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Kurt Gödel Research Center for Mathematical Logic

University of Vienna

wei.li@univie.ac.at

27 April, 2015



Overview

1 Fragments of KP

2 Work without Foundation

3 Foundation Strength

4 Metamathematics of α-Recursion Theory

5 Questions



Fragments of KP

• Main Question: How much foundation is needed to prove

various theorems of recursion theory in set theoretic models?

• Language: L(∈).

• Fragments of KP: subtheories of KP including KP−.

• KP−: the theory obtained from the usual Kripke–Platek set

theory KP by taking away the foundation scheme.



Recall: Axioms of KP

(i) Extensionality: ∀x , y [∀z(z ∈ x ↔ z ∈ y)→ x = y ].

(ii) Foundation: If y is not a free variable in φ(x), then

[∃xφ(x)→ ∃x(φ(x) ∧ ∀y ∈ x¬φ(y))].

(iii) Pairing: ∀x , y∃z(x ∈ z ∧ y ∈ z).

(iv) Union: ∀x∃y∀z ∈ x∀u ∈ z(u ∈ y).

(v) Σ0-Separation: ∀x∃y∀z(z ∈ y ↔ (z ∈ x ∧ φ(z))) for each

Σ0 formula φ.

(vi) Σ0-Collection:

∀x [(∀y ∈ x∃zφ(y , z))→ ∃u∀y ∈ x∃z ∈ uφ(y , z)] for each Σ0

formula φ.

Here, Σ0 formulas have only bounded quantifiers.



Γ-Foundation: Foundation restricted to formulas in Γ.



Compare this with weak system of

arithmetic

Fragments of KP Fragments of PA

Language L(∈) L(0, 1,+, ·)

Main Question Foundation Induction

Base Theory KP− PA−: PA without Induction



First Questions

• What can be done without Foundation?

• Is the consideration of Fragments of KP meaningful?



What can be done without Foundation?

Proposition

KP− proves the following:

(1) Strong Pairing: ∀x , y∃z (z = {x , y}).

(2) Strong Union: ∀x∃y (y =
⋃
x).

(3) ∆1-Separation and Σ1-Collection.

(4) Strong Σ1-Collection: Suppose f is a Σ1 function. If dom(f )

is a set, then ran(f ) and graph(f ) are sets.

(5) Ordered Pair: ∀x , y∃z (z = (x , y)).

(6) Cartesian Product: ∀x , y∃z (z = x × y).



Ordinals

Proposition (KP− + Σ0-Foundation)

(1) 0 = ∅ is an ordinal.

(2) If α is an ordinal, then β ∈ α is an ordinal and

α + 1 = α ∪ {α} is an ordinal.

(3) < is a linear order on the ordinals.

(4) For every ordinal α, α = {β : β < α}.

(5) If C is a nonempty set of ordinals, then
⋂
C and

⋃
C are

ordinals,
⋂
C = inf C = µα(α ∈ C ) and⋃

C = supC = µα(∀β ∈ C (β ≤ α)).



Transfinite Induction

Theorem (Transfinite Induction along the ordinals)

Suppose M |= Π1-Foundation and I : M → M is a Σ1 partial

function. Then the partial function f : OrdM → M, δ 7→ I (f � δ) is

well defined and Σ1.

Theorem (Transfinite ∈-induction)

Let M |= KP− + Π1-Foundation, and I : M → M that is

Σ1-definable. Then there exists a Σ1-definable f : M → M

satisfying f (x) = I (f � x) for every x ∈ M.



the Schröder–Bernstein Theorem

Theorem (KP− + Π1-Foundation)

Let A,B be sets. If there are injections A→ B and B → A, then

there is a bijection A→ B.



LM

Let M |= KP− + Π1-Foundation.

By a transfinite induction, we may define LM along OrdM :

LM0 = ∅,

LMα+1 = LMα ∪DefM(LMα ),

LMλ =
⋃
α<λL

M
α where λ is limit.

Here, DefM(x) denotes the collection of all definable subsets of x

in the sense of M. Let LM =
⋃
α∈OrdML

M
α .



Is the consideration of Fragments of KP

meaningful?

Σ1-Foundation Σ2-Foundation . . . . . .

∆1-Foundation ∆2-Foundation ∆3-Foundation . . .

Π1-Foundation Π2-Foundation . . . . . .



Lemma (Ramón Pino [1])

Let n ∈ N. Then

KP− + Infinity + Σn+1-Collection + Πn+1-Foundation + V = L

proves the following statement.

For every δ ∈ Ord, there exists a sequence (αi )i≤δ in

which α0 = 0 and αi+1 = min{α > αi : Lα �n L} for

each i < δ.



Theorem (Ressayre [1])

KP−+ Infinity + Σn+1-Collection + Σn+1-Foundation(+V = L) 0

Πn+1-Foundation for all n ∈ N.



Sketch of the Proof (Essentially Ressayre)

• Start with a countable

M |= KP− + Infinity + Σn+1-Collection + Πn+1-

Foundation +V = L in which ωM = ω but OrdM is not

well-ordered.

• Take a nonstandard δ ∈ OrdM . Let (αi )i≤δ+δ be a sequence

of ordinals given by Lemma.



• As δ is nonstandard, there are continuum-many initial

segments of OrdM between δ and δ + δ.

• So there must be one that is not definable in M.

• Take any initial segment I ⊆ OrdM with this property.

• K =
⋃

i∈I LM
αi

is the model we want.



Claim

1 K �n M.

2 K |= Σn+1-Collection.

3 K |= Σn+1-Foundation.

4 K 6|= Πn+1-Foundation.



Theorem

KP− + Σn+1-Collection + Πn+1-Foundation + V = L `

Σn+1-Foundation for all n ∈ N.

Question

Does KP−, Σn+1-Collection, plus Πn+1-Foundation (without

V = L) prove Σn+1-Foundation?

Question

Is Σn+1-Foundation stronger than Πn-Foundation?



α-RecursionFragments of KP

Fragments of PA α-RecursionFragments of KP

Language L(0, 1,+, ·) L(∈)

Axioms P−, IΣn, etc KPKP−, Πn-Foundation, etc

Nonstandard models of Lα, where

Models arithmetic with α isnonstandard

restricted induction Σ1 admissible

Difficulty lack of induction lack of collection and foundation



Definition

Level 1-KPL denotes KP− + Π1-Foundation + V = L.

Notice Level 1-KPL ` Σ1-Foundation.

Lemma

Suppose M |= KP− + Π1-Foundation + V = L. Then there exists

a ∆1 bijection M → OrdM that preserves the relation ∈.



the Friedberg–Muchnik Theorem

• Now we will show the Friedberg–Muchnik Theorem in Level

1-KPL.

• M is a model of Level 1-KPL.

• The Sack–Simpson construction [2] in α-recursion theory uses

the Σ2-cofinality (of the ordinals), i.e., the least ordinal that

can be mapped to a cofinal set of ordinals by a Σ2 function.

• The existence of Σ2 cofinality apparently needs much more

foundation than Level 1-KPL can afford.



Σ1 Projectum

Lemma (Level 1-KPL)

If there is a Σ1 injection from the universe into an ordinal, then

there is the least such an ordinal (Σ1 Projectum).

Proof.

Suppose α ∈ M is an ordinal such that there is a Σ1 injection from

the universe into α. We claim |α| = σ1p. Clearly, there is a Σ1

injection from the universe into |α|. Conversely, if we have a Σ1

injection p from M into β ≤ |α|, then p � |α| is in the model and is

an injection into β. As |α| is a cardinal in M, β = α.



Bounding Injury within Σ1 Projectum

Lemma

Σ1 Projectum is a cardinal and also the largest one.

Lemma (Sacks and Simpson)

Suppose α < δ and δ is a regular cardinal in M. If {Xi : i < α} is

a uniform r.e. sequence in the model sets of ordinals with

cardinality less than δ. Then
⋃
{Xi : i < α} is in the model and of

cardinality less than δ.



Similar for the case that cofinally many cardinals exist in the model.



Largest Cardinal ℵ not Σ1 Projectum

Definition

Suppose δ is an ordinal. We say δ is (Σ1) stable if Lδ is a Σ1

elementary substructure of the whole model.

Lemma (Level 1-KPL)

For every γ such that ωM ≤ γ, there is a stable ordinal δ ≥ γ with

the same cardinality as γ.



Shore’s Splitting Theorem

• Aim: Split a nonrecursive set into two incomparable

nonrecursive sets.

• For a single requirement, we apply the classical method of

preserving computation.

• To settle all requirements, we adopt the blocking method as

in α-recursion theory.

• The problem is that, within Level 1-KPL, we may not have

the Σ2 cofinality of the OrdM .

• Thus, here we use a modified version that came from

arithmetic [3]. It is a modified version of that in α-recursion

theory.

• A block is determined by its previous actions: we only stop

enlarging a block when the actions of all its previous blocks

terminate.



Lemma

For any nondecreasing recursive sequence {ξs}s , either it is cofinal

in OrdM (we denote this by lims ξs =∞) or there is a stage s such

that for all t > s, ξt = ξs .



Questions not answered so far

1 Is there a model of Level 1-KPL without Σn

projectum/cofinality for some n ≥ 2?

2 Does Level 1-KPL imply the density theorem of r.e. degrees?

3 Does Level 1-KPL + ¬Π2-Foundation consistent with the

existence of a minimal pair?
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Thank you!
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