On the reals weakly low for K

Wolfgang Merkle Liang Yu

University of Heidelberg

Nanjing University

April 27, 2015

M and Y (H and N)

On the reals weakly low for K

3 April 27, 2015 1 / 19

3 🕨 🖌 3 🕨

(Weak) lowness for K

Definition

- A real x is low for K if $\overline{\lim}_{n\to+\infty} K(n) K^{x}(n) < +\infty$.
- A real x is weakly low for K if $\underline{\lim}_{n \to +\infty} K(n) K^{x}(n) < +\infty$.

< ロ > < 同 > < 三 > < 三 >

Theorem (Hirschfedlt, Nies and Stephan)

A real x is low for K if and only if $\overline{\lim}_{n\to+\infty} K(x \upharpoonright n) - K(n) < +\infty$ (or x is K-trivial).

Theorem (Hirschfedlt, Nies and Stephan)

A real x is low for K if and only if $\overline{\lim}_{n\to+\infty} K(x \upharpoonright n) - K(n) < +\infty$ (or x is K-trivial).

Theorem (Miller)

A real x is weakly low for K if and only if Ω is 1-x-random (or x is low for Ω).

Preliminary results (II)

Ample Excess Lemma

Lemma (Miller and Y)

A real r is 1-random if and only if $\exists c \forall n(K(r \upharpoonright n) - n \ge K^{r}(n) - c)$.

Coding Theorem

Theorem (Chaitin and Levin) $\overline{\lim}_{n \to +\infty} \sum_{\sigma \in 2^n} 2^{-K(\sigma)} - 2^{-K(n)} < +\infty.$

- 4 同 6 4 日 6 4 日 6 - 日

How weak are weakly low for K reals?

They are GL_1 and so incomplete. They have measure 1.

(日)

How weak are weakly low for K reals?

They are $\operatorname{GL}\nolimits_1$ and so incomplete. They have measure 1.

Are they really powerless over a real?

Low for K along a real

Definition

A real x is low for K along a real z if $\overline{\lim}_{n \to +\infty} K(z \upharpoonright n) - K^{x}(z \upharpoonright n) < +\infty.$

M and Y (H and N)

(日)

Low for K along a real

Definition

A real x is low for K along a real z if $\overline{\lim}_{n \to +\infty} K(z \upharpoonright n) - K^{\times}(z \upharpoonright n) < +\infty.$

Is there a non K-trivial real low for K along a real?

Theorem (Merkle and Y)

x is K-trivial if and only if x is low for K along a real.

Proof.

If $K(n) - K^{\mathsf{x}}(n) > d$ at stage s, then put $(K(\sigma)[s] - d, \sigma)$ into M^{x} for any $\sigma \in 2^n$ unless $\sum_{\sigma \in 2^n} 2^{-K(\sigma)[s]+d} > 2^{-K^{\mathsf{x}}(n)[s]}$. By the coding theorem, $K_{M^{\mathsf{x}}}(\sigma) < K(\sigma) - d$ for any $\sigma \in 2^n$.

< ロ > < 同 > < 三 > < 三 >

Weakly low for K along a real

Definition

A real x is weakly low for K along a real z if $\underline{\lim}_{n \to +\infty} K(z \upharpoonright n) - K^{\times}(z \upharpoonright n) < +\infty.$

(日)

Theorem (Merkle and Y)

A real x is weakly low for K if and only if the set of reals z so that x is weakly low for K reals along z has measure 1.

Proof. Applying the Coding Theorem.

A case study

Let
$$S_n = \{ \sigma \in 2^{\omega} \mid \exists \tau (\sigma = \tau^{1} 0^n 1) \}.$$

Theorem (Merkle and Y)

x is not K-trivial if and only if for any c and m, there are some $n \ge m$ and $\sigma \prec \Omega$ in S_n so that $K^{x}(\sigma) \le K(\sigma) - c$.

Lemma

If $T \subseteq 2^{<\omega}$ is a \emptyset' -recursive tree having infinitely many infinite paths, then for any c and uniformly recursive sequence disjoint infinite sets $\{S_n\}_{n\in\omega}$, there is some m such that for any $n \ge m$ there is some i such that for any $k \ge i$ in S_n , there is some $x \in [T]$ so that $K^x(k) < K(k) - c$.

- 4 同 6 4 日 6 4 日 6

Question

Is it true that for any weakly low for K real x, $\underline{\lim}_{n \to +\infty} (K(\Omega \upharpoonright n) - K^{\times}(\Omega \upharpoonright n) < +\infty)?$

M and Y (H and N)

On the reals weakly low for K

April 27, 2015 11 / 19

3

▲御▶ ▲ 臣▶ ▲ 臣▶

On scatted sets (1)

Theorem (Merkle and Y)

- For any infinite set A, $\{x \mid \lim_{m \in A} K(m) K^{x}(m) = +\infty\}$ is null.
- **2** For any infinite set A, $\{x \mid \overline{\lim}_{n \in A} K(n) K^{x}(n) = +\infty\}$ is conull.

Proof.

For (1). Let $\tilde{K}(m) = \min\{n \mid \mu(\{x \mid K^{x}(m) \ge n\}) < \frac{1}{4}\}$. Then $\overline{\lim}_{m} K(m) - \tilde{K}(m) = +\infty$. Let $B_{m} = \{(x, y) \mid \exists k \le \tilde{K}(m)(U^{x}(y \upharpoonright k) = m)\}$ and $B = \bigcup_{m} B_{m}$. For $m_{0} \ne m_{1}, B_{m_{0}} \cap B_{m_{1}} = \emptyset$. Moreover by the Fubini theorem, for every $m, \mu(B_{m}) \ge \int_{K^{x}(m) < \tilde{K}(m)} 2^{-\tilde{K}(m)} dx \ge \frac{3}{4} \cdot 2^{-\tilde{K}(m)}$. Then $1 \ge \mu(B) = \sum_{m} \mu(B_{m}) \ge \sum_{m} \frac{3}{4} \cdot 2^{-\tilde{K}(m)}$. So $2^{-\tilde{K}(m)} < +\infty$, a contradiction.

Proof. For (2). A simpler 2^{*c*}-proof plus Cantor–Cantelli lemma.

M and Y (H and N)

On the reals weakly low for K

April 27, 2015 13 / 19

イロト イポト イヨト イヨト 三日

A natural question is whether the set in (2) can be co-countable?

3

3 🕨 🖌 3 🕨

Image: A matrix and a matrix

A natural question is whether the set in (2) can be co-countable?

Theorem (Merkle and Y)

There is an infinite set A so that the set $R_A = \{x \mid \exists c \forall n \in A(K^x(n) \ge K(n) - c)\}$ is uncountable.

Proof.

By (1) and Shoenfield absolutenss via Mathias Forcing.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

For any x and c, let $A_{x,c} = \{n \mid K^x(n) \ge K(n) - c\}.$

Definition

 $x \ge_{WLK} y$ if for any constant c, there is a constant d so that $A_{x,c} \subseteq A_{y,d}$.

So if x is weakly low for K, then $y \leq_{LK} x \implies y \leq_{WLK} x$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Countability of WLK-degrees

Theorem (Merkle and Y)

If $x \ge_{WLK} y$ and is weakly low for K, then $x' \ge_{LK} y'$.

M and Y (H and N)

On the reals weakly low for K

April 27, 2015 16 / 19

3

(日)

Question

Is it true that if x is weakly low for K, then $y \leq_{WLK} x \implies y \leq_{LK} x$?

M and Y (H and N)

On the reals weakly low for K

April 27, 2015 17 / 19

3

- ₹ 🖬 🕨

An application to non-gap theory

Theorem (Miller)

x is 2-random if and only if $\underline{\lim}_{n\to+\infty} n + K(n) - K(x \upharpoonright n) < +\infty$.

イロト 不得 トイヨト イヨト 二日

An application to non-gap theory

Theorem (Miller)

x is 2-random if and only if $\underline{\lim}_{n\to+\infty} n + K(n) - K(x \upharpoonright n) < +\infty$.

Theorem (Merkle and Y)

For any f with $\overline{\lim}_n K(n) - f(n) = +\infty$, there is a weakly-2-random real x which is not 2-random but $\overline{\lim}_{n\to+\infty} K(x \upharpoonright n) - n - f(n) > -\infty$.

Proof.

Applying random forcing and (1).

イロト 不得 トイヨト イヨト 二日

Finish

M and Y (H and N)
-----------	---------	---

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの