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This talk

Why would one formalize Gödel’s Completeness Theorem
in arithmetic?

Plan

1. Full induction

2. Restricted induction

3. Non-classical applications

4. Conclusion



First-order arithmetic

I LI = {0, 1,+,×, <}.
I PA consists of some basic algebraic axioms (PA−) and an

induction axiom

θ(0) ∧ ∀x
(
θ(x)→ θ(x + 1)

)
→ ∀x θ(x)

for every θ ∈ LI.

I ω is the standard model (of arithmetic).

I An LI-structure M is nonstandard if M 6∼= ω.

I Let M,K |= PA−. Write K ⊇e M to mean K is an end
extension of M, i.e., K ⊇ M and

∀k ∈ K \M ∀m ∈ M k > m.

Alternatively, we say M is a cut of K .

I No proper cut of a model of PA is definable.



The Arithmetized Completeness Theorem (ACT)

Example

ω is a cut of all models of PA−, called the standard cut.

ACT (PA version)

Every consistent definable theory T in M |= PA has a definable
model K in M. If, moreover, T ⊇ PA−, then we can view K ⊇e M.

I Let M,K |= PA−. Write K ⊇e M to mean K is an end
extension of M, i.e., K ⊇ M and

∀k ∈ K \M ∀m ∈ M k > m.

Alternatively, we say M is a cut of K .

I No proper cut of a model of PA is definable.



Consistency implies satisfiability in an end extension

Theorem (Mostowski 1952, Kreisel–Lévy 1968)

PA is equivalent over I∆0 + exp to the uniform reflection scheme

∀x
(
θ(x)→ Con(θ(x̌))

)
,

where θ ∈ LI. Π1/universal
Theorem (Mc Aloon 1978)

Let a ∈ M |= PA and θ(x) be an LI-formula.
The following are equivalent.

(a) There is an extension K ⊇ M satisfying PA + θ(a).

(b) There is an end extension K ′ ⊇e M satisfying PA + θ(a).

Proof of (a)⇒ (b)

I Con(IΣn + θ(a)) is true in K and so in M for every n ∈ ω.

IΣn ≈ first n axioms of PA

I Thus M |= Con(IΣν + θ(a)) for some nonstandard ν ∈ M.



Consistency implies satisfiability in an end extension

Theorem (Mostowski 1952, Kreisel–Lévy 1968)

PA is equivalent over I∆0 + exp to the uniform reflection scheme

∀x
(
θ(x)→ Con(θ(x̌))

)
,

where θ ∈ LI. Π1/universal
Theorem (Mc Aloon 1978)

Let a ∈ M |= PA and Θ(x) be a recursive set of LI-formulas.
The following are equivalent.

(a) There is an extension K ⊇ M satisfying PA + Θ(a).

(b) There is an end extension K ′ ⊇e M satisfying PA + Θ(a).

Proof of (a)⇒ (b)

I Con(IΣn + Θn(a)) is true in K and so in M for every n ∈ ω.

Θn = first n elements of Θ

I Thus M |= Con(IΣν + Θν(a)) for some nonstandard ν ∈ M.



Strong fragments of PA
I ∆0 is the smallest set of LI-formulas that

– contains all atomic LI-formulas; and
– is closed under ¬, ∧, ∨, and bounded quantification,

i.e., ∀v < t · · · and ∃v < t · · ·.
I Σn = {∃v̄1 ∀v̄2 · · · Qv̄n θ(v̄ , x̄) : Q ∈ {∀, ∃} and θ ∈ ∆0}.
I The dual is called Πn.

I Formulas equivalent to both a Σn- and a Πn-formula are ∆n.

I IΣn consists of PA− and the induction scheme for Σn-formulas.

I BΣn consists of I∆0 and the collection scheme for Σn-formulas,
i.e., for all ϕ ∈ Σn,

∀a
(
∀x<a ∃y ϕ(x , y)→ ∃b ∀x<a ∃y<b ϕ(x , y)

)
.

I exp is a sentence asserting the totality of x 7→ 2x over I∆0.

Theorem (Parsons 1970, Parikh 1971, Paris–Kirby 1978)

IΣn+1 ` BΣn+1 ` IΣn for all n ∈ ω; and IΣ1 ` exp but BΣ1 0 exp.



ACT with restricted induction

PA version. Every consistent definable theory T ⊇ PA− in
M |= PA has a definable model in M that end extends M.

IΣ1 version (Hájek–Pudlák 1993). Every consistent ∆1-definable
theory T ⊇ PA− in M |= IΣ1 has a ∆0(Σ1)-definable model
in M that end extends M.

∆0(Σ1) is the closure of Σ1

under ¬, ∧, ∨, and
bounded quantification.

BΣ1 + exp version (folklore). Every consistent ∆1-definable theory
T ⊇ PA− in a countable M |= BΣ1 + exp has a definable model
that end extends M.

Proposition (Paris–Kirby 1978)

If M (e K |= I∆0, then M |= BΣ1.



Variants of Mc Aloon

Theorem (Enayat–W)

Let Θ(x) be a recursive set of LI-formulas and a ∈ M |= BΣ1 + exp.
The following are equivalent provided ω is not Π1-definable in M
and M can be expanded to (M,X ) |= WKL∗0.

Theorem (Mostowski 1952, Kreisel–Lévy 1968)

PA is equivalent over I∆0 + exp to the uniform reflection scheme

∀x
(
θ(x)→ Con(θ(x̌))

)
,

where θ ∈ LI.

(a) There is an extension K ⊇ M satisfying PA + Θ(a).

(b) There is an end extension K ′ )e M satisfying PA + Θ(a).

Theorem (Paris–Kirby 1978)

Let Θ(x) be a recursive set of LI-formulas and a ∈ M |= BΣ1.
The following are equivalent provided ω is not Π1-definable in M
and M is countable.

(a) There is an extension K <∆0 M satisfying Θ(a).

(b) There is an end extension K ′ ⊇e M satisfying Θ(a).



A second-order version of the ACT
I LII = {0, 1,+,×, <,∈} has a number sort and a set sort.

I ∆0
n, Σ0

n, IΣ0
n, BΣ0

n, . . . are essentially ∆n, Σn, IΣn, BΣn, . . .
with set variables added.

I RCA∗0 consists of I∆0
0 + exp and ∆0

1-comprehension.

I WKL∗0 = RCA∗0 + WKL, where WKL says

every unbounded 0–1 tree contains an unbounded path.

Theorem (Simpson–Smith 1986)

Every countable M |= BΣ1 + exp expands to (M,X ) |= WKL∗0.

Theorem (Simpson)

WKL is equivalent to Gödel’s Completeness Theorem over RCA∗0.

ACT (WKL∗0 version)

Every consistent theory T ⊇ PA− in (M,X ) |= WKL∗0 has a model
in X that end extends M.

Theorem (Enayat–W)

Let Θ(x) be a recursive set of LI-formulas and a ∈ M |= BΣ1 + exp.
The following are equivalent provided ω is not Π1-definable in M
and M can be expanded to (M,X ) |= WKL∗0.

(a) There is an extension K ⊇ M satisfying PA + Θ(a).

(b) There is an end extension K ′ )e M satisfying PA + Θ(a).



Subsets coded in an end extension

Definition
Let M ⊆e K |= I∆0. Then c ∈ K is said to code S ⊆ M if

S = {i ∈ M : K |= “ith prime divides c”}.

Cod(K/M) denotes the set of all S ⊆ M coded in K .

Theorem (Scott 1962)

If M |= I∆0 + exp and K |= I∆0 properly end extending M, then
(M,Cod(K/M)) |= WKL∗0.

Theorem (Simpson–Smith 1986)

Every countable M |= BΣ1 + exp expands to (M,X ) |= WKL∗0.

Proof

I Wilkie–Paris (1987) showed I∆0 + exp ` CutFreeCon(I∆0).

I Apply the BΣ1 + exp version of the ACT to I∆0.



Variations

Theorem (Simpson–Smith 1986)

Every countable M |= BΣ1 + exp expands to (M,X ) |= WKL∗0.

Theorem (Enayat–W)

Given countable (M,X ), (M,X ′) |= RCA∗0 with
X ∩X ′ = ∆1-Def(M), we can find (M,Y ) |= WKL∗0
extending (M,X ) such that Y ∩X ′ = ∆1-Def(M).

Theorem (Enayat–W)

For every (M,X ) |= WKL∗0 and every S ∈X , there exists
Y ∈X such that if Y = {(Y )i : i ∈ M}, then

(M,Y ) |= WKL∗0 and S ∈ Y .

Here (Y )i = {j ∈ M : 〈i , j〉 ∈ Y }.



Π1-definability of the standard cut

Theorem (Enayat–W)

Let Θ(x) be a recursive set of LI-formulas and a ∈ M |= BΣ1 + exp.
The following are equivalent provided ω is not Π1-definable in M
and M can be expanded to (M,X ) |= WKL∗0.

(a) There is an extension K ⊇ M satisfying PA + Θ(a).

(b) There is an end extension K ′ )e M satisfying PA + Θ(a).

Proposition (Paris)

There is a countable M |= BΣ1 + exp with the following properties.

(1) There is an extension K ⊇ M satisfying PA.

(2) There is no end extension K ′ ⊇e M satisfying PA.

Proof
Fix a countable V |= ZFC with ν ∈ ωV \ ω. Using the ACT in V ,
construct Mν ⊆e Mν−1 ⊆e · · · ⊆e M1 such that each
Mn |= IΣn + ¬Con(IΣn). Set M =

⋃
{Mn : n ∈ ωV \ ω}.



Conclusion

Summary

I The Arithmetized Completeness Theorem (ACT) says

consistency implies satisfiability in an end extension.

I It is a powerful tool in making end extensions and models of
the Weak König Lemma.

I ACT arguments apply to all countable models of BΣ1 + exp.

Questions

(1) Is there a version of the ACT for ∆0-definable theories in
uncountable models of BΣ1 + exp?

(2) Does arithmetization of some other theorem in mathematics
have interesting model-theoretic consequences?
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