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Preservation of topological properties for topological groups
under taking square

A topological group is a topological space which is also a group such that
its group operations are continuous.

While pseudocompact is not preserved under taking square for Tychonoff
spaces, Comfort and Ross proved the following remarkable theorem:

Theorem (Comfort, Ross)
If a topological group is pseudocompact, so is its square.

What about the others?
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4 topological properties

Arhangel’skii asked (1981) that whether the following topological
properties are preserved under taking square for topological groups:

(a) normality;

(b) weak paracompactness;

(c) paracompactness;

(d) Lindelöfness.

It’s well-known that for regular spaces, Lindelöf ⇒ paracompact ⇒ normal
& weakly paracompact.
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Lindelöf and L groups

A regular space is Lindelöf if every open cover has a countable subcover.

A hereditarily Lindelöf space is a space that every subspace is Lindelöf.

An L space is a hereditarily Lindelöf space which is not separable.

Weaker version: is the square of hereditarily Lindelöf group normal or
weakly paracompact?
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Earlier results

For topological spaces, there is no much difference between taking square
or taking product, since (X ∪ Y )2 contains X × Y as a clopen subspace.
One major difficulty for topological group is that we can’t do this.

Theorem (Douwen, 1984)
There are two Lindelöf groups G and H such that G × H is not Lindelöf.
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Earlier results

Consistent results for taking square of groups.

Theorem (Malykhin,1987)
Asume cof (M) = ω1. There is a Lindelöf group whose square is not
Lindelöf.

Theorem (Todorcevic,1993)
Assume Pr0(ω1, ω1, 4, ω). There is a Lindelöf group whose square is not
Lindelöf.
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Another problem

Why hereditarily Lindelöf? Because it is linked to the strong colorings.

Also, the famous S and L space problem is linked to hereditarily property.

Theorem (Rudin, 1972)
If there is a Suslin tree, then there is a S space.

Theorem (Todorcevic, 1981)
It is consistent that there are no S spaces.

Theorem (Moore, 2006)
There is an L space.
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A little strengthening - L group

It’s great that we have an L space in ZFC. But can we have a group
version?

Question
Is there an L group - a topological group whose underlying set is an L
space?

The first L group appeared quite early.

Theorem (Hajnal, Juhasz, 1973)
It is consistent to have an L group.
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L group

To get a ZFC example, one may first try the group generated by Moore’s L
space.

Theorem (Repovs, Zdomskyy)
The semigroup generated by Moore’s L space is still an L space.

However, this just gives an L semigroup.

Theorem
The group generated by Moore’s L space is not Lindelöf.
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Answers

We answer above mentioned questions by present the following:

Theorem
There is an L group whose square is neither normal nor weakly
paracompact.

Note that for regular spaces, Lindelöf ⇒ paracompact ⇒ normal & weakly
paracompact. So none of these 4 properties is preserved by taking square.

Yinhe Peng (CAS) April 9, 2015 10 / 27



Answers

We answer above mentioned questions by present the following:

Theorem
There is an L group whose square is neither normal nor weakly
paracompact.

Note that for regular spaces, Lindelöf ⇒ paracompact ⇒ normal & weakly
paracompact. So none of these 4 properties is preserved by taking square.

Yinhe Peng (CAS) April 9, 2015 10 / 27



Answers

We answer above mentioned questions by present the following:

Theorem
There is an L group whose square is neither normal nor weakly
paracompact.

Note that for regular spaces, Lindelöf ⇒ paracompact ⇒ normal & weakly
paracompact. So none of these 4 properties is preserved by taking square.

Yinhe Peng (CAS) April 9, 2015 10 / 27



Methodology

The osc map is constructed by Moore using the method of minimal walk
which is introduced by Todorcevic.

Definition
1 A C-sequence is a sequence 〈Cα : α < ω1〉 such that Cα+1 = {α} and

Cα is a cofinal subset of α of order type ω for limit α’s.
2 ρ1 : [ω1]

2 → ω, defined recursively by
ρ1(α, β) = max{|Cβ ∩ α|, ρ1(α,min(Cβ \ α))} with boundary value
ρ1(α, α) = 0. ρ1β : β → ω is defined by ρ1β(α) = ρ1(α, β) for α < β.

3 For any C-sequence, the lower trace L : [ω1]
2 → [ω1]

<ω is recursively
defined for any α ≤ β < ω1 as follows:

L(α, α) = 0;
L(α, β) = (L(α,min(Cβ \ α)) ∪ {max(Cβ ∩ α)}) \max(Cβ ∩ α).
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osc

Definition
1 For two functions s, t on a common finite set of ordinals F ,

Osc(s, t;F ) = {α ∈ F \ {minF} : s(maxF ∩ α) ≤ t(maxF ∩ α) and
s(α) > t(α)}.

2 osc : [ω1]
2 → ω is defined by osc(α, β) = |{Osc(ρ1α, ρ1β; L(α, β))}|.

It turns out that this form, together with these combinatorial properties has
applications other than a solution to Arhangelskii’s question.
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Combinatorial property of the osc map

Let’s fix the notation frac(x) = x − [x ] where [x ] is the greatest integer
less than or equal to x .

The following is a simple version of Moore’s Theorem.

Theorem (Moore)

Let {θα : α < ω1} be a set of rationally independent reals and A ⊂ [ω1]
k

be an uncountable family of pairwise disjoint sets, B ∈ [ω1]
ω1 . Then for

any sequence Ui ⊂ (0, 1) of open sets (i < k), there are a ∈ A and
β ∈ B \ a such that for any i < k, frac(θa(i)osc(a(i), β)) ∈ Ui .

Roughly speaking,
{(frac(θa(0)osc(a(0), β)), ..., frac(θa(k−1)osc(a(k − 1), β))) : a ∈ A , β ∈
B \ a} is dense in (0, 1)k for any appropriate A ,B . And this is the key to
get the L space property.
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More combinatorial properties of the osc map

We further investigated the osc map and found more combinatorial
properties which is critical in proving our main theorems.

Theorem (Combinatorial property 1)

For any uncountable families of pairwise disjoint sets A ⊂ [ω1]
k and

B ⊂ [ω1]
l , there are A ′ ∈ [A ]ω1 , B′ ∈ [B]ω1 and

〈cij : i < k , j < l〉 ∈ Zk×l such that for any a ∈ A ′, for any b ∈ B′ \ a,
osc(a(i), b(j)) = osc(a(i), b(0)) + cij for any i < k , j < l . Moreover, we ca
require A ′ = B′ if A = B.

This property allows us to refine A ,B. As we are dealing with problems of
the form: “for any uncountable A ,B,...”, combinatorial property 1 allows
us dealing with the easier case: “for any uncountable A ,B with property
mentioned above,...”.
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More combinatorial properties of the osc map

We also have a complement of combinatorial property 1.

Theorem (Combinatorial property 2)

For any X ∈ [ω1]
ω1 , for any k , l < ω, for any 〈cij : i < k , j < l〉 ∈ Zk×l

such that ci0 = 0 for i < k, there are uncountable families A ⊂ [X ]k ,
B ⊂ [X ]l that are pairwise disjoint and for any a ∈ A , b ∈ B \ a,
osc(a(i), b(j)) = osc(a(i), b(0)) + cij for i < k , j < l .
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An L group

Definition

1 f (x) = sin 1
x

x for x ∈ R \ {0}.

2 L = {wβ ∈ Rω1 : β < ω1} where

wβ(α) =
{

f (frac(θαosc(α, β) + θβ)) : α < β
0 : α ≥ β.

grp(L ) – the group generated by L – is what we need.
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An L group with non-Lindelöf square

Theorem
grp(L ) is an L group whose square is neither normal nor weakly
paracompact.

Recall that for regular spaces, L ⇒ hereditarily Lindelöf ⇒ Lindelöf ⇒
paracompact ⇒ normal & weakly paracompact.

So none of the properties mentioned above is preserved by taking square
for topological groups.
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Question

Cp(X ) is the space of real-valued continuous function on X with the
topology of pointwise convergency. It is a natural topological group.
Whether there is a counterexample of form Cp(X ) is still unknown.

Question (Arhangelskii)
Let Cp(X ) be Lindelöf. Is it then true that Cp(X )× Cp(X ) is Lindelöf?

Question
Let X be a Banach space with weak topology w such that (X ,w) is
Lindelöf. Is it true that (X ,w)2 is Lindelöf?
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Higher finite powers

Theorem (Kunen, 1977)
Assume MAω1 . For any regular space X , X n is hereditarily Lindelöf for all
finite n iff X n is hereditarily separable for all finite n.

Now we know the number of power n where an L space fails to be L can be
2. What about other values?

For what n < ω do we have an L space whose n-th power is L while its
n + 1-th power is not (hereditarily) Lindelöf?

The problem is that we didn’t know whether there is an L space whose
square is an L space.
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Higher finite power and strong negative partition relation

Generalize above construction again, we get the following.

Theorem
For any n < ω, there is a topological group G such that G n is an L group
and G n+1 is neither normal nor weakly paracompact.

And previous mentioned Kunen’s Theorem tell that this is the best we can
do in ZFC.
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On partition relations

Definition
(Strong coloring, Shelah) Pr0(κ, κ, θ, σ) asserts that there is a function
c : [κ]2 → θ such that whenever we are given γ < σ, a family A ⊂ [κ]γ of
κ many pairwise disjoint sets and a function h : γ × γ → θ, then there are
a < b in A such that c(a(i), b(j)) = h(i , j) for any i , j < γ.

To make the notation simple, we will use the following “weaker” version.

Definition
(Strong coloring, Shelah) Pr1(ω1, ω1, θ, n) asserts that there is a function
c : [ω1]

2 → θ such that whenever we are given m < n, a family A ⊂ [ω1]
m

of pairwise disjoint sets and a γ < θ, then there are a < b in A such that
c(a(i), b(j)) = γ for any i , j < m.
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“Weaker”

In fact, this is not really weaker.

Fact
(Todorcevic) Pr0(ω1, ω1, ω1, n) is equivalent to Pr0(ω1, ω1, ω, n) for any
n < ω.
(Shelah) Pr0(ω1, ω1, ω, n) is equivalent to Pr1(ω1, ω1, ω, n) for any n < ω.
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On partition relations

For successor of uncountable regular cardinals, we have the following very
strong version:

Theorem (Shelah)

Pr0(λ+, λ+, λ+, ω) for λ = cf (λ) > ω.

We don’t have that strong version on ω1.

Fact
Pr0(ω1, ω1, ω1, ω) is independent of ZFC.

And we do have Pr0(ω1, ω1, ω1, 2) by Todorcevic’s ω1 9 [ω1]
2.

What about the rest n < ω?
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Strong colorings

Theorem
Pr1(ω1, ω1, ω, n) for all n < ω.

We now define a c : [ω1]
2 → ω witnessing Pr1(ω1, ω1, ω, k + 1):

c(α, β) = f (frac(θαosc(α, β))).

We will find appropriate f : [0, 1)→ ω and rationally independent
{θα : α < ω1}.

To make sure c has the desired property, let’s assume we are given an
uncountable family A ⊂ [ω1]

k of pairwise disjoint sets.

By combinatorial property 1 of the osc map, we assume there is a
〈cij : i , j < k〉 ∈ Zk×k such that for any a < b in A , for any i , j < k ,
osc(a(i), b(j)) = osc(a(i), b(0)) + cij .
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Requirements for f and θα

c(a(i), b(j)) = f (frac(θa(i)osc(a(i), b(j))))

= f (frac(θa(i)osc(a(i), b(0)) + θa(i)cij))
∼ f (frac(xi + θicij))

θi s are completely accumulation points pre-chosen. And by Moore’s
Theorem, xi can be in any interval.

So the requirement for f and θα will be:

for any m < ω, for any 〈cij : i , j < k〉 ∈ Zk×k , for any
{θi : i < k} ⊂ {θα : α < ω1}, there are intervals 〈Ii : i < k〉 such that for
any i < k , f �frac(Ii+θi cij )

= m.
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Requirements for f and θα

Note the requirement for different i ’s are parallel. So we can simplify the
requirement to:

for any m < ω, for any 〈cj : j < k〉 ∈ Zk , for any θ ∈ {θα : α < ω1}, there
is an interval I such that for any j < k , f �frac(I+θcj )= m.

The point is intervals for different m’s must be disjoint. There is no
problem with m and cj since we can deal with countably requirements. To
satisfy the requirements for θαs, we need a little change.

Without enlarge the interval frac(I + θcj), we can narrow I and increasing
the choices of θ from one point to an open interval, i.e.,
frac(I ′ + cjUj) ⊂ frac(I + θcj) for open I ′ ⊂ I and Ujs. In this way, we get
enough choices of θαs.
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Without enlarge the interval frac(I + θcj), we can narrow I and increasing
the choices of θ from one point to an open interval, i.e.,
frac(I ′ + cjUj) ⊂ frac(I + θcj) for open I ′ ⊂ I and Ujs. In this way, we get
enough choices of θαs.
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Thank you!
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