Fragments of Kripke-Platek set theory and the

metamathematics of $\alpha\text{-recursion}$ theory

Wei Li

Joint with Sy Friedman and Tin Lok Wong

Kurt Gödel Research Center for Mathematical Logic

University of Vienna

wei.li@univie.ac.at

27 April, 2015

Overview

- 1 Fragments of KP
- 2 Work without Foundation
- 3 Foundation Strength
- 4 Metamathematics of α -Recursion Theory
- 5 Questions

Fragments of KP

- Main Question: How much foundation is needed to prove various theorems of recursion theory in set theoretic models?
- Language: $\mathcal{L}(\in)$.
- Fragments of KP: subtheories of KP including KP^- .
- KP⁻: the theory obtained from the usual Kripke-Platek set theory KP by taking away the foundation scheme.

Recall: Axioms of KP

- (i) Extensionality: $\forall x, y [\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y].$
- (ii) Foundation: If y is not a free variable in $\phi(x)$, then $[\exists x \phi(x) \rightarrow \exists x(\phi(x) \land \forall y \in x \neg \phi(y))].$
- (iii) Pairing: $\forall x, y \exists z (x \in z \land y \in z)$.
- (iv) Union: $\forall x \exists y \forall z \in x \forall u \in z(u \in y)$.
- (v) Σ_0 -Separation: $\forall x \exists y \forall z (z \in y \leftrightarrow (z \in x \land \phi(z)))$ for each Σ_0 formula ϕ .
- (vi) Σ_0 -Collection:

 $\forall x [(\forall y \in x \exists z \phi(y, z)) \rightarrow \exists u \forall y \in x \exists z \in u \phi(y, z)]$ for each Σ_0 formula ϕ .

 $\Gamma\text{-}\mathrm{Foundation}:$ Foundation restricted to formulas in $\Gamma.$

Compare this with weak system of

arithmetic

	Fragments of KP	Fragments of PA
Language	$\mathcal{L}(\in)$	$\mathcal{L}(0,1,+,\cdot)$
Main Question	Foundation	Induction
Base Theory	KP-	PA ⁻ : PA without Induction

First Questions

- What can be done without Foundation?
- Is the consideration of Fragments of KP meaningful?

What can be done without Foundation?

Proposition

- KP^- proves the following:
- (1) Strong Pairing: $\forall x, y \exists z (z = \{x, y\})$.
- (2) Strong Union: $\forall x \exists y (y = \bigcup x)$.
- (3) Δ_1 -Separation and Σ_1 -Collection.
- (4) Strong Σ_1 -Collection: Suppose f is a Σ_1 function. If dom(f)

is a set, then ran(f) and graph(f) are sets.

- (5) Ordered Pair: $\forall x, y \exists z (z = (x, y)).$
- (6) Cartesian Product: $\forall x, y \exists z (z = x \times y)$.

Ordinals

Proposition (KP⁻ + Σ_0 -Foundation)

(1) $0 = \emptyset$ is an ordinal.

(2) If α is an ordinal, then $\beta \in \alpha$ is an ordinal and

 $\alpha + 1 = \alpha \cup \{\alpha\}$ is an ordinal.

(3) < is a linear order on the ordinals.

(4) For every ordinal α , $\alpha = \{\beta : \beta < \alpha\}$.

(5) If C is a nonempty set of ordinals, then ∩ C and ∪ C are ordinals, ∩ C = inf C = μα(α ∈ C) and
∪ C = sup C = μα(∀β ∈ C(β ≤ α)).

Transfinite Induction

Theorem (Transfinite Induction along the ordinals) Suppose $M \models \Pi_1$ -Foundation and $I: M \to M$ is a Σ_1 partial function. Then the partial function $f: \operatorname{Ord}^M \to M, \delta \mapsto I(f \upharpoonright \delta)$ is well defined and Σ_1 .

Theorem (Transfinite \in -induction)

Let $M \models KP^- + \Pi_1$ -Foundation, and $I : M \to M$ that is Σ_1 -definable. Then there exists a Σ_1 -definable $f : M \to M$ satisfying $f(x) = I(f \upharpoonright x)$ for every $x \in M$.

the Schröder-Bernstein Theorem

Theorem (KP⁻ + Π_1 -Foundation)

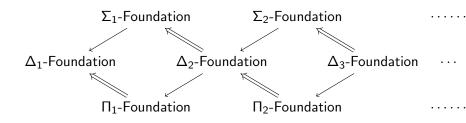
Let A, B be sets. If there are injections $A \rightarrow B$ and $B \rightarrow A$, then there is a bijection $A \rightarrow B$. Let $M \models \mathrm{KP}^- + \Pi_1$ -Foundation.

By a transfinite induction, we may define L^M along Ord^M :

$$\begin{split} L_0^M &= \emptyset, \\ L_{\alpha+1}^M &= L_{\alpha}^M \cup \mathrm{Def}^M(L_{\alpha}^M), \\ L_{\lambda}^M &= \bigcup_{\alpha < \lambda} L_{\alpha}^M \quad \text{where } \lambda \text{ is limit.} \end{split}$$

Here, $\mathrm{Def}^{M}(x)$ denotes the collection of all definable subsets of xin the sense of M. Let $L^{M} = \bigcup_{\alpha \in \mathrm{Ord}^{M}} L^{M}_{\alpha}$.

Is the consideration of Fragments of KP meaningful?



Lemma (Ramón Pino [1]) Let $n \in \mathbb{N}$. Then KP^- + Infinity + Σ_{n+1} -Collection + Π_{n+1} -Foundation + V = L proves the following statement. For every $\delta \in \text{Ord}$, there exists a sequence $(\alpha_i)_{i < \delta}$ in which $\alpha_0 = 0$ and $\alpha_{i+1} = \min\{\alpha > \alpha_i : L_{\alpha} \leq_n L\}$ for each $i < \delta$.

Theorem (Ressayre [1]) $KP^{-} + Infinity + \Sigma_{n+1}$ -Collection $+ \Sigma_{n+1}$ -Foundation $(+V = L) \nvDash$ Π_{n+1} -Foundation for all $n \in \mathbb{N}$.

Sketch of the Proof (Essentially Ressayre)

• Start with a countable

 $M \models \mathrm{KP}^{-} + \mathrm{Infinity} + \Sigma_{n+1} - \mathrm{Collection} + \Pi_{n+1} - \mathrm{Foundation} + \mathrm{V} = \mathrm{L} \text{ in which } \omega^{M} = \omega \text{ but } \mathrm{Ord}^{M} \text{ is not well-ordered.}$

 Take a nonstandard δ ∈ Ord^M. Let (α_i)_{i≤δ+δ} be a sequence of ordinals given by Lemma.

- As δ is nonstandard, there are continuum-many initial segments of Ord^M between δ and δ + δ.
- So there must be one that is not definable in M.
- Take any initial segment $I \subseteq \text{Ord}^M$ with this property.
- $K = \bigcup_{i \in I} L^M_{\alpha_i}$ is the model we want.

Claim

- $K \leq_n M$.
- $K \models \Sigma_{n+1}$ -Collection.
- $K \models \Sigma_{n+1}$ -Foundation.
- $K \not\models \prod_{n+1}$ -Foundation.

Theorem

 $\mathrm{KP}^- + \Sigma_{n+1} \text{-} \mathrm{Collection} + \Pi_{n+1} \text{-} \mathrm{Foundation} + \mathrm{V} = \mathrm{L} \vdash$

 Σ_{n+1} -Foundation for all $n \in \mathbb{N}$.

Question

Does KP^- , Σ_{n+1} -Collection, plus Π_{n+1} -Foundation (without V = L) prove Σ_{n+1} -Foundation?

Question

Is Σ_{n+1} -Foundation stronger than Π_n -Foundation?

lpha-RecursionFragments of KP			
	Fragments of PA	$lpha ext{-RecursionFragments}$ of KP	
Language	$\mathcal{L}(0,1,+,\cdot)$	$\mathcal{L}(\in)$	
Axioms	P^- , $I\Sigma_n$, etc	KPKP^{-} , Π_n -Foundation, etc	
	Nonstandard models of	L_{lpha} , where	
Models	arithmetic with	lpha isnonstandard	
	restricted induction	Σ_1 admissible	
Difficulty	lack of induction	lack of collection and foundation	

Definition

Level 1-KPL denotes $\mathrm{KP}^- + \Pi_1$ -Foundation + V = L. Notice Level 1-KPL $\vdash \Sigma_1$ -Foundation.

Lemma

Suppose $M \models \mathrm{KP}^- + \Pi_1$ -Foundation + V = L. Then there exists a Δ_1 bijection $M \rightarrow \mathrm{Ord}^M$ that preserves the relation \in .

the Friedberg-Muchnik Theorem

- Now we will show the Friedberg–Muchnik Theorem in Level 1-KPL.
- *M* is a model of Level 1-KPL.
- The Sack–Simpson construction [2] in α -recursion theory uses the Σ_2 -cofinality (of the ordinals), i.e., the least ordinal that can be mapped to a cofinal set of ordinals by a Σ_2 function.
- The existence of Σ_2 cofinality apparently needs much more foundation than Level 1-KPL can afford.

Σ_1 Projectum

Lemma (Level 1-KPL)

If there is a Σ_1 injection from the universe into an ordinal, then there is the least such an ordinal (Σ_1 Projectum).

Proof.

Suppose $\alpha \in M$ is an ordinal such that there is a Σ_1 injection from the universe into α . We claim $|\alpha| = \sigma 1 p$. Clearly, there is a Σ_1 injection from the universe into $|\alpha|$. Conversely, if we have a Σ_1 injection p from M into $\beta \leq |\alpha|$, then $p \upharpoonright |\alpha|$ is in the model and is an injection into β . As $|\alpha|$ is a cardinal in M, $\beta = \alpha$.

Bounding Injury within Σ_1 Projectum

Lemma

 Σ_1 Projectum is a cardinal and also the largest one.

Lemma (Sacks and Simpson)

Suppose $\alpha < \delta$ and δ is a regular cardinal in M. If $\{X_i : i < \alpha\}$ is a uniform r.e. sequence in the model sets of ordinals with cardinality less than δ . Then $\bigcup \{X_i : i < \alpha\}$ is in the model and of cardinality less than δ . Similar for the case that cofinally many cardinals exist in the model.

Largest Cardinal \aleph not Σ_1 Projectum

Definition

Suppose δ is an ordinal. We say δ is (Σ_1) stable if L_{δ} is a Σ_1

elementary substructure of the whole model.

Lemma (Level 1-KPL)

For every γ such that $\omega^{M} \leq \gamma$, there is a stable ordinal $\delta \geq \gamma$ with the same cardinality as γ .

Shore's Splitting Theorem

- Aim: Split a nonrecursive set into two incomparable nonrecursive sets.
- For a single requirement, we apply the classical method of preserving computation.
- To settle all requirements, we adopt the blocking method as in α -recursion theory.
- The problem is that, within Level 1-KPL, we may not have the Σ₂ cofinality of the Ord^M.
- Thus, here we use a modified version that came from arithmetic [3]. It is a modified version of that in α-recursion

Lemma

For any nondecreasing recursive sequence $\{\xi_s\}_s$, either it is cofinal in Ord^M (we denote this by $\lim_s \xi_s = \infty$) or there is a stage s such that for all t > s, $\xi_t = \xi_s$.

Questions not answered so far

- Is there a model of Level 1-KPL without Σ_n projectum/cofinality for some n ≥ 2?
- 2 Does Level 1-KPL imply the density theorem of r.e. degrees?
- 3 Does Level 1-KPL + $\neg \Pi_2$ -Foundation consistent with the existence of a minimal pair?

References

- **C.T.** Chong and K.J. Mourad. The degree of a Σ_n cut. Annals of Pure and Applied Logic, 48:227–235, 1990.
- C. T. Chong and Yue Yang. Σ_2 induction and infinite injury priority arguments, part II: Tame Σ_2 coding and the jump operator, Annals of Pure and Applied Logic, vol. 87 (1997), no. 2, pp. 103–116
- Michael E. Mytilinaios. Finite injury and Σ₁-induction. J. Symbolic Logic, 54(1):38–49, 1989.

Jean-Pierre Ressayre. Modèles non standard et sous-systèmes remarquables de ZF. In Modèles non standard en arithmétique et théorie des ensembles, volume 22 of Publications Mathématiques de l'Université Paris VII, pages 47–147. Université de Paris VII, U.E.R. de Mathématiques, Paris, 1987. G. E. Sacks and S. G. Simpson. The α -finite injury method. Ann. Math. Logic, 4:343-367, 1972. Richard A. Shore. Splitting an α -recursively enumerable set.

Trans. Amer. Math. Soc., 204:65-77, 1975.

- Richard A. Shore. The recursively enumerable α-degrees are dense. Ann. Math. Logic, 9(1- 2):123–155, 1976.
- Theodore A. Slaman. Σ_n -bounding and Δ_n -induction. Proc.

Amer. Math. Soc., 132(8):2449–2456 (electronic), 2004.

Thank you!