈ im(ρ̂ξ )”, and

I pξ Fn<κ (κ,κ)
“〈im(ρ̂ξ )∪{τ̇ξ}〉 is a κ-cofin. group”,

then proceed as follows:
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Let q ≤ pξ . Then

q Fn<κ (κ,κ)
“〈im(ρ̂ξ )∪{τ̇ξ}〉 is a cofin. group”.

The Generic Hitting implies that if G is Fn<κ (κ,κ)-generic and
q ∈G, then in V [G] for all Ω ∈ κ the set

Dτ̇ξ [G],Ω = {(s,F ) ∈Q{ξ},ρξ
: ∃α > Ω(s(α) = τξ [G](α))}

is dense. Thus for every Ω ∈ κ and every (s,F ) ∈Q{ξ},ρξ
there

are q′ ≤Fn<κ(κ,κ)
q, α > Ω and (s′,F ′)≤ (s,F ) such that

q′ Fn<κ (κ,κ)
š′(α) = τ̇ξ (α).
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Proof cnt.’d:
Therefore the set

Dq
Ω = {(s,F ) ∈Q{ξ},ρξ

: ∃α > Ω∃q′ ≤ q(q′  s(α) = τ̇ξ (α))}

is dense in Q{ξ},ρξ
. Now let G ⊆Qκ

{ξ},ρξ

be a filter meeting the
dense sets
I Ddomain

α = {(s,F ) ∈Q{ξ},ρξ
: α ∈ dom(s)},

I Drange
α = {(s,F ) ∈Q{ξ},ρξ

: α ∈ range(s)},
I Dw = {(s,F ) ∈Q{ξ},ρξ

: w ∈ F} and Dq
Ω,

where α,Ω ∈ κ, q ≤Fn<κ (κ,κ)
pξ and w ∈ Ŵ{ξ}∪ξ .
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Since these are only κ many dense sets and the forcing notion
Qκ

{ξ},ρξ

is < κ-closed such a filter G exists. Then the mapping
ρξ +1 : ξ + 1→ S(κ) where
I ρξ +1�ξ = ρξ ,
I ρξ +1(ξ ) =

⋃
{s : ∃F (s,F ) ∈G}

induces a κ-cofinitary representation extending ρξ .
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Claim
pξ Fn<κ (κ,κ)

“∀Ω ∈ κ∃α > Ω(τξ (α) = ρξ +1(ξ )(α))”.

Proof:
Suppose not. Then there are q ≤ pξ and Ω ∈ κ such that

q Fn<κ (κ,κ)
“{α : τ̇ξ (α) = ρξ +1(ξ )(α)} ⊆ Ω̌”.

Then let (s,F ) ∈G∩DΩ
q . Then there are α > Ω and

q′ ≤Fn<κ (κ,κ)
q such that q′ Fn<κ (κ,κ)

τ̇ξ (α) = s(α). It remains
to observe that ρξ +1(ξ )(α) = s(α) and so we have reached a
contradiction.
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If ξ is a limit, then define ρξ :=
⋃

η<ξ ρη and note that
ρξ : ξ → S(κ) induces a cofinitary representation.

Indeed, let w ∈ Fξ . Then there is a good word w ′ ∈ Ŵξ such
that for some u ∈Wξ we have w = u−1w ′u. However in each of
those words there are only finitely many letters involved and so
there is η < κ+ such that w ,u,w ′ are in fact elements in Wη .
Then ew ′ [ρξ ] = ew ′ [ρη ] and since by Inductive Hypothesis ρη

induces a κ-cofinitary representation we have that the set of all
fixed points of ew ′ [ρξ ] is of cardinality smaller than κ. However
|fix(ew [ρξ ])|= |fix(ew ′ [ρξ ])|, which completes our argument.
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With this the inductive construction of the sequence 〈ρξ 〉κ≤ξ<κ+

is complete. Let ρ :=
⋃

κ≤ξ<κ+ ρξ .

Claim
im(ρ̂) is a κ-mcg which is κ-Cohen indestructible.
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Proof:
Let G be Fn<κ (κ,κ)-generic filter. Suppose

V [G] � (im(ρ̂) is not a κ maximal cof. group).

Then

V [G] � ∃τ(τ /∈ im(ρ̂)∧〈im(ρ̂)∪{τ}〉 is a κ cofin. group).
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Proof cnt’d.:
Therefore there is p ∈G and a Fn<κ (κ,κ)-name for a cofinitary
permutation τ̇ such that

p Fn<κ (κ,κ)
(τ /∈ im(ρ̂)∧〈im(ρ̂)∪{τ̇}〉 is a κ-cofin. group).

There is ξ : κ ≤ ξ < κ+, successor such that 〈p,τ〉= 〈pξ ,τξ 〉.
Then by construction

p  ∀Ω∃α > Ω(ρ(ξ + 1)(α) = τ̇(α)),

which is a contradiction.
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Open questions

Theorem (V.F.)
(GCH) Let κ++ ≤ λ be regular uncountable cardinals and let
P = Fn<κ (λ ×κ,κ). Then in VP every κ-maximal cofinitary
group is either of size κ+ or of size 2κ = λ .

An isomorphism of names argument shows that in the generic
extension there are no κ-maximal cofinitary groups of size µ,
where κ+ < µ < 2κ .
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Open questions

Let C denote either of the following sets: set of all κ-maximal
cofinitary groups, the set of κ-maximal almost disjoint families,
the set of κ-almost disjoint permutations on κκ, the set on
κ-almost disjoint functions on κκ. Then:

Theorem (V.F.)
(GCH) Let κ be a regular uncountable cardinal and let C be a
closed set of cardinals such that

1. κ+ ∈ C, ∀ν ∈ C(ν ≥ κ+),
2. [κ+, |C|]⊆ C and
3. ∀ν ∈ C(cof(ν)≤ κ → ν+ ∈ C).

Then there is a generic extension in which cofinalities have not
been changed and such that C = {|G | : G ∈ C }.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

Open questions

Theorem (V.F., S.D. Friedman)
Assume GCH. Let E be an Easton index function and let
P = P(E) be the Easton product. Then in VP for every
κ ∈ dom(E) we have that a(κ) = ag(κ) < d(κ).

Can we control the spectra of κ-mad families (resp. κ-m.c.g.)
globally?
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Open questions

I The question of obtaining an optimal set of conditions on
the potential spectrum of m.c.g. and also m.a.d. families,
even on ω is still open.

In a recent paper S. Shelah and O.
Spinas that the requirements ℵ1 ∈ C and
∀λ ∈ C(cof(λ ) = ω → λ + ∈ C) in Blass’s theorem are not
necessary.

I An analogous weakening on the requirements which we
impose on the spectrum of κ-maximal cofinitary groups is
of interest.

I There are still many open questions regarding the possible
sizes of κ-mad families and κ-maximal cofinitary groups.
For example, it is not known if consistently cof(a(κ)) = κ,
neither if consistently cof(ag(κ)) = κ.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

Open questions

I The question of obtaining an optimal set of conditions on
the potential spectrum of m.c.g. and also m.a.d. families,
even on ω is still open. In a recent paper S. Shelah and O.
Spinas that the requirements ℵ1 ∈ C and
∀λ ∈ C(cof(λ ) = ω → λ + ∈ C) in Blass’s theorem are not
necessary.

I An analogous weakening on the requirements which we
impose on the spectrum of κ-maximal cofinitary groups is
of interest.

I There are still many open questions regarding the possible
sizes of κ-mad families and κ-maximal cofinitary groups.
For example, it is not known if consistently cof(a(κ)) = κ,
neither if consistently cof(ag(κ)) = κ.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

Open questions

I The question of obtaining an optimal set of conditions on
the potential spectrum of m.c.g. and also m.a.d. families,
even on ω is still open. In a recent paper S. Shelah and O.
Spinas that the requirements ℵ1 ∈ C and
∀λ ∈ C(cof(λ ) = ω → λ + ∈ C) in Blass’s theorem are not
necessary.

I An analogous weakening on the requirements which we
impose on the spectrum of κ-maximal cofinitary groups is
of interest.

I There are still many open questions regarding the possible
sizes of κ-mad families and κ-maximal cofinitary groups.
For example, it is not known if consistently cof(a(κ)) = κ,
neither if consistently cof(ag(κ)) = κ.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

Open questions

I The question of obtaining an optimal set of conditions on
the potential spectrum of m.c.g. and also m.a.d. families,
even on ω is still open. In a recent paper S. Shelah and O.
Spinas that the requirements ℵ1 ∈ C and
∀λ ∈ C(cof(λ ) = ω → λ + ∈ C) in Blass’s theorem are not
necessary.

I An analogous weakening on the requirements which we
impose on the spectrum of κ-maximal cofinitary groups is
of interest.

I There are still many open questions regarding the possible
sizes of κ-mad families and κ-maximal cofinitary groups.
For example, it is not known if consistently cof(a(κ)) = κ,
neither if consistently cof(ag(κ)) = κ.

Vera Fischer The spectrum of κ-maximal cofinitary groups



Adding κ-mcg’s generically
The spectrum of generalized cofinitary groups

Cohen indestructible mcg’s
Concluding remarks and open questions

Open questions

Thank you!
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