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1. Directed polymer problems and universality claim

Introduction



Polymers in random media 2

Directed polymers: are paths 7
in space-time (¢ time, z € R?
space) directed in the
t-direction.

Random media: w(x,t)

Energy of a polymer
f( e w(z,t)dzdt

Measure on T:

with Py a reference measure, 8 > 0 the inverse temperature,
e PH(™) the Boltzmann weight.
Partition function (quenched: depends on the randomness):

7B .— /eﬁH(“)dPo(w)
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Polymers in random media - an example 3

We can consider for example:
o P the law of a simple random walk of length n:
m=(0,7(1),7(2),...,m(n))
o w={w(i,j),i,j € Z} with w(i,7) iid random variables

@ Measure proportional to e~ #H(m) = P L@ pen @)

Extreme cases:
0 = 0: H becomes irrelevant, one sees only simple random walks
f = oo: The measure concentrates on paths 7 with minimal H ()

Introduction



Polymers in random media - questions 4

Some questions on polymers in random media

Q1 How large are the transversal fluctuations? Determine ¢ such
that
m(n)| =0, n> 1

Q2 Consider the free energy: Fjp := %ln(Z(B)). Determine x such
that
Var(Fg) =~ n?X, n> 1.

Q3 Determine the asymptotic laws of fluctuations for 7(n) and
Fp.
Q4 How do the results depend on 3 and the dimension d?

Introduction



d = 1 case: universality predictions

d =1 and d = 2 are the physically relevant situations
What is it expected by universality?

From now on we focus on the d = 1 case only. Under weak
assumptions on the law of the w(i, j)'s one expects the followings:

o Critical temperature with change of behavior is § = 5. =0
(infinite temperature)

e For any 8 > 0, the scaling exponent are

Foster,Nelson,Stephen’77;van Beijeren,Kutner,Spohn’85

x=1/3, ¢(=2/3

which are the scaling exponents of the KPZ universality class
Kardar,Parisi,Zhang’86

Introduction



d = 1 case: universality claim for point-to-point

Now we consider the point-to-point geometry.
@ Let Py be the law of a directed path pinned at (x, 7), ZI()IBJ),
Fég) the corresponding partition functions / free energy.
o Let fé{i) be the law of large number of Fég):
1
9z, 7) = lim —Fég)(xn,Tn).

PP n—oo N,

t, time
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d = 1 case: universality claim for point-to-point

Now we consider the point-to-point geometry.

@ Let Py be the law of a directed path pinned at (x, 7), ZI(;g),
Fég) the corresponding partition functions / free energy.

o Let féﬁ) be the law of large number of Fég):

fég) (x,7) = nh_)n(r)lo %Fég) (xn,Tn).

@ Universality claim: there exists a universal limit process A
such that, for any 8 > 0, there are model-dependent
constants ¢y, co, c3 S.t.

o1 _
nILIEO s [Fég) (xn®,Tn) — nflgg) (zn°~1 1) | = 1 A(caz, c37).
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d = 1 case: universality claim for point-to-point

Now we consider the point-to-point geometry.

@ Let Py be the law of a directed path pinned at (x, 7), ZI(;g),

Fég) the corresponding partition functions / free energy.

o Let féﬁ) be the law of large number of Fég):
1
B8) — lim —F®8
fép (x,7) = nh_)n(r)lo anp)(am,Tn).
@ Universality claim: there exists a universal limit process A
such that, for any 8 > 0, there are model-dependent
constants ¢y, co, c3 S.t.

F{P (an, mn) — nfi@ (znt=, 1)| = c1 A(coz, es7).

lim — oD

n—o0 NX [

@ At zero temperature 8 = oo, for special models proven that
x=1/3,{ =2/3; x — A(z, 1) is the Airys process, with
one-point distribution the GUE Tracy-Widom Foug

Baik,Deift,Johansson,Prédhofer,Spohn,Sasamoto,Borodin,Ferrari,

Péché,Corwin,Veto,Seppédlédinen,Valko,...
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2. Semi-discrete directed polymer:

a solvable model at positive temperature




Semi-discrete directed polymer 8

The polymer model we consider is a limit of the following generic
situation:

@ i.i.d. random variables (finite second moment)

@ reference measure: one-sided discrete time simple random
walk

Taking the limit to continuous time one gets the semi-discrete
directed polymer model (a.k.a. O'Connell-Yor directed polymer
model)



Semi-discrete directed polymer 9

Semi-discrete directed polymer model at positive temperature
0’Connell-Yor’01
@ Path measure Py: Continuous . (tN)
time one-sided simple random Nr e o
walk from (0, 1) to (¢, N).
The directed polymer is 3

!

-.ucwl_.nw'

. . . |
arameterized by the jump times 2
p Y Jump . —

O<ti <ta<...<ty_1 <t

t b, ¢

@ Random media: for each k € N, let By an independent
standard Brownian motion. The energy is given by

—H(7) = Bi(t1)+(Ba(t2)—Ba(t1))+. . .+(Bn(t)—Bn(tn-1))




10

Semi-discrete directed polymer - law of large numbers

N = (64)
R,
@ By Brownian scaling wlog 5 =1 3 I
- . 2
@ Partition function: ) I 2

t. £,

Zn(t) ::/ eB1(t1)+(Ba(t2) = B2(t1)+-+ (BN ) =BN(N-1) gt | dtn_;.
0

<t1<te<..<tny_1<t

o Law of large numbers: for any x > 0,

F(r) = Tim %FN(KN)E ngnoo%mZN(mN):gg(m—(mr)/(t)).

N—oo
0’Connell-Yor’01;Moriarty,0’Connell’07

What about fluctuations of Fy (kN)?



Semi-discrete directed polymer - fluctuations

Theorem (Borodin,Corwin,Ferrari'12)

For any k > 0,
. Fn(kN) — Nf(k) _
yo P < c(k)N1/3 <7 )= Fous(r)

where ¢(k) = (—%\If”([qf’]_l(m)))l/S (¥ is the digamma
function), and Fgug the GUE Tracy-Widom distribution function.

4

(Further results available for Brownian motions with drifts where
the distribution is the Baik-Ben Arous-Péché distribution)




3. Continuous Directed Random Polymer (CDRP)




Continuous directed random polymers and KPZ equation13

The continuous directed random polymer (CDRP) is the natural
fully-continuous scaling limit of discrete models
Alberts,Khanin,Quastel’12
@ the background noise is white noise W
@ the reference measure Py is the law of a Brownian motions.
The partition function of a CDRP is given by

2(0.%) =Enx (20w(0) o0+ { - [ aswa(s)0)})

where the expectation is with respect Brownian paths, ,
backwards in time with 7(7) = X.

@ One can recover the partition function of the CDRP from the
semi-discrete by taking t = vVI'N + X and N — o0, i.e., for a
function C(N, X, T) Moreno Flores,Quastel,Remenik

Z(VTN + X, N)
C(N,X,T)

= Z(T, X)



Semi-discrete and continuous directed random polymers 14

Recall that
Zn(t) :_/ ¢B1(01)+(Bata) = Ba(t) 4ot By (=B (- gy dtn .
0<t1<to<..<ty_1<t
@ The quantity u(t, N) := e~ 'Zy(t) satisfies
du(t,N) = (u(t, N — 1) — u(t, N)) 4+ u(t, N)By(t)
with initial condition (0, N) = 01 .

o ()
W
s
3
N |
i .
t t, £



Semi-discrete and continuous directed random polymers 14

@ The quantity u(t, N) := e~ Zy(t) satisfies
Duult, N) = (ult, N — 1) — u(t, N)) + u(t, N) By (1)
with initial condition (0, N) = 01 .

@ The partition function of the CDRP Z(T, X)) satisfies

1 .
orZ = 533(2 + ZW

with initial conditions Z(0, X) = do(X).




Continuous directed random polymers

Theorem (Borodin,Corwin,Ferrari'12)
For any T > 0 and S with R(S) > 0 it holds

3 oT/4!
E (6 SZ(1,0) ) =det(1 — K)2g,)

where, with o = (2/T)/3,

K O'7TS(Z w)o ez3/3—zn’
(n.11) (27i)? / L4iR / +1R sin(om(z — w)) ew?/3—wn’

Our result is actually more general. This formula obtained also
from the weakly ASEP to approach KPZ was obtained by

Sasamoto,Spohn’10;Amir,Corwin,Quastel’10




Continuous directed random polymers

@ In arXiv:1407.6977 with Borodin, Corwin, and Vet6 we obtain
the analogue result for the stationary case, i.e., the solution of

1 .
orZ = §a§<z +ZW

with initial conditions Z(0, X) being any two-sided standard
Brownian motion with fixed drift.

@ The stationary case was considered also using replica
approach Sasamoto, Imamura’13




4. Continuous Directed Random Polymer and KPZ equation




The KPZ equation

e The Kardar-Parisi-Zhang (KPZ) equation is one of the models
in the KPZ universality class, class of irreversible stochastic
random growth models. Kardar,Parisi,Zhang’86

@ The KPZ equation writes (by a choice of parameters) in
one-dimension is

Orh = $0%h + $(0xh)* + W
where W is the space-time white noise

@ Stationary initial conditions are two-sided Brownian motions
with fixed drift.



The KPZ and SHE equations

o KPZ equation
Orh = 18Xh + 5 (ﬁxh) + W

= Problem in defining the object (Oxh)?.
For a way of doing it, see Hairer's work (Fields Medal 2014)

Hairer’11

@ Setting h = In Z (and ignoring the Itd-correction term) one
gets the (well-defined) Stochastic Heat Equation (SHE):

Or2 = 3072 + ZW

@ Given the solution of the SHE with initial condition
Z(0,X) := M0X) one calls

(T, X) = In(Z(T, X))

the Cole-Hopf solution of the KPZ equation.



The KPZ and SHE equations

o KPZ equation
Orh = 30%h + 3[(0xh)? — oc] + W

= Problem in defining the object (Oxh)?.
For a way of doing it, see Hairer's work (Fields Medal 2014)

Hairer’11

@ Setting h = In Z (and ignoring the Itd-correction term) one
gets the (well-defined) Stochastic Heat Equation (SHE):

Or2 = 3072 + ZW

@ Given the solution of the SHE with initial condition
Z(0,X) := M0X) one calls

(T, X) = In(Z(T, X))

the Cole-Hopf solution of the KPZ equation.



The KPZ class

The KPZ universality class of stochastic growth models contains
for example:

o directed polymers (and last passage percolation as a
zero-temperature limit)

@ exclusion processes (partially asymmetric)
o growth models like polynuclear growth model or eden model

@ some random tilings (dynamics given by the shuffling

algorithms)
Universality:

@ Universality of fluctuations is expected in the large time limit

@ In some models with tunable parameter, there is universality
of the KPZ equation under appropriate “weak asymmetry”
scaling limit (remember Tuesday's talk by Caravenna).

@ However, the second universality is not required for the first
one



The KPZ class - a real experiment

Nematic liquid crystals: stable (black) vs metastable (gray) cluster
Takeuchi,Sano’10: PRL 104, 230601 (2010)
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5. Some hints on the methods



Method

Consider again the O'Connell-Yor semi-discrete directed polymer
model.
@ Starting point: a formula for the Laplace transform

E <€7UZN(t)> .
Q How to recover the distribution function?
@ One expects: In(Zy(kN)) =~ Nf(k) — c(k)NY3¢, ¢(r) > 0,

and ¢ a random variable GUE Tracy-Widom distributed.
o Set: u = e Nf(W+c(WNPr  Thep

c(k / -
E (e*“ZN(t)> =E (ee (onilee )> = E(le<,) =P(E <)

as N — 0.



Method

@ One could try to proceed using moments:

E (e—usz(nN)) n _» Z (_U)K}E ((ZN(F&N))E)

14
£>0

Problem: E ((Zy(kN))") ~ e’ so RHS not convergent :(

The exponential moments do not determine the distribution
function!

@ Replica trick uses formally the above “equality” and sums up
the terms canceling infinities to get the result



Method

@ Explicit Fredholm determinant expression for
B (e—uZN(t)> = det(1 + K.)12(c)

where Cy a small contour around 0 and K, is the kernel

Ky(v,0v') = i/ & L(v—1) \V usertstts’/2
R %JriRsin(ﬂs) I'(s+v—1) s+uv—1

Borodin,Corwin’11

- Problem: Asymptotics analysis restricted to k > k* > 0, so
the SHE limit is not reachable k ~ 1/v/N.



Method

@ Explicit Fredholm determinant expression for
B (e—uZN(t)> = det(1 + K.)12(c)

where Cy a small contour around 0 and K, is the kernel

i ds F'v—1 N s evtstts®/2
Ku(v,v’):/l (F ( ) )>
2

2 J1, gsin(mrs) \I'(s+v—1 s+uv—0

Borodin,Corwin’11

- Problem: Asymptotics analysis restricted to k > k* > 0, so
the SHE limit is not reachable x ~ 1/v/N.

@ Alternative Fredholm determinant expression, from Cy to Cg_,
which is good for asymptotic analysis for any x > 0 and even
when kK — 0 as N — oco. So-far obtainable only through
g-Whittaker process (see next) Borodin,Corwin,Ferrari’12



g-Whittaker process and g-TASEP

@ The configurations are elements on

W N
,)\(:\ ,Z\(:jir ‘ _ 9\2: . I?\;
[y < -y b
(n-1) (N-1) oo
ﬁ,,_lq D\N—Z 9\&
. .o (m)
) )\(q ’ D\J € Z
NN
[
X

o Let g € (0,1) be fixed. Particle A" jumps to the right with
rate

a/t ( ﬁ("‘]) (J_ 1{')\(::?—7\(;‘:71) ( {*q/)(‘?'.)‘(rl ) 9\(}.:; /ﬁ\k
rate = -
13 ( |- “'[/}{:\' f;\u‘:—.ui) 3:\-:,. . D\{"'_“
(k)

@ The set of coordinates A k>, forms what we call
q-TASEP. Have jump rate given by 1 — g8 to next particle

Method




g- TASEP and semi-discrete directed polymers

The relation between g-TASEP and the O'Connell-Yor model

Borodin,Corwin’11
@ Set ¢ = e and look at time t = 7 /2 with "packed” initial

condition.
@ Ase — 0,
3 Y
T _28ale] 2 T, [ T2l To
© £ ez er [ £
*— 2 4
T _ el T T el Ty
[T A3 el ¢ "%
i
?*E
| [
T ot T (el < I+ ) T 42lbel
& e e & o . e2

o In particular, —T% =1InZy(7) in distribution.



g-TASEP - analysis

@ Using Macdonald polynomials (generically)

Borodin,Corwin’11

or duality (for some initial conditions)

Borodin,Corwin,Sasamoto’13

one obtains expressions for
E (¢?N0)

e From this algebraic manipulations give (perfectly legal
g-version of the replica trick)

1 0 qe,\gf,v)(t)gz
E| —w— | =E
((qu)(”;q)m) (e:o (1—q)-(1-q)

= det(1 + K)




g-TASEP - analysis

1 _
El— | =det(1 +K)
((CqASV >(t)§Q)oo>

@ Then take ¢ — 1 limit of both sides:
- LHS — Laplace transform of semi-discrete directed polymer
- RHS — Fredholm determinant with kernel

i ds F(’U - 1) N usevts+t52/2
Ku(v’vl) - /1 (F ))
2

2 J1 gsin(rs) \I'(s+v—1 s+v—0

@ Take N — oo limit: difficulties in the asymptotics comes from

the poles of 1/sin(ws) in the kernel since no steep descent
path exists ...
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