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1. Directed polymer problems and universality claim
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Polymers in random media 2

Directed polymers: are paths π
in space-time (t time, x ∈ Rd
space) directed in the
t-direction.

Random media: ω(x, t)

Energy of a polymer:
−H(π) =

∫
(x,t)∈π ω(x, t)dxdt

Measure on π:

dP (β)(π) :=
1

Z(β)
e−βH(π)dP0(π)

with P0 a reference measure, β > 0 the inverse temperature,
e−βH(π) the Boltzmann weight.

Partition function (quenched: depends on the randomness):

Z(β) :=

∫
e−βH(π)dP0(π)
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Polymers in random media - an example 3

We can consider for example:

P0 the law of a simple random walk of length n:
π = (0, π(1), π(2), . . . , π(n))

ω = {ω(i, j), i, j ∈ Z} with ω(i, j) iid random variables

Measure proportional to e−βH(π) = eβ
∑

(x,t)∈π ω(x,t)

Extreme cases:

β = 0: H becomes irrelevant, one sees only simple random walks

β =∞: The measure concentrates on paths π with minimal H(π)
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Polymers in random media - questions 4

Some questions on polymers in random media

Q1 How large are the transversal fluctuations? Determine ζ such
that

|π(n)| ≈ nζ , n� 1.

Q2 Consider the free energy: Fβ := 1
β ln(Z(β)). Determine χ such

that
Var(Fβ) ≈ n2χ, n� 1.

Q3 Determine the asymptotic laws of fluctuations for π(n) and
Fβ.

Q4 How do the results depend on β and the dimension d?
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d = 1 case: universality predictions 5

d = 1 and d = 2 are the physically relevant situations

What is it expected by universality?

From now on we focus on the d = 1 case only. Under weak
assumptions on the law of the ω(i, j)’s one expects the followings:

Critical temperature with change of behavior is β = βc = 0
(infinite temperature)

For any β > 0, the scaling exponent are
Foster,Nelson,Stephen’77;van Beijeren,Kutner,Spohn’85

χ = 1/3, ζ = 2/3

which are the scaling exponents of the KPZ universality class
Kardar,Parisi,Zhang’86
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d = 1 case: universality claim for point-to-point 6

Now we consider the point-to-point geometry.

Let P0 be the law of a directed path pinned at (x, τ), Z
(β)
pp ,

F
(β)
pp the corresponding partition functions / free energy.

Let f
(β)
pp be the law of large number of F

(β)
pp :

f (β)pp (x, τ) = lim
n→∞

1

n
F (β)
pp (xn, τn).

Universality claim: there exists a universal limit process A
such that, for any β > 0, there are model-dependent
constants c1, c2, c3 s.t.

lim
n→∞

1

nχ

[
F (β)
pp (xnζ , τn)− nf (β)pp (xnζ−1, τ)

]
= c1A(c2x, c3τ).

At zero temperature β =∞, for special models proven that
χ = 1/3, ζ = 2/3; x 7→ A(x, 1) is the Airy2 process, with
one-point distribution the GUE Tracy-Widom FGUE
Baik,Deift,Johansson,Prähofer,Spohn,Sasamoto,Borodin,Ferrari,

Péché,Corwin,Veto,Seppäläinen,Valko,...
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2. Semi-discrete directed polymer:

a solvable model at positive temperature
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Semi-discrete directed polymer 8

The polymer model we consider is a limit of the following generic
situation:

i.i.d. random variables (finite second moment)

reference measure: one-sided discrete time simple random
walk

Taking the limit to continuous time one gets the semi-discrete
directed polymer model (a.k.a. O’Connell-Yor directed polymer
model)
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Semi-discrete directed polymer 9

Semi-discrete directed polymer model at positive temperature
O’Connell-Yor’01

Path measure P0: Continuous
time one-sided simple random
walk from (0, 1) to (t,N).
The directed polymer is
parameterized by the jump times
0 < t1 < t2 < . . . < tN−1 < t.

Random media: for each k ∈ N, let Bk an independent
standard Brownian motion. The energy is given by

−H(π) = B1(t1)+(B2(t2)−B2(t1))+. . .+(BN (t)−BN (tN−1))
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Semi-discrete directed polymer - law of large numbers 10

By Brownian scaling wlog β = 1

Partition function:

ZN (t) :=

∫
0<t1<t2<...<tN−1<t
eB1(t1)+(B2(t2)−B2(t1))+...+(BN (t)−BN (tN−1))dt1 . . . dtN−1.

Law of large numbers: for any κ > 0,

f(κ) := lim
N→∞

1

N
FN (κN) ≡ lim

N→∞

1

N
lnZN (κN) = inf

t>0
(κt−(ln Γ)′(t)).

O’Connell-Yor’01;Moriarty,O’Connell’07

What about fluctuations of FN (κN)?
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Semi-discrete directed polymer - fluctuations 11

Theorem (Borodin,Corwin,Ferrari’12)

For any κ > 0,

lim
N→∞

P
(
FN (κN)−Nf(κ)

c(κ)N1/3
≤ r
)

= FGUE(r)

where c(κ) = (−1
2Ψ′′([Ψ′]−1(κ)))1/3 (Ψ is the digamma

function), and FGUE the GUE Tracy-Widom distribution function.

(Further results available for Brownian motions with drifts where
the distribution is the Baik-Ben Arous-Péché distribution)
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3. Continuous Directed Random Polymer (CDRP)
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Continuous directed random polymers and KPZ equation13

The continuous directed random polymer (CDRP) is the natural
fully-continuous scaling limit of discrete models

Alberts,Khanin,Quastel’12

the background noise is white noise Ẇ ,
the reference measure P0 is the law of a Brownian motions.

The partition function of a CDRP is given by

Z(T,X) = ET,X
(
Z0(π(0)) : exp :

{
−
∫ T

0
dsẆ (π(s), s)

})
where the expectation is with respect Brownian paths, π,

backwards in time with π(T ) = X.

One can recover the partition function of the CDRP from the
semi-discrete by taking t =

√
TN +X and N →∞, i.e., for a

function C(N,X, T ) Moreno Flores,Quastel,Remenik

Z(
√
TN +X,N)

C(N,X, T )
⇒ Z(T,X)
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Semi-discrete and continuous directed random polymers 14

Recall that

ZN (t) :=

∫
0<t1<t2<...<tN−1<t
eB1(t1)+(B2(t2)−B2(t1))+...+(BN (t)−BN (tN−1))dt1 . . . dtN−1.

The quantity u(t,N) := e−tZN (t) satisfies

∂tu(t,N) = (u(t,N − 1)− u(t,N)) + u(t,N)ḂN (t)

with initial condition u(0, N) = δ1,N .

The partition function of the CDRP Z(T,X) satisfies

∂TZ =
1

2
∂2XZ + ZẆ

with initial conditions Z(0, X) = δ0(X).
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Semi-discrete and continuous directed random polymers 14
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with initial conditions Z(0, X) = δ0(X).

Introduction Models Method



Continuous directed random polymers 15

Theorem (Borodin,Corwin,Ferrari’12)

For any T > 0 and S with <(S) > 0 it holds

E
(
e−SZ(T,0)e

T/4!
)

= det(1−K)L2(R+)

where, with σ = (2/T )1/3,

K(η, η′) =
1

(2πi)2

∫
− 1

4σ
+iR
dw

∫
1
4σ

+iR
dz

σπS(z−w)σ

sin(σπ(z − w))

ez
3/3−zη′

ew3/3−wη .

Our result is actually more general. This formula obtained also
from the weakly ASEP to approach KPZ was obtained by

Sasamoto,Spohn’10;Amir,Corwin,Quastel’10
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Continuous directed random polymers 16

In arXiv:1407.6977 with Borodin, Corwin, and Vető we obtain
the analogue result for the stationary case, i.e., the solution of

∂TZ =
1

2
∂2XZ + ZẆ

with initial conditions Z(0, X) being any two-sided standard
Brownian motion with fixed drift.

The stationary case was considered also using replica
approach Sasamoto,Imamura’13
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4. Continuous Directed Random Polymer and KPZ equation
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The KPZ equation 18

The Kardar-Parisi-Zhang (KPZ) equation is one of the models
in the KPZ universality class, class of irreversible stochastic
random growth models. Kardar,Parisi,Zhang’86

The KPZ equation writes (by a choice of parameters) in
one-dimension is

∂Th = 1
2∂

2
Xh+ 1

2(∂Xh)2 + Ẇ

where Ẇ is the space-time white noise

Stationary initial conditions are two-sided Brownian motions
with fixed drift.

Introduction Models Method



The KPZ and SHE equations 19

KPZ equation

∂Th = 1
2∂

2
Xh+ 1

2(∂Xh)2 + Ẇ

⇒ Problem in defining the object (∂Xh)2.
For a way of doing it, see Hairer’s work (Fields Medal 2014)

Hairer’11

Setting h = lnZ (and ignoring the Itô-correction term) one
gets the (well-defined) Stochastic Heat Equation (SHE):

∂TZ = 1
2∂

2
TZ + ZẆ

Given the solution of the SHE with initial condition
Z(0, X) := eh(0,X), one calls

h(T,X) = ln(Z(T,X))

the Cole-Hopf solution of the KPZ equation.
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The KPZ and SHE equations 19
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The KPZ class 20

The KPZ universality class of stochastic growth models contains
for example:

directed polymers (and last passage percolation as a
zero-temperature limit)

exclusion processes (partially asymmetric)

growth models like polynuclear growth model or eden model

some random tilings (dynamics given by the shuffling
algorithms)

Universality:

Universality of fluctuations is expected in the large time limit

In some models with tunable parameter, there is universality
of the KPZ equation under appropriate “weak asymmetry”
scaling limit (remember Tuesday’s talk by Caravenna).

However, the second universality is not required for the first
one
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The KPZ class - a real experiment 21

Nematic liquid crystals: stable (black) vs metastable (gray) cluster
Takeuchi,Sano’10: PRL 104, 230601 (2010)
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5. Some hints on the methods
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Method 23

Consider again the O’Connell-Yor semi-discrete directed polymer
model.

Starting point: a formula for the Laplace transform

E
(
e−uZN (t)

)
.

Q How to recover the distribution function?

One expects: ln(ZN (κN)) ≈ Nf(κ)− c(κ)N1/3ξ, c(κ) > 0,
and ξ a random variable GUE Tracy-Widom distributed.

Set: u = e−Nf(κ)+c(κ)N
1/3r. Then

E
(
e−uZN (t)

)
= E

(
e−e

c(κ)N1/3(ξ−r)
)
→ E(1ξ≤r) = P(ξ ≤ r)

as N →∞.
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Method 24

One could try to proceed using moments:

E
(
e−uZN (κN)

)
” = ”

∑
`≥0

(−u)`

`!
E
(

(ZN (κN))`
)

Problem: E
(
(ZN (κN))`

)
' ec`2 : so RHS not convergent :-(

The exponential moments do not determine the distribution
function!

Replica trick uses formally the above “equality” and sums up
the terms canceling infinities to get the result
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Method 25

Explicit Fredholm determinant expression for

E
(
e−uZN (t)

)
= det(1 +Ku)L2(C0)

where C0 a small contour around 0 and Ku is the kernel

Ku(v, v′) =
i

2

∫
1
2+iR

ds

sin(πs)

(
Γ(v − 1)

Γ(s+ v − 1)

)N usevts+ts
2/2

s+ v − v′

Borodin,Corwin’11

- Problem: Asymptotics analysis restricted to κ > κ∗ > 0, so
the SHE limit is not reachable κ ∼ 1/

√
N .

Alternative Fredholm determinant expression, from C0 to CR− ,
which is good for asymptotic analysis for any κ > 0 and even
when κ→ 0 as N →∞. So-far obtainable only through
q-Whittaker process (see next) Borodin,Corwin,Ferrari’12
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q-Whittaker process and q-TASEP 26

The configurations are elements on

Let q ∈ (0, 1) be fixed. Particle λ
(m)
k jumps to the right with

rate

The set of coordinates λ
(k)
k , k ≥ 1, forms what we call

q-TASEP. Have jump rate given by 1− qgap to next particle.
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q-TASEP and semi-discrete directed polymers 27

The relation between q-TASEP and the O’Connell-Yor model
Borodin,Corwin’11

Set q = e−ε and look at time t = τ/ε2 with ”packed” initial
condition.

As ε→ 0,

In particular, −TNN = lnZN (τ) in distribution.
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q-TASEP - analysis 28

Using Macdonald polynomials (generically)
Borodin,Corwin’11

or duality (for some initial conditions)
Borodin,Corwin,Sasamoto’13

one obtains expressions for

E
(
q`λ

(N)
N (t)

)
From this algebraic manipulations give (perfectly legal
q-version of the replica trick)

E

(
1

(ζqλ
(N)
N (t); q)∞

)
= E

( ∞∑
`=0

q`λ
(N)
N (t)ζ`

(1− q) · · · (1− q`)

)

=

∞∑
`=0

E
(
q`λ

(N)
N (t)

)
ζ`

(1− q) · · · (1− q`)
= det(1 + K̃)
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q-TASEP - analysis 29

E

(
1

(ζqλ
(N)
N (t); q)∞

)
= det(1 + K̃)

Then take q → 1 limit of both sides:

- LHS → Laplace transform of semi-discrete directed polymer

- RHS → Fredholm determinant with kernel

Ku(v, v′) =
i

2

∫
1
2+iR

ds

sin(πs)

(
Γ(v − 1)

Γ(s+ v − 1)

)N usevts+ts
2/2

s+ v − v′

Take N →∞ limit: difficulties in the asymptotics comes from
the poles of 1/ sin(πs) in the kernel since no steep descent
path exists ...
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