On the speed of the one-dimensional polymer in the large range regime

Chien-Hao Huang

Institute of Mathematics, Academia Sinica
Workshop on stochastic porcesses in random media

May 132015

Outline

(1) Weakly self-avoiding walk

- Self-avoiding walk
- number of self-intersection
(2) Discrete/Continuous setting
- The model
- LLN, CLT and LDP
(3) New Hamiltonian
- The model
- Results and comparisons

Self-avoiding walk

- An N-step self-avoiding walk ω on \mathbb{Z}^{d}, beginning at the site x, is defined as a sequence of sites $(\omega(0), \omega(1), \ldots, \omega(N))$ with $\omega(0)=x$, satisfying $|\omega(j+1)-\omega(j)|=1$, and $\omega(i) \neq \omega(j) \forall i \neq j$.
- Let c_{N} be the number of N-step self-avoiding walks beginning at the origin.
- Mean-square displacement

$$
\left.\left.\langle | \omega(N)\right|^{2}\right\rangle=\frac{1}{c_{N}} \sum_{\omega:|\omega|=N}|\omega(N)|^{2}
$$

- $\left.\left.\langle | \omega(N)\right|^{2}\right\rangle \sim D N^{2 \nu}$. Conjecture: $d=2, \nu=\frac{3}{4} ; d=3, \nu=0.588 \ldots$; $d \geq 4, \nu=\frac{1}{2}$.
- $d \geq 5$ proved by Hara and Slade 1992 .

Weakly self-avoiding walk

- A sequence of random variable $\left(S_{n}\right)_{n \in \mathbb{N} \cup 0}$ with $S_{0}=0$ and $S_{n}=\sum_{i=1}^{n} X_{i}$, where $\left(X_{i}\right)_{i \in \mathbb{N}}$ is a sequence of IID random variables. The distribution of X_{i} 's is

$$
P\left(X_{1}=x\right)= \begin{cases}\frac{1}{2 d}, & x \in \mathbb{Z}^{d} \text { with }\|x\|=1 \\ 0, & \text { otherwise }\end{cases}
$$

The random process $\left(S_{n}\right)_{n \in \mathbb{N} \cup 0}$ is called the simple symmetric random walk (SSRW) on \mathbb{Z}^{d}.

- Fix $n \in \mathbb{N}$ and a parameter $\beta \in(0, \infty)$, we define the polymer measure P_{n}^{β} on $S=\left(S_{0}, S_{1}, \ldots, S_{n-1}\right)$ by

$$
\begin{equation*}
P_{n}^{H}(S):=\frac{1}{Z_{n}^{H}} e^{-\beta H_{n}(S)} P(S), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{n}^{H}:=E\left(e^{-\beta H_{n}}\right) \text { and } H_{n}(S):=\sum_{i, j=0 ; i \neq j}^{n-1} \mathbf{1}_{S_{i}=S_{j}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
P_{n}^{H}(S):=\frac{e^{-\beta H_{n}(S)}}{E\left(e^{-\beta H_{n}}\right)} P(S) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{n}(S):=\sum_{i, j=0 ; i \neq j}^{n-1} \mathbf{1}_{S_{i}=S_{j}}=\sum_{x \in \mathbb{Z}^{d}} \ell_{n}^{2}(x)-n \tag{4}
\end{equation*}
$$

is the self-intersection local time up to time n, and

$$
\ell_{n}(x)=\#\left\{0 \leq i \leq n-1: S_{i}=x\right\}, \quad x \in \mathbb{Z}^{d}
$$

is the local time at site x up to time $n . \beta$ is called the strength of the self-repellence. The path receives a penalty $e^{2 \beta}$ when the path self-intersects itself. This model is also called the weakly self-avoiding walk. $\beta=0$, SSRW; $\beta=\infty$, SAW.

- $\hat{H}_{n}:=\sum_{x \in \mathbb{Z}} \ell_{n}^{2}(x)$.

Flory's argument 1949

- The heuristic of this model is that if the end-point of the path S has the scale α_{n},

$$
\begin{equation*}
H_{n} \approx \sum_{x \in \mathbb{Z}^{d}}\left(\frac{n}{\alpha_{n}^{d}}\right)^{2} \approx \alpha_{n}^{d} \times\left(\frac{n}{\alpha_{n}^{d}}\right)^{2} \tag{5}
\end{equation*}
$$

On the other hand, by the local limit theorem of SSRW,

$$
\begin{equation*}
P\left(\left|S_{n}\right|=\alpha_{n}\right) \approx \exp \left(-C \alpha_{n}^{2} / n\right) \tag{6}
\end{equation*}
$$

Combine this with (5),

$$
\log Z_{n}^{H} \approx-\beta \frac{n^{2}}{\alpha_{n}^{d}}-C \frac{\alpha_{n}^{2}}{n}
$$

Let $\frac{n^{2}}{\alpha_{n}^{d}}=\frac{\alpha_{n}^{2}}{n}$, we get $\alpha_{n}=n^{\frac{3}{d+2}}$. It is expected that $E_{n}^{H}\left(\left|S_{n}\right|\right) \sim n^{\frac{3}{d+2}}$ for $d=1,2,3$, and $E_{n}^{H}\left(\left|S_{n}\right|\right) \sim n^{1 / 2}$ for $d \geq 4$ with a logarithmic correction when $d=4$. $d \geq 5$ proved by Brydges and Spencer 1985 (Lace expansion for weak interaction).

Known results in 1D in the discrete setting

$P_{n}^{H}(S):=\frac{e^{-\beta H_{n}(S)}}{Z_{n}^{H}} P(S), Z_{n}^{H}:=E\left(e^{-\beta H_{n}}\right)$.
Theorem (Ballistic behavior Bolthausen 1990)
For small $\beta>0$, there exists a $c(\beta)>0$ such that

$$
\lim _{n \rightarrow \infty} P_{n}^{H}\left(c \leq\left|\frac{S_{n}}{n}\right| \leq 1 / c\right)=1 .
$$

Theorem (LDP Geven and den Hollander 1993) $\theta>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P_{n}^{H}\left(\left\{S_{n} / n \sim \theta\right\} \mid S_{n}>0\right)= \begin{cases}J_{\beta}(\theta), & \theta^{* *}(\beta) \leq \theta, \\ I_{\beta}(\theta), & \theta<\theta^{* *}(\beta),\end{cases}
$$

$\theta^{*}(\beta)$ is the unique zero of J_{β}. $0<\theta^{* *}(\beta)<\theta^{*}(\beta)$.

Known results in 1D in the discrete setting

Theorem (CLT Konig 1996)
$\forall C \in \mathbb{R}$, there exists $\theta^{*}(\beta)>0, \sigma^{*}(\beta)>0$ such that

$$
\lim _{n \rightarrow \infty} P_{n}^{H}\left(\left.\frac{S_{n}-\theta^{*}(\beta) n}{\sigma^{*}(\beta) \sqrt{n}} \leq C \right\rvert\, S_{n}>0\right)=\Phi(C)
$$

where $\frac{1}{\sigma^{* 2}(\beta)}=\left.\frac{\partial^{2}}{\partial \theta^{2}} J_{\beta}(\theta)\right|_{\theta=\theta^{*}(\beta)}$.

Known results in the continuous setting

Let B_{t} be the d-dimensional Brownian motion, the Hamiltonian is

$$
\begin{equation*}
H_{t}(B):=\int_{0}^{t} d s \int_{0}^{t} d u \delta_{0}\left(B_{s}-B_{u}\right) \tag{7}
\end{equation*}
$$

However, H_{t} is infinity when the dimension is higher than one. Past results used truncations to obtain the polymer measure as a weak limit. $d=2$, Varadhan 1969, d=3 Westwater 1984 and Bolthausen 1993.
For d=1, LLN Westwater 1980; CLT van der Hofstad, den Hollander and Konig 1997; LDP van der Hofstad, den Hollander and Konig 2003.

New Hamiltonian

We discuss the model with a weaker Hamiltonian

$$
\begin{equation*}
G_{n}:=\frac{n^{2}}{R_{n}} \tag{8}
\end{equation*}
$$

where R_{n} is the number of sites occupied by the walk up to time $n-1$, that is,

$$
\begin{equation*}
R_{n}:=\#\left\{x: \exists i, S_{i}=x, 0 \leq i \leq n-1\right\} . \tag{9}
\end{equation*}
$$

For "weaker" we mean that

$$
\begin{equation*}
\left[\sum_{x \in \mathbb{Z}^{d}} \ell_{n}^{2}(x)\right] \cdot\left[\sum_{x \in \mathbb{Z}^{d}} \mathbf{1}_{\ell_{n}(x)>0}\right] \geq\left[\sum_{x \in \mathbb{Z}^{d}} \ell_{n}(x)\right]^{2}=n^{2} \tag{10}
\end{equation*}
$$

We have

$$
\begin{equation*}
\hat{H}_{n} \geq \frac{n^{2}}{R_{n}}=G_{n} \tag{11}
\end{equation*}
$$

Theorem (Hamana and Kesten 2002)

$$
\begin{equation*}
I(x)=\lim _{n \rightarrow \infty} \frac{-1}{n} \log P\left\{R_{n} \geq x n\right\} \tag{12}
\end{equation*}
$$

exists in $[0, \infty]$ for all x. $I(x)$ is continuous on $[0,1]$ and strictly increasing on $\left[\gamma_{d}, 1\right]$, and for $d \geq 2, I(x)$ is convex on $[0,1]$. Furthermore,

$$
\begin{gather*}
I(x)=0 \text { for } x \leq \gamma_{d} \\
0<I(x)<\infty \text { for } \gamma_{d}<x \leq 1 \tag{13}\\
I(x)=\infty \text { for } x>1
\end{gather*}
$$

Note that $I(1)=\log 2 d$. When $d=1$ and S is the SSRW, $I(x)$ can be found explicitly. For $0 \leq x \leq 1$

$$
\begin{equation*}
I(x)=\frac{1}{2}(1+x) \log (1+x)+\frac{1}{2}(1-x) \log (1-x) . \tag{14}
\end{equation*}
$$

- $G_{n}:=\frac{n^{2}}{R_{n}}, Z_{n}^{G}:=E\left(\exp \left(-\beta G_{n}\right)\right)$.
- The polymer measure is then defined by $P_{n}^{G}(S):=\frac{1}{Z_{n}^{G}} e^{-\beta G_{n}(S)} P(S)$.

Theorem

(i) For $\beta>0, \lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}^{G}=g^{*}(\beta)$, where

$$
\begin{equation*}
g^{*}(\beta):=-\inf _{c \in[\tilde{c}(\beta), 1]}\left\{\frac{\beta}{c}+I(c)\right\} \tag{15}
\end{equation*}
$$

and $\tilde{c}(\beta)=\frac{\beta}{\beta+\log 2 d}$.
(ii) $d=1$, the infimum is obtained at $c^{*}(\beta)$, where $c^{*}(\beta)$ is the solution of

$$
\begin{equation*}
\beta=c^{2} I^{\prime}(c)=\frac{c^{2}}{2} \log \left(\frac{1+c}{1-c}\right) . \tag{16}
\end{equation*}
$$

Note that c^{*} is strictly monotone $\left(d c^{*}(\beta) / d \beta=\sigma^{*}(\beta)^{2} / c^{*}(\beta)^{2}>0\right)$, $\beta^{-1 / 3} c^{*}(\beta) \rightarrow 1$ as $\beta \rightarrow 0$ and $e^{2 \beta}\left(1-c^{*}(\beta)\right) \rightarrow 2$ as $\beta \rightarrow \infty$.
Furthermore, $\beta^{-2 / 3} g^{*}(\beta) \rightarrow-\frac{3}{2}$ as $\beta \rightarrow 0$.

Theorem
$(L L N$ and LDP) $d=1$ and $\theta>0$,
$\lim _{n \rightarrow \infty} \frac{1}{n} \log P_{n}^{G}\left(\left.\left\{\frac{S_{n}}{n} \sim \theta\right\} \right\rvert\, S_{n}>0\right)= \begin{cases}-\frac{\beta}{\theta}-I(\theta)-g^{*}(\beta), & c^{*}\left(\frac{\beta}{2}\right) \leq \theta, \\ -\frac{\beta}{\tilde{r}}-I(2 \tilde{r}-\theta)-g^{*}(\beta), & \theta<c^{*}\left(\frac{\beta}{2}\right),\end{cases}$
where $\tilde{r}=\tilde{r}_{\beta}(\theta)$ is the solution of $\beta=2 r^{2} I^{\prime}(2 r-\theta)$.

Theorem
$(C L T) d=1, \forall C \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} P_{n}^{G}\left(\left.\frac{S_{n}-c^{*}(\beta) n}{\sigma^{*}(\beta) \sqrt{n}} \leq C \right\rvert\, S_{n}>0\right)=\Phi(C)
$$

where $\frac{1}{\sigma^{* 2}(\beta)}=\left.\left(\frac{\beta}{\theta}+I(\theta)\right)^{\prime \prime}\right|_{\theta=c^{*}(\beta)}=\frac{2 \beta}{c^{* 3}(\beta)}+\frac{1}{1-c^{*}(\beta)^{2}} . \quad \sigma^{*}(\beta) \rightarrow \frac{1}{\sqrt{3}}$ as $\beta \rightarrow 0$ and $e^{\beta} \sigma^{*}(\beta) \rightarrow 2$ as $\beta \rightarrow \infty$.

- $G_{t}:=\frac{t^{2}}{R_{t}^{1}}, Z_{t}^{G}:=E\left(\exp \left(-\beta G_{t}\right)\right) . R_{t}^{\epsilon}:=\left|\bigcup_{s \leq t} B_{\epsilon}\left(B_{t}\right)\right|$.
- The polymer measure is then defined by $d P_{t}^{G}:=\frac{e^{-\beta G_{t}}}{Z_{t}^{G}} d P$.

Theorem

(i) For $\beta>0$ and any d,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{t} \log Z_{t}^{G}=g^{* *}(\beta) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
g^{* *}(\beta):=-\inf _{c \in\left[\tilde{\beta}_{d}, \infty\right)}\left\{\frac{\beta}{c}+J(c)\right\} \tag{18}
\end{equation*}
$$

and $\tilde{\beta_{d}}:=\frac{1}{2}\left(\frac{\beta}{w_{d-1}}\right)^{1 / 3} . w_{d-1}$ is the volume of the unit ball in $(d-1)$-dimension. Set also $w_{0}=1$.
(ii) For $d=1$, the infimum is obtained at $c^{* *}(\beta)=\beta^{1 / 3}$ and $g^{* *}(\beta)=-\frac{3}{2} \beta^{2 / 3}$. Moreover, $Z_{t}^{G} \sim \frac{8}{\sqrt{3}} e^{g^{* *}(\beta) t}$.

Theorem (Hamana and Kesten 2002)

$$
\begin{equation*}
J(x)=\lim _{n \rightarrow \infty} \frac{-1}{t} \log P\left\{R_{t}^{1} \geq x t\right\} \tag{19}
\end{equation*}
$$

exists in $[0, \infty)$ for all $x . J(x)$ is continuous on $[0, \infty)$ and strictly increasing on $\left[C_{d}, \infty\right)$, and for $d \geq 2, J(x)$ is convex on $[0, \infty)$.
Furthermore,

$$
\begin{array}{r}
J(x)=0 \text { for } x \leq C_{d} \\
0<J(x)<\infty \tag{20}\\
\text { for } C_{d}<x
\end{array}
$$

For $d=1, J(x)=\frac{x^{2}}{2}$ for $x \geq 0 . C_{d}$ is the heat capacity of the unit ball for the d-dimension Brownian motion.

Theorem
$(L L N$ and LDP) $d=1$ and $\theta>0$,
$\lim _{t \rightarrow \infty} \frac{1}{t} \log P_{t}^{G}\left(\left\{B_{t} / t \sim \theta\right\} \mid B_{t}>0\right)= \begin{cases}-\frac{\beta}{\theta}-\frac{\theta^{2}}{2}-g^{* *}(\beta), & \sqrt[3]{\frac{\beta}{2}} \leq \theta, \\ -\frac{\beta}{\bar{r}}-\frac{(2 \bar{r}-\theta)^{2}}{2}-g^{* *}(\beta), & \theta<\sqrt[3]{\frac{\beta}{2}}\end{cases}$
where $\bar{r}=\bar{r}_{\beta}(\theta)$ is the solution of $\beta=2 r^{2}(2 r-\theta)$.
Theorem
$(C L T) d=1, \forall C \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} P_{t}^{G}\left(\left.\frac{B_{t}-c^{* *}(\beta) t}{\sigma^{* *}(\beta) \sqrt{t}} \leq C \right\rvert\, B_{t}>0\right)=\Phi(C) \tag{21}
\end{equation*}
$$

where $c^{* *}(\beta)=\beta^{1 / 3}$ and $\sigma^{* *}(\beta)=\frac{1}{\sqrt{3}}$.

In the case $d=1$, we have the explicit formula of the density of

$$
R_{t}:=\max _{0 \leq s \leq t} B_{s}-\min _{0 \leq s \leq t} B_{s}=R_{t}^{1}-2
$$

From Feller 1951,

$$
P\left(R_{t} \in d r\right)=\frac{8}{\sqrt{t}} \sum_{k=1}^{\infty}(-1)^{k-1} k^{2} \phi\left(\frac{k r}{t^{1 / 2}}\right),
$$

where $\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
$E e^{-\beta \frac{t^{2}}{R_{t}}} \approx \exp \left(-\beta \frac{t^{2}}{r}\right) \exp \left(-\frac{k^{2} r^{2}}{t}\right)$.

We can also compute the joint distribution of B_{t} and R_{t} under the condition $B_{t}>0$. For $0<x<r$,

$$
\begin{aligned}
& P\left(B_{t} \in d x, R_{t} \in d r, B_{t}>0\right)=\frac{r-x}{t \sqrt{t}} \cdot\left\{\sum_{k=-\infty}^{\infty} 4 k^{2}\left[-1+\left(\frac{2 k r-x}{\sqrt{t}}\right)^{2}\right] \phi\left(\frac{2 k r-x}{\sqrt{t}}\right)\right\} \\
& +\sum_{k=1}^{\infty}\left\{4 k(k-1)\left(\frac{2 k r-x}{t \sqrt{t}}\right) \phi\left(\frac{2 k r-x}{\sqrt{t}}\right)-4 k(k+1)\left(\frac{2 k r+x}{t \sqrt{t}}\right) \phi\left(\frac{2 k r+x}{\sqrt{t}}\right)\right\} .
\end{aligned}
$$

Comparisons and Remarks

- van der Hofstad 1998 had numerical results for the speed and the variance of the speed in Edwards model, that is, $c^{* *}(\beta) \beta^{-1 / 3} \in[1.104,1.124]$ and $\sigma^{* *}(\beta) \in[0.60,0.66]$, while we have 1 and $1 / \sqrt{3} \fallingdotseq 0.577$ in our model.
- Our Hamiltonian is well-defined.
- Recently, SAW in $d=2,3$ is sub-ballistic Duminil-Copin and Hammond 2013.
- Recently, WSAW in $\mathrm{d}=4$ is diffusive with $\sqrt{T}(\log T)^{1 / 8}$ Bauerschmidt, Brydges and Slade.

