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Patterns of Embeddings

Gödel’s program of using large cardinals to solve mathematical
incompleteness inspired Tim Carlson to initiate his program of
”Patterns of Embeddings”.

Heuristics: Axioms of infinity closely related to ordinal notations.

Goal: Find ”ultra fine structure” for large cardinal axioms based on
embeddings, complementary to inner model theory at stages missing
inner model construction.



Elementary Patterns of Resemblance

Elementary Patterns of Resemblance: First steps into Patterns of
Embeddings.

Binary relations code elementary substructurehood, no codings of
embeddings involved.

Elementary Patterns of Resemblance (in short: patterns) are finite
structures of nested forests, possibly with underlying arithmetic
structure: Finite isomorphism types of structures of ordinals.



Applications

Patterns give rise to large ordinal notation systems.

Proof-theoretic analysis of theories of numbers and sets.

Rich combinatorial properties allow for strong independence results.



R1

Definition

R1 := (Ord;≤,≤1)

where ≤1 is defined by recursion on β as follows:

α ≤1 β :⇔ (α;≤,≤1) �Σ1 (β;≤,≤1) .

Remark
Carlson discovered this structure when he verified a conjecture by William
Reinhardt, namely that Epistemic Arithmetic is consistent with a formalization
of the statement I know that I am a Turing Machine, see [Carlson 2000].
The relation ≤1 naturally surfaced in the guise of the following



Criterion for Σ1-Elementary
Substructures

Lemma

α ≤1 β iff
α β

YỸX
For any finite X , Y there is a Ỹ s.t.

X < Ỹ < α, X ∪ Ỹ
∼=

≤,≤1 X ∪ Y .

Example: α ≤1 α + 1 ⇐⇒ α ∈ Lim.



Lemma
{β | α ≤1 β} is a closed interval.

Definition

lh(α) :=

{
max{β | α ≤1 β} if that exists
∞ otherwise.

Theorem [Carlson 1999]
• R1 ∼= R1 ∩ [α + 1,∞) for all α.
• lh(ε0 · (1 + η)) =∞ for all η.
• For α =CNF ω

α1 + . . .+ ωαn (n > 0) with αn =ANF ρ1 + . . .+ ρm < α
we have

lh(α) = α + lh(ρ1) + . . .+ lh(ρm).



Rn in general

Definition

Rn := (Ord; (≤i )0≤i≤n)

where ≤0:=≤ is standard and the relations ≤1, . . . ,≤n are defined
simultaneously by recursion on β:

α ≤j β :⇔ (α; (≤i )0≤i≤n) �Σj (β; (≤i )0≤i≤n) .



End-Extension Property of the Rn

Observation: For the least β such that there exists α such that

Rn+1 |= α <n+1 β

we have

Rn+1 �(≤i )0≤i≤n ∩β = Rn ∩ β.



“Respecting” Forests

We summarize further immediate consequences of Σi -elementary
substructurehood:

Lemma
For any R-structure we have
• ≤i is a forest for 1 ≤ i ≤ n

• ≤i+1 respects ≤i :
• ≤i+1 ⊆ ≤i and

• α ≤i β ≤i γ & α ≤i+1 γ ⇒ α ≤i+1 β



Example: A Respecting Forest for R1

The elements are <-increasing from left to right. Edges indicate
<1-connections.

In presence of an underlying arithmetic structure, decomposable
elements occur only at leaves!



Elementary Patterns of Resemblance

Definition
An pattern for Rn is a finite structure with relations (≤i )0≤i≤n that is
isomorphic to a substructure of Rn.

Visualization of patterns: Finite directed graphs (forests) whose
edges are colored according to the strongest ≤i -relation between any
two elements.

It turns out that the class of patterns comprises the finite respecting
forests (conditions in presence of arithmetic).



Isominimality and the Core

Isominimality
P ⊆ Rn is isominimal if

• P ⊆fin Rn and
• for any Q ⊆ Rn such that P ∼= Q:

Q ≤pw P ⇒ Q = P

Core of Rn

Core(Rn) :=
⋃
{P ⊆ Rn | P isominimal}



Pattern Notations

Theorem
For any pattern P for Rn (n = 1,2) there exists a unique isominimal
P? ⊆ Rn such that P ∼= P?.

Theorem
1 Core(R1) = ε0 [Carlson 1999, 2001]
2 Core(R+

1 ) = |Π1
1 − CA0| [W 2007c]

3 Core(R2) = |Π1
1 − CA0| [W]

The fact that Core(R+
1 ) and variants of Core(R2) and Core(R+

2 ) are
isomorphic to some recursive ordinal was first shown in [Carlson
2001 and 2009].

It is conjectured that Core(R+
2 ) reaches beyond |KPI | and that

Core(R3) has the same order type (future work).



Proof-theoretic Ordinals

Examples: We give characterizations of well-known proof-theoretic
ordinals. These results are shown in Carlson 1999, W 2006, 2007b,
Carlson/W 2012b.
The first equality in each example refers to (R+

1 ,≤
+
1 ), the second to

(R2,≤1,≤2).
1 |PA | = minα α ≤+

1 α + α = minα ∃β, γ α <1 β <2 γ,
2 | ID1 | = minα ∃β α <+

1 β <+
1 β + β

= minα ∃β, γ, δ α <1 β <2 γ <2 δ,
3 | IDn | = minα ∃β1, . . . , βn α <+

1 β1 <
+
1 . . . <+

1 βn <
+
1 βn + βn

= minα ∃β1, . . . , βn+2 α <1 β1 <2 . . . <2 βn+2,
4 | ID<ω | = minα α <+

1 ∞ = minα α <1 ∞ = |Π1
1 − CA0|.
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Example: ε0 · ω <2 ε0 · (ω + 1)

Lemma
If α <2 β then α is the sup of an infinite <1-chain.
Proof. For any ρ < α we have β |= ∃x ∀y > x (ρ < x <1 y). Hence the
same holds true in α. We obtain ρ1 <1 ρ2 <1 ρ3 <1 . . . <1 α.
The least candidate for such α is ε0 · ω!

Lemma
Suppose α <2 β and X ,Z ⊆fin α with X < Z . If

α |= ∀r ∃Z̃ (r < Z̃ ∧ “X ∪ Z̃ ∼= X ∪ Z ”)
then the same holds in β.
The least candidate for such β is ε0 · (ω + 1)!



Example: ... continued

Lemma
Suppose α <2 β, X ⊆fin α, and Y ⊆fin [α, β). Then there exist
cofinally many Ỹ ⊆ α such that X < Ỹ , X ∪ Ỹ ∼= X ∪ Y , and for any
y ∈ Y such that y <1 β the corresponding ỹ ∈ Ỹ satisfies ỹ <1 α.
Proof. Let {y ∈ Y | y <1 β} = {y1, . . . , yk}. Note that for any
parameter ξ < α

β |= ∃Ỹ > ξ ∀r > Ỹ

(
“X ∪ Ỹ ∼= X ∪ Y ” ∧

k∧
i=1

ỹi <1 r

)

which then also holds in α.



How to show Σn-Elementarity

Proposition
Suppose α < β. If for all X ⊆fin α and all Y ⊆fin [α, β) there exists Ỹ
such that:

1 X < Ỹ < α and
2 ∃h : X ∪ Ỹ

∼=−→ X ∪ Y such that for all Ỹ + with Ỹ ⊆ Ỹ + ⊆fin α

∃h+ ⊇ h,Y + ⊇ Y s.t. h+ : X ∪ Ỹ + ∼=−→ X ∪ Y +

then α <2 β.

In R2 the converse holds as well! See [Carlson/W 2012b].

This type of criterion generalizes to ≤n!



The WQO-Result for Pure Patterns of
Order 2

Definition
For patterns P,Q an injection h : P ↪→ Q is a covering of P into Q iff

x ≤P
i y ⇒ h(x) ≤Q

i h(y).

Theorem [Carlson]
The collection of pure patterns of order two P2 is well-quasi ordered
with respect to coverings.



Independence

Theorem [W]
There is a mapping p2 : Core(R2)→ P2 such that

α > β ⇒ p2(α) 6↪→ p2(β)

hence

P2 is wqo wrt coverings ⇒ (|Π1
1 − CA0|, <) is well-ordered.

Therefore the above wqo-result is independent of Π1
1 − CA0, or

equivalently KP`0.



Proof of results

The results regarding Core(R2) and independence build upon the
work in [Carlson/W 2012b], where ≤1 and ≤2 are characterized in
terms of a system of ordinal arithmetic developed in [W 2007a]. This
characterization can be seen to be elementary recursive.

The notion of tracking chain (tc) determines successively greatest
≤i -predecessors providing context information regarding nested
≤i -connectivity components.

The maximal extension (me) of a tracking chain provides information
about critical/largest immediate ≤i -successors.

This is expressed by means of (local) elementary recursive
enumeration functions κ and ν of relativized ≤1- and ≤2-connectivity
components, respectively.



Closedness of Ordinal Patterns

All ordinals and notations range over the initial segment |Π1
1 − CA0|.

We may identify ordinals and their tracking chains.

Definition
A set M of tracking chains is closed iff it is closed under

1. initial tc’s (omitting redundancies)
2. me
3. additive decomposition of κ-indices (minor technical

adjustments)
4. additive decomposition of ν-indices
5. largest ≤2-components (largest ν-indices)
6. parameters determining the spacing of ≤2-successors

( ·̄ -operator) within largest ≤2-components.



Describing Patterns in Normal Form

6∗. Normal form condition for closures: parameters inserted below
least ≤2-successor of largest ≤2-component.

Remark
Regarding normal forms for R+

1 -patterns, see [Carlson/W 2012a].

Definition
For any ordinal α let P(α) be the closure of {α} under 1. - 5. and 6∗.

Lemma
P(α) is finite.
Proof. Any path in P(α) can be extended only finitely many times.

P(α) is called the normal form pattern representation of α when
interpreted as structure over (≤,≤1,≤2).



Main Theorem

Theorem
Let n ≥ 0 and {t1, . . . , tn} ∪ P be a pure pattern of order 2 where
t1 <2 . . . <2 tn <1 P and ∃p ∈ P tn <2 p if n > 0.
Set m := Card(P) and assume m > 0. Set τ1 := | IDn+m | and
τi+1 := µτi , 1 ≤ i ≤ n, τ0 := 1.

1 Fixing o(ti ) := o((τ1, . . . , τi+1)), 1 ≤ i ≤ n, there exists a unique,
above o(tn) ≤-pointwise minimal ordinal covering
o : {t1, . . . , tn} ∪ P → |Π1

1 − CA0|.
2 o[P] is closed above o(tn).
3 o maps ≤i -minimal elements of P to o(tn)-≤i -minimal ordinals

and lhi /lh
P
i and o commute: lhi (o(p)) = o(lhP

i (p)) for all p ∈ P,
hence o is the above o(tn) isominimal realization of P.

4 If in particular P is a substructure of R2 which is closed above
o(tn), then the isominimal realization of P above o(tn) is the
identity.



Conclusion

Corollary
For any α the normal form pattern representation P(α) is isominimally
realized by the identity.

It follows that Core(R2) = |Π1
1 − CA0|.

Corollary
α > β ⇒ P(κωα) 6↪→ P(κωβ ).

Hence the well-quasi-orderedness of pure patterns of order 2 wrt
coverings is independent of Π1

1 − CA0.
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