The spectrum of κ -maximal cofinitary groups

Vera Fischer

Technical University of Vienna

March 31th, 2015

Vera Fischer The spectrum of *k*-maximal cofinitary groups

(日)

A subset 𝔄 ⊆ [κ]^κ is said to be κ-a.d. if for all distinct a, b ∈ 𝔄 |a ∩ b| < κ.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

A subset 𝔄 ⊆ [κ]^κ is said to be κ-a.d. if for all distinct a, b ∈ 𝔄 |a∩b| < κ. A κ-a.d. family of size ≥ κ is said to be maximal if it is maximal with respect to inclusion.

< 同 > < 回 > < 回 > <

- A subset 𝔄 ⊆ [κ]^κ is said to be κ-a.d. if for all distinct a, b ∈ 𝔄 |a∩b| < κ. A κ-a.d. family of size ≥ κ is said to be maximal if it is maximal with respect to inclusion.
- We denote by $S(\kappa)$ the group of all permutations on κ .

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

- A subset 𝔄 ⊆ [κ]^κ is said to be κ-a.d. if for all distinct a, b ∈ 𝔄 |a ∩ b| < κ. A κ-a.d. family of size ≥ κ is said to be maximal if it is maximal with respect to inclusion.
- We denote by S(κ) the group of all permutations on κ. A subgroup G of S(κ) is said to be κ-cofinitary if each of its non-identity elements has less than κ-many fixed points.

<日本

- A subset 𝔄 ⊆ [κ]^κ is said to be κ-a.d. if for all distinct a, b ∈ 𝔄 |a∩b| < κ. A κ-a.d. family of size ≥ κ is said to be maximal if it is maximal with respect to inclusion.
- We denote by S(κ) the group of all permutations on κ. A subgroup G of S(κ) is said to be κ-cofinitary if each of its non-identity elements has less than κ-many fixed points. A κ-cofinitary group is said to be a κ-maximal cofinitary group (abbreviated κ-mcg), if it is maximal among the κ-cofinitary groups under inclusion.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Spectra

•
$$C_{\kappa}(\text{mad}) = \{ |\mathscr{A}| : \mathscr{A} \text{ is a } \kappa \text{-mad family} \}$$

Spectra

- $C_{\kappa}(\text{mad}) = \{ |\mathscr{A}| : \mathscr{A} \text{ is a } \kappa \text{-mad family} \}$
- $C_{\kappa}(\text{mcg}) = \{|\mathscr{G}| : \mathscr{G} \text{ is a } \kappa \text{-mcg}\}.$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

크

Spectra

• $C_{\kappa}(\text{mad}) = \{ |\mathscr{A}| : \mathscr{A} \text{ is a } \kappa \text{-mad family} \}$

•
$$C_{\kappa}(\text{mcg}) = \{|\mathscr{G}| : \mathscr{G} \text{ is a } \kappa \text{-mcg}\}.$$

Thus $\mathfrak{a}(\kappa) = \min C_{\kappa}(\operatorname{mad})$ and $\mathfrak{a}_g(\kappa) = \min C_{\kappa}(\operatorname{mcg})$.

르

The spectra of m.a.d. families and m.c.g. have been studied by various authors. For example S. Hechler showed that for every uncountable λ there is a generic extension with a mad family of size λ.

A (B) > A (B) > A (B) >

- The spectra of m.a.d. families and m.c.g. have been studied by various authors. For example S. Hechler showed that for every uncountable λ there is a generic extension with a mad family of size λ.
- A. Blass showed that if GCH holds and C is a closed set of cardinals such that ℜ₁ ∈ C, ∀v ∈ C(v ≥ ℜ₁), [ℜ₁, |C|] ⊆ C and ∀λ(λ ∈ C ∧ cof(λ) = ω → λ⁺ ∈ C), then there is a ccc generic extension in which C_ω(mad) = C.

・ 回 ト ・ ヨ ト ・ ヨ ト ・

- The spectra of m.a.d. families and m.c.g. have been studied by various authors. For example S. Hechler showed that for every uncountable λ there is a generic extension with a mad family of size λ.
- A. Blass showed that if GCH holds and C is a closed set of cardinals such that ℜ₁ ∈ C, ∀v ∈ C(v ≥ ℜ₁), [ℜ₁, |C|] ⊆ C and ∀λ(λ ∈ C ∧ cof(λ) = ω → λ⁺ ∈ C), then there is a ccc generic extension in which C_ω(mad) = C.
- ▶ Brendle, Spinas and Zhang obtained an analogous result regarding mcg's: if *C* is as above (and GCH holds), then there is a ccc generic extension in which $C_{\omega}(\text{mcg}) = C$.

・ロット (母) ・ ヨ) ・ コ)

Theorem (V.F.)

(GCH) Let κ be a regular infinite cardinal and let C be a closed set of cardinals such that

- 1. $\kappa^+ \in C$, $\forall v \in C (v \geq \kappa^+)$,
- 2. $[\kappa^+, |\mathcal{C}|] \subseteq \mathcal{C}$,
- 3. $\forall v \in C(\mathit{cof}(v) \leq \kappa \rightarrow v^+ \in C).$

Then there is a generic extension in which cofinalities have not been changed and such that $C = C_{\kappa}(mcg)$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

There are two major problems that have to be addressed, in order to obtain the above result:

• adding a κ -m.c.g. of desired cardinality,

(日)

There are two major problems that have to be addressed, in order to obtain the above result:

- adding a κ -m.c.g. of desired cardinality,
- excluding certain cardinals as possible values for κ -mcg.

(日)

A mapping ρ : B → S(κ) induces a κ-cofinitary representation of F_B if the canonical extension of ρ to a homomorphism ρ̂ : F_B → S(κ) has the property that every non-identity element of im(ρ̂) has < κ-many fixed points.</p>

A (1) A (2) A (2) A

- A mapping ρ : B → S(κ) induces a κ-cofinitary representation of F_B if the canonical extension of ρ to a homomorphism ρ̂ : F_B → S(κ) has the property that every non-identity element of im(ρ̂) has < κ-many fixed points.</p>
- Given a κ-cofinitary representation ρ with domain B and a set A s.t. A∩B = Ø, we will add generically a family of κ-permutations {g_a}_{a∈A} such that the group 𝒢(ρ, A) generated by im(ρ̂) and {g_a}_{a∈A} is κ-cofinitary.

- A mapping ρ : B → S(κ) induces a κ-cofinitary representation of F_B if the canonical extension of ρ to a homomorphism ρ̂ : F_B → S(κ) has the property that every non-identity element of im(ρ̂) has < κ-many fixed points.</p>
- Given a κ-cofinitary representation ρ with domain B and a set A s.t. A∩B = Ø, we will add generically a family of κ-permutations {g_a}_{a∈A} such that the group 𝒢(ρ, A) generated by im(ρ̂) and {g_a}_{a∈A} is κ-cofinitary.
- We will work with approximations to the new generators of size < κ, i.e. with sets s ∈ [A × κ × κ]^{<κ}. For each a ∈ A we interpret s_a = {(γ,β) : (a, γ, β)} as a partial approximation to the generator g_a.

To describe arbitrary members of 𝒢(ρ, A), we work with the set of words W_{A∪B} (referred to as good words) on the alphabet A∪B which start and end with a different letter, or a power of a single letter. Every word on A∪B is a conjugate of such a good word.

A B F A B F

- To describe arbitrary members of 𝒢(ρ, A), we work with the set of words W_{A∪B} (referred to as good words) on the alphabet A∪B which start and end with a different letter, or a power of a single letter. Every word on A∪B is a conjugate of such a good word.
- ► Every approximation *s* to the new generators gives an approximation to the permutations corresponding to arbitrary words w ∈ W_{A∪B}.

A (B) > A (B) > A (B) >

- To describe arbitrary members of 𝒢(ρ, A), we work with the set of words W_{A∪B} (referred to as good words) on the alphabet A∪B which start and end with a different letter, or a power of a single letter. Every word on A∪B is a conjugate of such a good word.
- Every approximation *s* to the new generators gives an approximation to the permutations corresponding to arbitrary words *w* ∈ *W*_{A∪B}. This approximation is denoted *e_w*[*s*, *ρ*] and is obtained by substituting every appearance of a letter *b* from *B* with *ρ*(*b*) and every appearance of a letter *a* ∈ *A* with *s_a*. We refer to *e_w*[*s*, *ρ*] as the evaluation of *w* given *s* and *ρ*.

・ロット (母) ・ ヨ) ・ コ)

Adding a κ -m.c.g. of desired cardinality

Let *A* and *B* be disjoint sets and let $\rho : B \rightarrow S(\kappa)$ be a function inducing a κ -cofinitary representation.

・ロト ・ 一日 ト ・ 日 ト

Adding a κ -m.c.g. of desired cardinality

Let *A* and *B* be disjoint sets and let $\rho : B \to S(\kappa)$ be a function inducing a κ -cofinitary representation. The forcing notion $\mathbb{Q}_{A,\rho}^{\kappa}$ consists of all pairs $(s, F) \in [A \times \kappa \times \kappa]^{<\kappa} \times [\widehat{W}_{A \cup B}]^{<\kappa}$ such that s_a is injective for every $a \in A$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Adding a κ -m.c.g. of desired cardinality

Let *A* and *B* be disjoint sets and let $\rho : B \to S(\kappa)$ be a function inducing a κ -cofinitary representation. The forcing notion $\mathbb{Q}_{A,\rho}^{\kappa}$ consists of all pairs $(s, F) \in [A \times \kappa \times \kappa]^{<\kappa} \times [\widehat{W}_{A \cup B}]^{<\kappa}$ such that s_a is injective for every $a \in A$. The extension relation states that $(s, F) \leq_{\mathbb{Q}_{A,\rho}} (t, E)$ if

▶ $s \supseteq t$, $F \supseteq E$ and

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Adding a κ -m.c.g. of desired cardinality

Let *A* and *B* be disjoint sets and let $\rho : B \to S(\kappa)$ be a function inducing a κ -cofinitary representation. The forcing notion $\mathbb{Q}_{A,\rho}^{\kappa}$ consists of all pairs $(s, F) \in [A \times \kappa \times \kappa]^{<\kappa} \times [\widehat{W}_{A \cup B}]^{<\kappa}$ such that s_a is injective for every $a \in A$. The extension relation states that $(s, F) \leq_{\mathbb{Q}_{A,\rho}} (t, E)$ if

- $s \supseteq t, F \supseteq E$ and
- for all α ∈ κ and w ∈ E, if e_w[s,ρ](α) = α then already
 e_w[t,ρ](α) is defined and e_w[t,ρ](α) = α.

In case $B = \emptyset$ then we write \mathbb{Q}_A for $\mathbb{Q}_{A,\rho}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

The above poset is clearly < κ-closed. In analogy with the Knaster property, we will say that a poset P has the κ-Knaster property, if in every collection of κ-many conditions from P there are κ many which are pairwise compatible.</p>

• The poset
$$\mathbb{Q}_{A,\rho}^{\kappa}$$
 is κ^+ -Knaster.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Some Basic Properties

- Let $(s, F) \in \mathbb{Q}_{\mathcal{A}, \rho}^{\kappa}$, $a \in \mathcal{A}$.
 - Domain Extension Let α ∈ κ\dom(s_a). Then there is an index set I = I_{a,α} such that |κ\I| < κ and for all β ∈ I (s ∪ {(a, α, β)}, F) extends (s, F).
 - 2. Range Extension Let $\beta \in \kappa \setminus \operatorname{ran}(s_a)$. Then there is an index set $J = J_{a,\beta}$ such that $|\kappa \setminus J| < \kappa$ and for all $\alpha \in J$ $(s \cup \{(a, \alpha, \beta)\}, F)$ extends (s, F).

The generic cofinitary representation

If *G* is $\mathbb{Q}_{A,\rho}^{\kappa}$ -generic, then the mapping $\rho_G : A \cup B \to S(\kappa)$, which is defined by

- $\rho_G \upharpoonright B = \rho$ and
- ► $\rho_G(a) = \bigcup \{ s_a : \exists F(s, F) \in G \}$ for every $a \in A$,

induces a κ -cofinitary representation of $A \cup B$ which extends ρ .

・ロット (母) ・ ヨ) ・ コ)

Complete Embeddings and Quotients

Let $A_0 \subseteq A$ and $A_1 = A \setminus A_0$. Then:

$$\blacktriangleright \mathbb{Q}_{A_0,\rho}^{\kappa} \lessdot \mathbb{Q}_{A,\rho}^{\kappa},$$

■ Q_{A,ρ} = Q_{A0,ρ} * Q_{A1,ρ}, where G is the canonical name for the Q_{A0,ρ}-generic filter.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Generic Hitting

Let $\rho: B \to S(\kappa)$ induce a κ -cofinitary representation and let $\sigma \in S(\kappa) \setminus \operatorname{im}(\hat{\rho})$ be such that $\langle \operatorname{im}(\hat{\rho}) \cup \{\sigma\} \rangle$ is κ -cofinitary. Let $a \notin B$. Then for every $\Omega \in \kappa$ the set of all $(s, F) \in \mathbb{Q}_{\{a\},\rho}^{\kappa}$ such that for some $\alpha > \Omega$ we have $s_a(\alpha) = \sigma(\alpha)$ is dense in $\mathbb{Q}_{\{a\},\rho}^{\kappa}$.

Generic Hitting

Let $\rho: B \to S(\kappa)$ induce a κ -cofinitary representation and let $\sigma \in S(\kappa) \setminus \operatorname{im}(\hat{\rho})$ be such that $\langle \operatorname{im}(\hat{\rho}) \cup \{\sigma\} \rangle$ is κ -cofinitary. Let $a \notin B$. Then for every $\Omega \in \kappa$ the set of all $(s, F) \in \mathbb{Q}_{\{a\},\rho}^{\kappa}$ such that for some $\alpha > \Omega$ we have $s_a(\alpha) = \sigma(\alpha)$ is dense in $\mathbb{Q}_{\{a\},\rho}^{\kappa}$.

As an immediate corollary we obtain that if G is $\mathbb{Q}_{\{a\},\rho}^{\kappa}$ -generic, then there are κ -many α such that $\rho_G(a)(\alpha) = \sigma(\alpha)$. Thus in particular, in $V^{\mathbb{Q}_{\{a\},\rho}^{\kappa}}$ the group $\langle \operatorname{im}(\hat{\rho}_G) \cup \{\sigma\} \rangle$ is not κ -cofinitary.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Maximality

If $|A| > \kappa$ then $\mathbb{Q}_{A,\rho}^{\kappa}$ adds a maximal κ -cofinitary group.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

크

Maximality

If $|A| > \kappa$ then $\mathbb{Q}_{A,o}^{\kappa}$ adds a maximal κ -cofinitary group.

Proof:

Let G be $\mathbb{Q}_{A,\rho}^{\kappa}$ -generic. Suppose that $\operatorname{im} \hat{\rho}_{G}$ is not maximal. Then there is a $\sigma \notin \operatorname{im}(\hat{\rho}_{G})$ such that $\langle \operatorname{im}(\hat{\rho}_{G}) \cup \{\sigma\} \rangle$ is cofinitary. By the κ^+ -c.c., there is $A_0 \subset A$, $|A_0| = \kappa$ such that $\sigma \in V[H]$ where $H = G \cap \mathbb{Q}_{A_0,\rho}$. Take any $a \in A \setminus A_0$. Then by the Generic Hitting Lemma in V[G] we have that $\rho_G(a)(\alpha) = \sigma(\alpha)$ for κ -many α , which is a contradiction.

<日本

Theorem (V.F.)

(GCH) Let κ be a regular infinite cardinal and let C be a closed set of cardinals such that

1.
$$\kappa^+ \in C$$
, $\forall v \in C (v \ge \kappa^+)$,

2. if
$$|C| \ge \kappa^+$$
 then $[\kappa^+, |C|] \subseteq C$,

3.
$$\forall v \in C(cof(v) \leq \kappa \rightarrow v^+ \in C).$$

Then there is a generic extension in which cofinalities have not been changed and such that $C = C_{\kappa}(mcg)$.

Proof of Lemma C

Proof:

For each $\xi \in C$, let $I_{\xi} := \{(\gamma, \xi) : \gamma < \xi\}$ and let $I = \bigcup_{\xi \in C} I_{\xi}$. Let $\mathbb{P} = \prod_{\xi \in C} \mathbb{Q}_{I_{\xi}}^{\kappa}$ with supports of size $< \kappa$.

Lemma A

 \mathbb{P} is < κ -closed and κ^+ -Knaster.

Proof of Lemma C

Proof of Lemma A:

Let $\{p_{\alpha}\}_{\alpha < \kappa^{+}}$ be given. Without loss of generality $\{\text{supt}(p_{\alpha})\}_{\alpha < \kappa^{+}}$ form a Δ -system with root R_{0} , where $|R_{0}| < \kappa$.

• For $p \in \mathbb{P}$ and $\xi \in \text{supt}(p)$ recall that $p(\xi) \in \mathbb{Q}_{l_{\mathcal{F}}}^{\kappa}$. That is

 $p(\xi) = (s^{\xi}, F^{\xi})$ where $s^{\xi} \in [I_{\xi} \times \kappa \times \kappa]^{<\kappa}$ and $F^{\xi} \in [\widehat{W}_{I_{\xi}}]^{<\kappa}$. By $oc(p(\xi))$ we denote the set of all letters of I_{ξ} which occur in (s^{ξ}, F^{ξ}) . Thus in particular $oc(p(\xi)) \in [I_{\xi}]^{<\kappa}$.

Since {Π_{ξ∈R₀} oc_A(p_α)(ξ)}_{α<κ+} are κ⁺-many sets each of size < κ, by the Δ-system lemma we can assume that they form a Δ-system with root Δ where Δ = Π_{ξ∈R₀} Δ_ξ.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Proof of Lemma C

Proof cnt.'d:

- ► For every α let $p_{\alpha}(\xi) = (s^{\alpha,\xi}, F^{\alpha,\xi})$. Then the sets $\{\prod_{\xi \in R_0} s^{\alpha,\xi} \upharpoonright \Delta_{\xi} \times \kappa \times \kappa\}_{\alpha < \kappa^+}$ must coincide on a set of size κ^+ , since $|\prod_{\xi \in R_0} (\Delta_{\xi} \times \kappa \times \kappa)| = \kappa$.
- Thus there is some t = Π_{ξ∈R0} t^ξ such that for all ξ ∈ R₀ and (wlg) all α < κ⁺ we have that s^{α,ξ} ↾Δ × κ × κ = t_ξ.
- This implies that Π_{ξ∈R₀}(s^{α,ξ} ∪ s^{β,ξ}, F^{α,ξ} ∪ F^{β,ξ}) is a common extension of p_α↾R₀ and p_β↾R₀. Thus we can find a subset if size κ⁺ of pairwise compatible conditions.

• (1) • (

Proof of Lemma C

Lemma B

In $V^{\mathbb{P}}$ there is a κ -mcg of size ξ for all $\xi \in C$.

Proof

Let $\xi_0 \in C$ and let \mathscr{G}_{ξ_0} be the mcg added by $\mathbb{Q}_{l_{\xi_0}}^{\kappa}$. We will show that \mathscr{G}_{ξ_0} remains maximal in $V^{\mathbb{P}}$. If not then there are a $p \in \mathbb{P}$ and a \mathbb{P} -name for a κ -cofinitary permutation τ such that $p \Vdash_{\mathbb{P}} \langle \text{``im}(\hat{\rho}_{\xi_0}) \cup \{\dot{\tau}\} \rangle$ is a κ -cofin. group''. Wlg τ is a nice name. Since \mathbb{P} is κ^+ -cc there are κ -many antichains $\{B_{\alpha}\}_{\alpha \in \kappa}$ each of size κ , such that $\forall b \in B_{\alpha} \exists \beta_b \in \kappa$ with $b \Vdash_{\mathbb{P}} \dot{\tau}(\alpha) = \check{\beta}_b$.

A (1) > A (2) > A (2) > A

Proof of Lemma C

Proof of Lemma B, cnt.'d:

- ► For $b \in B_{\alpha}$ let $K_{\alpha,b}$ denote the support of *b*. Then the set $C' = [(\bigcup_{\alpha \in \kappa, b \in B_{\alpha}} K_{\alpha,b}) \cup \text{supt}(p)] \setminus \{\xi_0\}$ is of size at most κ .
- Let A_{ξ0} = [U_{α∈κ,b∈Bα} oc(b(ξ0))] ∪ oc(p(ξ0)). That is A_{ξ0} is the collection of all letters from I_{ξ0} occurring in τ and p.
- Let P
 = Π_{ξ∈C'} Q^κ_ξ with supports of size < κ and Q
 <p>= Q^κ_{A_{ξ0}}.

 Then Q^κ_{A_{ξ0}} < Q^κ_{l_{ξ0}}. Also *p* is in P
 × Q
 and τ is a P
 × Q
 -name for a κ-cofinitary permutation. Furthermore

$$\rho \Vdash_{\overline{\mathbb{P}} \times \overline{\mathbb{Q}}}$$
 " $\langle \operatorname{im}(\hat{\rho}_{\xi_0}) \cup \{\dot{\tau}\} \rangle$ is a κ -cofin. group".

A (1) > A (2) > A (2) > A

Proof of Lemma C

Proof, cnt.'d:

- However

$$\begin{split} &(\bar{\mathbb{P}}\times\mathbb{Q}_{A_{\xi_{0}}}^{\kappa})*\mathbb{Q}_{l_{\xi_{0}}\setminus A_{\xi_{0}},\rho_{A_{\xi_{0}}}}^{\kappa}=\bar{\mathbb{P}}\times(\mathbb{Q}_{A_{\xi_{0}}}^{\kappa}*\mathbb{Q}_{l_{\xi_{0}}\setminus A_{\xi_{0}},\rho_{A_{\xi_{0}}}}^{\kappa})=\bar{\mathbb{P}}\times\mathbb{Q}_{l_{\xi_{0}}}^{\kappa}\\ &\text{Therefore }\rho\Vdash_{\bar{\mathbb{P}}\times\mathbb{Q}_{l_{\xi_{0}}}^{\kappa}} \quad \forall\Omega<\kappa\exists\beta>\Omega(\rho_{\xi_{0}}(a)(\beta)=\dot{\tau}(\beta))"\,.\\ &\text{Since }\mathbb{P}\times\mathbb{Q}_{l_{\xi_{0}}}^{\kappa}<\mathbb{P}, \text{ we reach a contradiction.} \end{split}$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Proof of Lemma C

Lemma C

In $V^{\mathbb{P}}$ for every $\lambda \notin C$ there are no κ -maximal cofinitary groups of size λ .

The proof follows very closely to Blass's proof regarding the spectrum of maximal almost disjoint families on ω and relies on homogeneity properties shared by the two constructions.

(日本) (日本) (日本)

Proof of Lemma C:

We will show that for every $\lambda \notin C$, λ is not $OD({}^{\kappa}\kappa)$ definable. That is we will show that in V[G] if $\langle X_{\alpha} \rangle_{\alpha \in \lambda}$ is a sequence of $OD({}^{\kappa}\kappa)$ definable sets which covers ${}^{\kappa}\kappa$, then there is a proper subsequence which also covers ${}^{\kappa}\kappa$. Fix such a sequence and for each α an ordinal Θ_{α} and a function $u_{\alpha} \in {}^{\kappa}\kappa$ such that in V[G], X_{α} is the Θ_{α} -th set definable from u_{α} .

Let μ be the largest element of *C* below λ . Then $cof(\mu) \ge \kappa^+$. By *GCH* (in *V*) we have $\mu^{\kappa} = \mu$. Recursively we will define a sequence $\langle M_{\gamma} \rangle_{\gamma \in \kappa^+}$, where $|M_{\gamma}| \le \mu$ for all γ , such that the X_{α} 's with indexes in $\bigcup M_{\gamma}$ cover ${}^{\kappa}\kappa$. Let $M_0 := \emptyset$ and for γ limit, let $M_{\gamma} := \bigcup_{\delta < \gamma} M_{\delta}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

For each $\alpha \in \lambda$ choose $J_{\alpha} \subseteq I = \bigcup_{\xi \in C} I_{\xi}$ of size κ such that for every p which is involved either in \dot{u}_{α} or in $\dot{\Theta}_{\alpha}$ and each ξ in the support of p we have that $oc(p(\xi)) \subseteq J_{\alpha}$. Let S be the union of $\{I_{\gamma} : \gamma \in \mu \cap C\}$ and $\{J_{\alpha} : \alpha \in \lambda\}$. Then $|S| = \lambda$.

K-support

Let $K \subseteq S$ be of size μ such that $\bigcup_{\gamma \in \mu \cap C} I_{\gamma} \subseteq K$. A subset *J* of *I* such that $|J| = \kappa$ is called a *K*-support for the name \dot{x} of a function in $\kappa \kappa$ if

- For every *p* involved in *x* and every ξ in the support of *p* we have that oc(*p*(ξ)) ⊆ *J* and
- if $J \cap I_{\gamma} \setminus K \neq \emptyset$ then $|J \cap I_{\gamma} \setminus K| = \kappa$.

Proof of Lemma C

Since every $\gamma \in C \setminus (\mu \cup \{\mu\})$, $\gamma > \lambda$, we have $|I_{\gamma} \setminus S| = |I_{\gamma} \setminus K| = \gamma$. Thus whenever we are given a *K* as above and a name for a function in ${}^{\kappa}\kappa$, we can assume that it has a *K*-support.

Proof of Lemma C

Let \mathscr{G} be the group of those permutations of *I* that map each I_{γ} into itself and that fixes all members of *K*. Then \mathscr{G} acts as a group of automorphisms on the notion of forcing \mathbb{P} by sending each *p* to a condition g(p) naturally defined from *g* and *p*.

A B F A B F

Let \mathscr{G} be the group of those permutations of *I* that map each I_{γ} into itself and that fixes all members of *K*. Then \mathscr{G} acts as a group of automorphisms on the notion of forcing \mathbb{P} by sending each *p* to a condition g(p) naturally defined from *g* and *p*.

More precisely: let $p \in \mathbb{P}$, $\xi \in \operatorname{supt}(p)$ and $p(\xi) = (s^{\xi}, F^{\xi})$ where $s^{\xi} \in [I_{\xi} \times \kappa \times \kappa]^{<\kappa}$, $F^{\xi} \in [W_{I_{\xi}}]^{<\kappa}$. Then let $\operatorname{supt}(g(p)) := \operatorname{supt}(p)$. For $\xi \in \operatorname{supt}(p)$, let $g(p(\xi)) := (g(s^{\xi}), g(F^{\xi}))$ where $\operatorname{oc}(g(s^{\xi})) = g(\operatorname{oc}(s^{\xi}))$ and for every $(\alpha, \xi) \in \operatorname{oc}(g(s^{\xi})) = g(\operatorname{oc}(s^{\xi}))$ if $(\alpha_{0}, \xi) \mapsto (\alpha, \xi)$ then $[g(s^{\xi})]_{(\alpha,\xi]} := s^{\xi}_{(\alpha_{0},\xi)}$. Furthermore for a word $w \in F^{\xi}$ define g(w) to be the word obtained by substituting every appearance of a letter $a = (\alpha, \xi)$ in w with $g(\alpha, \xi)$. Then let $g(F^{\xi})$ be the set of all g(w) for $w \in F^{\xi}$.

Let \mathscr{G} be the group of those permutations of *I* that map each I_{γ} into itself and that fixes all members of *K*. Then \mathscr{G} acts as a group of automorphisms on the notion of forcing \mathbb{P} by sending each *p* to a condition g(p) naturally defined from *g* and *p*.

- Note that each such automorphism g preserves not only maximal antichains, but also the forcing relation. In particular, if J is a support of a name x, then g(J) is a support of the name g(x). If in addition g fixes all members of J, then it also fixes the name x.
- ► If *J* is a support then its \mathscr{G} -orbit is determined by $J \cap K$ and $\overline{J} = \{\gamma \in C : J \cap I_{\gamma} K \neq \emptyset\}$. That is, if *J'* is another support with $J' \cap K = J \cap K$ and $\overline{J'} = \overline{J}$, then there is $g \in \mathscr{G}$ with g(J) = J'.

This implies that there are only $\boldsymbol{\mu}$ many orbits of supports. Indeed:

- Since J∩K is of size ≤ κ and |K| = μ = μ^κ, there are only μ possibilities for J∩K.
- ▶ If $[\kappa^+, |C|] \neq \emptyset$, then $[\kappa^+, |C|] \subseteq C$. Thus in this case $|C| \le \mu$.
- ▶ If $[\kappa^+, |C|] = \emptyset$, i.e. $|C| \le \kappa$, then since $\mu \ge \kappa^+$ we have again $|C| \le \mu$. Thus there are no more than $\mu^{\kappa} = \mu$ many possibilities for $\overline{J} \in [C]^{\le \kappa}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For each \mathscr{G} -orbit of supports, fix a member J such that $J \cap S = J \cap K$. Such orbits are referred to as standard supports. For each fixed support J there are only $\kappa^{\kappa} = \kappa^+$ (by GCH in V) many names. Since $\mu \ge \kappa^+$, there are only μ -many names that have standard supports.

For each name \dot{x} with a standard support, fix a set $A = A(\dot{x}) \in [\lambda]^{\leq \kappa} \cap V$ such that \mathbb{P} forces " $(\exists \alpha \in \check{A})\dot{x} \in \dot{X}_{\alpha}$ ". Let $B = \bigcup \{A(\dot{x}) : \dot{x} \text{ has a standard support} \}$. Then $|B| \leq \mu$.

・ロット (母) ・ ヨ) ・ ・ ヨ)

We will proceed with the successor step in the inductive definition of $\langle M_{\sigma} \rangle_{\sigma < \kappa^+}$. Let

$$\mathcal{K}_{\sigma} = igcup_{lpha \in \mathcal{M}_{\sigma}} J_{lpha} \cup igcup_{\gamma \leq \mu \cap \mathcal{C}} I_{\gamma}.$$

Then $|K_{\sigma}| = \mu$. Let $M_{\sigma+1}$ be obtained from K_{σ} in the same way that *B* was obtained from *K* above. Then $|M_{\sigma+1}| \le \mu$. Define $M = \bigcup_{\sigma \in \kappa^+} M_{\sigma}$ and $K = \bigcup_{\sigma \in \kappa^+} K_{\sigma}$.

Let \dot{x} be a \mathbb{P} -name for a function in $\kappa \kappa$. We will show that \mathbb{P} forces that " $(\exists \alpha \in M)\dot{x} \in \dot{X}_{\alpha}$ ".

A D > A B > A B > A B >

Let $J \subset I$ of size κ such that for every p involved in \dot{x} and every ξ in the support of p we have $oc(p(\xi)) \subseteq J$. Fix $\sigma < \kappa^+$ such that $J \cap K \subseteq K_{\sigma}$. For each $\gamma \in C$ such that $J \cap I_{\gamma} - K_{\sigma} \neq \emptyset$, we have that $\gamma > \lambda(>\mu)$. Then $|I_{\gamma} - K| = \lambda$. Thus enlarging J is necessary we can assume that it is a K_{σ} -support and $J \cap K \subseteq K_{\sigma}$.

Consider the group of all permutations of *I* which fix K_{σ} and map each I_{γ} to itself. There is $g \in \mathscr{G}$ such that g(J) is a K_{σ} -standard support. Then neither *J* nor g(J) meets $K_{\sigma+1} - K_{\sigma}$ and so there is a permutation *h* which agrees with *g* on *J* and with the identity map on $K_{\sigma+1} - K_{\sigma}$. In particular h(J) = g(J) is standard and *h* leaves $K_{\sigma+1}$ pointwise fixed.

• 3 > 1

Proof of Lemma C

Since $h(\dot{x})$ has standard support h(J), it is one of the μ names for which we chose a set $A = A(h(\dot{x}))$ to include in $M_{\sigma+1}$. Thus

$$\Vdash_{\mathbb{P}} ``(\exists \alpha \in \check{A})h(\dot{x}) \in \dot{X}_{\alpha}",$$

which implies that

 $\Vdash_{\mathbb{P}}$ " $\exists \alpha \in \check{A}[h(\dot{x}) \text{ is in the } \dot{\Theta}_{\alpha} \text{th set ordinal-definable from } \dot{u}_{\alpha}]$ ".

However $A \subseteq M_{\sigma+1}$ and $\forall \alpha \in A(J_{\alpha} \subseteq K_{\sigma+1})$. Thus *h* fixes J_{α} pointwise, and so *h* fixes $\dot{\Theta}_{\alpha}$ and \dot{u}_{α} . Therefore

 $\Vdash_{\mathbb{P}}$ " $\exists \alpha \in \check{A}[h(\dot{x}) \text{ is in the } h(\dot{\Theta}_{\alpha}) \text{ th set ordinal-definable from } h(\dot{u}_{\alpha})]$ ".

< 日 > < 回 > < 回 > < 回 > < 回 > <

Proof of Lemma C

Now since h preserves the forcing relation, we have

 $\Vdash_{\mathbb{P}}$ " $\exists \alpha \in \check{A}[\dot{x} \text{ is in the } \dot{\Theta}_{\alpha} \text{th set ordinal-definable from } \dot{u}_{\alpha}]$ ".

Now since $M_{\sigma+1} \subseteq M$ we obtain that

$$\Vdash_{\mathbb{P}} ``\exists \alpha \in \check{M}(\dot{x} \in \dot{X}_{\alpha})",$$

which completes the proof that λ is not $OD(\kappa \kappa)$ -definable.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Following standard notation, $Fn_{<\kappa}(\kappa,\kappa)$ denotes the κ -Cohen poset, e.g. the poset of all partial functions from κ to κ of cardinality $< \kappa$ with extension relation superset.

Theorem (V.F.)

(GCH) There is a κ -Cohen indestructible κ -maximal cofinitary group.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Proof:

Let $\{\langle p_{\xi}, \dot{\tau}_{\xi} \rangle : \kappa \leq \xi < \kappa^{+}, \xi \in \text{Succ}(\kappa^{+})\}$ enumerate all pairs $\langle p, \tau \rangle$ where $p \in \text{Fn}_{<\kappa}(\kappa, \kappa)$ and τ is a name for a κ -cofinitary permutation. Recursively we will construct a family $\{p_{\xi}\}_{\kappa \leq \xi < \kappa^{+}}$ of κ -cofinitary representations such that

1. for all
$$\xi$$
, ho_{ξ} : $\xi
ightarrow S(\kappa)$,

2. for all
$$\eta < \xi \
ho_\eta =
ho_\xi {\restriction} \eta$$
 , and

3. $\bigcup_{\kappa \leq \xi < \kappa^+} \rho_{\xi} : \kappa^+ \to S(\kappa)$ induces a cofinitary representation $\hat{\rho}$ such that im $(\hat{\rho})$ is a κ -maximal cofinitary group, which is $\operatorname{Fn}_{<\kappa}(\kappa,\kappa)$ -indestructible.

・ロット (母) ・ ヨ) ・ コ)

Proof cnt.'d:

Let ρ_{κ} be a cofinitary representation of κ given by $\mathbb{Q}_{\kappa}^{\kappa}$. Suppose for all $\xi : \kappa \leq \xi < \eta$, ρ_{ξ} has been defined and $\eta = \xi + 1$ for some ξ . Consider the pair $\langle \rho_{\xi}, \dot{\tau}_{\xi} \rangle$. If

•
$$p_{\xi} \Vdash_{\mathsf{Fn}_{<\kappa}(\kappa,\kappa)}$$
 " $\tau_{\xi} \notin \mathsf{im}(\hat{\rho}_{\xi})$ ", and

 $\blacktriangleright p_{\xi} \Vdash_{\mathsf{Fn}_{<\kappa}(\kappa,\kappa)} ``(\mathsf{im}(\hat{\rho}_{\xi}) \cup \{\dot{\tau}_{\xi}\}) \text{ is a } \kappa\text{-cofin. group}",$

then proceed as follows:

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Let $q \leq p_{\xi}$. Then

 $q \Vdash_{\mathsf{Fn}_{<\kappa}(\kappa,\kappa)}$ " $\langle \mathsf{im}(\hat{\rho}_{\xi}) \cup \{\dot{\tau}_{\xi}\} \rangle$ is a cofin. group".

The Generic Hitting implies that if *G* is $Fn_{<\kappa}(\kappa, \kappa)$ -generic and $q \in G$, then in V[G] for all $\Omega \in \kappa$ the set

$$\mathcal{D}_{\dot{\tau}_{\xi}[G],\Omega} = \{(\boldsymbol{s}, \boldsymbol{F}) \in \mathbb{Q}_{\{\xi\},\rho_{\xi}} : \exists \alpha > \Omega(\boldsymbol{s}(\alpha) = \tau_{\xi}[G](\alpha))\}$$

is dense. Thus for every $\Omega \in \kappa$ and every $(s, F) \in \mathbb{Q}_{\{\xi\}, \rho_{\xi}}$ there are $q' \leq_{\operatorname{\mathsf{Fn}} < \kappa(\kappa,\kappa)} q$, $\alpha > \Omega$ and $(s', F') \leq (s, F)$ such that

$$q' \Vdash_{\mathsf{Fn}_{<\kappa}(\kappa,\kappa)} \check{s}'(\alpha) = \dot{\tau}_{\xi}(\alpha).$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Proof cnt.'d: Therefore the set

$$\mathcal{D}^q_\Omega = \{(\pmb{s}, \mathcal{F}) \in \mathbb{Q}_{\{\xi\},
ho_\xi} : \exists lpha > \Omega \exists \pmb{q}' \leq \pmb{q}(\pmb{q}' \Vdash \pmb{s}(lpha) = \dot{ au}_\xi(lpha))\}$$

is dense in $\mathbb{Q}_{\{\xi\},\rho_{\xi}}$. Now let $G \subseteq \mathbb{Q}_{\{\xi\},\rho_{\xi}}^{\kappa}$ be a filter meeting the dense sets

•
$$D^{\text{domain}}_{\alpha} = \{(s, F) \in \mathbb{Q}_{\{\xi\}, \rho_{\xi}} : \alpha \in \text{dom}(s)\},\$$

$$D_{\alpha}^{\operatorname{range}} = \{ (s, F) \in \mathbb{Q}_{\{\xi\}, \rho_{\xi}} : \alpha \in \operatorname{range}(s) \},$$

$$\blacktriangleright D_w = \{(s, F) \in \mathbb{Q}_{\{\xi\}, \rho_{\xi}} : w \in F\} \text{ and } D_{\Omega}^q,$$

where $\alpha, \Omega \in \kappa, q \leq_{\mathsf{Fn}_{<\kappa}(\kappa,\kappa)} p_{\xi}$ and $w \in \widehat{W}_{\xi \in J \cup \xi}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Since these are only κ many dense sets and the forcing notion $\mathbb{Q}_{\{\xi\},\rho_{\xi}}^{\kappa}$ is $< \kappa$ -closed such a filter *G* exists. Then the mapping $\rho_{\xi+1}: \xi+1 \rightarrow S(\kappa)$ where

$$\blacktriangleright \rho_{\xi+1} \restriction \xi = \rho_{\xi},$$

►
$$\rho_{\xi+1}(\xi) = \bigcup \{s : \exists F(s,F) \in G\}$$

induces a κ -cofinitary representation extending ρ_{ξ} .

Claim

$$onumber
ho_{\xi} \Vdash_{\mathsf{Fn}_{<\kappa}(\kappa,\kappa)} `` orall \Omega \in \kappa \exists lpha > \Omega(au_{\xi}(lpha) =
ho_{\xi+1}(\xi)(lpha))".$$

Proof:

Suppose not. Then there are $q \leq p_{\xi}$ and $\Omega \in \kappa$ such that

$$q \Vdash_{\mathsf{Fn}_{<\kappa}(\kappa,\kappa)} ``\{\alpha : \dot{\tau}_{\xi}(\alpha) = \rho_{\xi+1}(\xi)(\alpha)\} \subseteq \check{\Omega}''.$$

Then let $(s, F) \in G \cap D_q^{\Omega}$. Then there are $\alpha > \Omega$ and $q' \leq_{\operatorname{Fn}_{<\kappa}(\kappa,\kappa)} q$ such that $q' \Vdash_{\operatorname{Fn}_{<\kappa}(\kappa,\kappa)} \dot{\tau}_{\xi}(\alpha) = s(\alpha)$. It remains to observe that $\rho_{\xi+1}(\xi)(\alpha) = s(\alpha)$ and so we have reached a contradiction.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

If ξ is a limit, then define $\rho_{\xi} := \bigcup_{\eta < \xi} \rho_{\eta}$ and note that $\rho_{\xi} : \xi \to S(\kappa)$ induces a cofinitary representation.

Indeed, let $w \in \mathbb{F}_{\xi}$. Then there is a good word $w' \in \widehat{W}_{\xi}$ such that for some $u \in W_{\xi}$ we have $w = u^{-1}w'u$. However in each of those words there are only finitely many letters involved and so there is $\eta < \kappa^+$ such that w, u, w' are in fact elements in W_{η} . Then $e_{w'}[\rho_{\xi}] = e_{w'}[\rho_{\eta}]$ and since by Inductive Hypothesis ρ_{η} induces a κ -cofinitary representation we have that the set of all fixed points of $e_{w'}[\rho_{\xi}]$ is of cardinality smaller than κ . However $|\text{fix}(e_w[\rho_{\xi}])| = |\text{fix}(e_{w'}[\rho_{\xi}])|$, which completes our argument.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

With this the inductive construction of the sequence $\langle \rho_{\xi} \rangle_{\kappa \leq \xi < \kappa^+}$ is complete. Let $\rho := \bigcup_{\kappa \leq \xi < \kappa^+} \rho_{\xi}$.

Claim

 $im(\hat{\rho})$ is a κ -mcg which is κ -Cohen indestructible.

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Proof: Let *G* be $Fn_{<\kappa}(\kappa, \kappa)$ -generic filter. Suppose $V[G] \vDash (im(\hat{\rho}) \text{ is not a } \kappa \text{ maximal cof. group}).$

Then

 $V[G] \vDash \exists \tau (\tau \notin \operatorname{im}(\hat{\rho}) \land \langle \operatorname{im}(\hat{\rho}) \cup \{\tau\} \rangle \text{ is a } \kappa \operatorname{cofin. group}).$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Proof cnt'd.:

Therefore there is $p \in G$ and a $Fn_{<\kappa}(\kappa, \kappa)$ -name for a cofinitary permutation $\dot{\tau}$ such that

$$p \Vdash_{\mathsf{Fn}_{<\kappa}(\kappa,\kappa)} (\tau \notin \mathsf{im}(\hat{
ho}) \land \langle \mathsf{im}(\hat{
ho}) \cup \{\dot{\tau}\} \rangle \text{ is a } \kappa\text{-cofin. group}).$$

There is $\xi : \kappa \leq \xi < \kappa^+$, successor such that $\langle p, \tau \rangle = \langle p_{\xi}, \tau_{\xi} \rangle$. Then by construction

$$p \Vdash \forall \Omega \exists \alpha > \Omega(\rho(\xi + 1)(\alpha) = \dot{\tau}(\alpha)),$$

which is a contradiction.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Open questions

Theorem (V.F.)

(GCH) Let $\kappa^{++} \leq \lambda$ be regular uncountable cardinals and let $\mathbb{P} = Fn_{<\kappa}(\lambda \times \kappa, \kappa)$. Then in $V^{\mathbb{P}}$ every κ -maximal cofinitary group is either of size κ^+ or of size $2^{\kappa} = \lambda$.

An isomorphism of names argument shows that in the generic extension there are no κ -maximal cofinitary groups of size μ , where $\kappa^+ < \mu < 2^{\kappa}$.

・ロット (母) ・ ヨ) ・ コ)

Let \mathscr{C} denote either of the following sets: set of all κ -maximal cofinitary groups, the set of κ -maximal almost disjoint families, the set of κ -almost disjoint permutations on κ , the set on κ -almost disjoint functions on κ . Then:

Theorem (V.F.)

(GCH) Let κ be a regular uncountable cardinal and let C be a closed set of cardinals such that

- 1. $\kappa^+ \in C$, $\forall v \in C (v \geq \kappa^+)$,
- 2. $[\kappa^+, |\mathcal{C}|] \subseteq \mathcal{C}$ and
- 3. $\forall v \in C(\mathit{cof}(v) \leq \kappa \rightarrow v^+ \in C).$

Then there is a generic extension in which cofinalities have not been changed and such that $C = \{|\mathcal{G}| : \mathcal{G} \in \mathcal{C}\}.$

・ロト ・ 一日 ト ・ 日 ト

Open questions

Theorem (V.F., S.D. Friedman)

Assume GCH. Let *E* be an Easton index function and let $\mathbb{P} = \mathbb{P}(E)$ be the Easton product. Then in $V^{\mathbb{P}}$ for every $\kappa \in \text{dom}(E)$ we have that $\mathfrak{a}(\kappa) = \mathfrak{a}_g(\kappa) < \mathfrak{d}(\kappa)$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Open questions

Theorem (V.F., S.D. Friedman)

Assume GCH. Let *E* be an Easton index function and let $\mathbb{P} = \mathbb{P}(E)$ be the Easton product. Then in $V^{\mathbb{P}}$ for every $\kappa \in \text{dom}(E)$ we have that $\mathfrak{a}(\kappa) = \mathfrak{a}_g(\kappa) < \mathfrak{d}(\kappa)$.

Can we control the spectra of κ -mad families (resp. κ -m.c.g.) globally?

・ロット (母) ・ ヨ) ・ コ)

Open questions

The question of obtaining an optimal set of conditions on the potential spectrum of m.c.g. and also m.a.d. families, even on ω is still open.

(日)

Open questions

The question of obtaining an optimal set of conditions on the potential spectrum of m.c.g. and also m.a.d. families, even on ω is still open. In a recent paper S. Shelah and O. Spinas that the requirements ℵ₁ ∈ C and ∀λ ∈ C(cof(λ) = ω → λ⁺ ∈ C) in Blass's theorem are not

necessary.

- The question of obtaining an optimal set of conditions on the potential spectrum of m.c.g. and also m.a.d. families, even on ω is still open. In a recent paper S. Shelah and O. Spinas that the requirements ℵ₁ ∈ C and ∀λ ∈ C(cof(λ) = ω → λ⁺ ∈ C) in Blass's theorem are not necessary.
- An analogous weakening on the requirements which we impose on the spectrum of κ-maximal cofinitary groups is of interest.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- The question of obtaining an optimal set of conditions on the potential spectrum of m.c.g. and also m.a.d. families, even on ω is still open. In a recent paper S. Shelah and O. Spinas that the requirements 𝔅₁ ∈ C and ∀λ ∈ C(cof(λ) = ω → λ⁺ ∈ C) in Blass's theorem are not necessary.
- An analogous weakening on the requirements which we impose on the spectrum of κ-maximal cofinitary groups is of interest.
- There are still many open questions regarding the possible sizes of κ-mad families and κ-maximal cofinitary groups. For example, it is not known if consistently cof(a(κ)) = κ, neither if consistently cof(a_g(κ)) = κ.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト
Adding κ-mcg's generically The spectrum of generalized cofinitary groups Cohen indestructible mcg's Concluding remarks and open questions

Open questions

Thank you!

Vera Fischer The spectrum of *k*-maximal cofinitary groups

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

∃ 990