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0. The model and result

Semi-discrete directed polymer in random media
B;,1 < 1 < N: independent Brownian motions

Energy of the polymer 7

E[w] = B1(s1) + B2(s1,82) + -+ + BN(5N-1,1)
with Bj(S,t) = Bj(t) — Bj(S), 1 =2,--- ,Nfors<t

Partition function
Zn(t) = / ePEmldsy o dsn_1
0<s1< - <sn-1<1

B = 1/kBT: inverse temperature



Zero-temperature limit

In the T — 0 (or B — o0) limit

t) := l. F 1) = E
fn(t):= lim Fy(t)= = max _ E[«]

Connection to random matrix theory

N

Prob (fn(1) < s) = /( . H dx; - Poue(x1,++ ,TN),
—00,8]™ j—q
N e—;1;32./2

PGUE(wla”' 7wN): H ) * H (wk_$3)2
jo=1dV2m 1<j<k<N

where Pgyg(x1,+++ ,xN) is the probability density function of
the eigenvalues in the Gaussian Unitary Ensemble (GUE)



A generalization to finite 3

Thm

e Ruzn®@ N
E <€ 32(N—1) — LN H dCUJfF(wg — u) . W(wl’ « o ,a’;N;t)

W(wla "t 9y LNy t) — H H (mk — xj) - det (T,bk—l(wj; t));\szl

1<g <k<N

where frp(x) = 1/(eﬁ“’ + 1) is the Fermi distribution function
and

1) — i > —iwr—w?t/2 (w)"
Yr(z5t) = o /_Oo dwe R

Proof by generalizing Warren's process on the Gelfand-Tsetlin cone



1. Universal distribution in surface growth

Paper combustion, bacteria colony, crystal

growth, etc
Non-equilibrium statistical mechanics

Stochastic interacting particle systems

(&)

1000

sool
!

O -

soof

1000 i
4000 500 O 500 1000 {un}




Simulation

Ex: ballistic deposition
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Height fluctuation
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Totally ASEP (g = 0)

ASEP (asymmetric simple exclusion process)
q p q p q
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Mapping to a surface growth model (single step model)
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TASEP with step i.c.

For the step (wedge for surface) initial condition for TASEP

i [P0 1) = t/4
oo | —2—4/3t1/3

where F3(s) is the GUE Tracy-Widom distribution

< s| = F(s)

F>(s) = det(1 — PsKaiPs)p2(w)

0.5

0.4}

where Ps: projection onto the interval [s, 00) ol

and K aj is the Airy kernel 02
0.1 . .
Kai(z,y) = / dAAi(z + A)Ai(y +A) °© o )
0



KPZ equation

h(x,t): height at position * € R and at time ¢t > 0

O¢h(x,t) = 2 A(9zh(w,t))? + vd2h(x,t) + vV Dn(z,t)
where 1) is the Gaussian noise with mean 0 and covariance

(n(z, t)n(z’,t")) = 6(x — x")d(t — t')

By a simple scaling we can and will do set v = %, A=D=1.

The KPZ equation now looks like

Oth(x,t) = %(Bwh(az, t))? + %Qih(w, t) + n(x,t)



Cole-Hopf transformation
Z(x,t) = exp (h(z,1))

If we set

this quantity (formally) satisfies

0 10%Z(x,t)
—Z(x,t) = — t)Z(x,t
It (z, 1) 9 92 + n(z,t)Z(x, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment 7.

h(x.t)

2At/0
1

The polymer from the origin: Z(x,0) = d(x) = girr(l)c(se_|w|/5
é

corresponds to narrow wedge for KPZ.
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KPZ equation for sharp wedge i.c.

For the initial condition Z(x,0) = d(x) (narrow wedge for KPZ)

o | R0 1) + 55 _
lim P { (t/2)1/3 < S} = F>(s)

e The Tracy-Widom distribution appears universally in various

t— o0

surface growth models in the KPZ class.

e Experiment

e Technically there is a big difference between TASEP and KPZ
equation. The structure for TASEP is well-understood but for
KPZ equation, not really yet.
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2. "Determinantal’s
Random matrix theory
GUE (Gaussian unitary ensemble): For a matrix H: N X N

hermitian matrix ,
P(H)dH < e "™ dH

Each independent matrix element is independent Gaussian.

Joint eigenvalue density

1 2
2 —x;
I
(A i
This is written in the form of a product of two determinants using

1N
H(:cj —x;) = det(z; ); 5y
1<j
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From this follows

e All m point correlation functions can be written as

determinants using the "correlation kernel” K (x,y).

e The largest eigenvalue distribution

Plemax < 8] = %/ H mg—mz)2 H Hdwi

[_CXD7S]N z<J

can be written as a Fredholm determinant using the same
kernel K(x,vy).

13



In the limit of large matrix dimension, we get

< s| = Fx(s) = det(1—PsK2Ps) 12 ()

where Pj: projection onto [s,00) and K> is the Airy kernel
® O

Ky (z,y) = /0 dAAI(z 4+ A)Ai(y + A)

F5(s) is known as the GUE Tracy-Widom distribution

14



Determinantal process

The point process whose correlation functions are written in

the form of determinants are called a determinantal process.
Eigenvalues of the GUE is determinantal.

This is based on the fact that the joint eigenvalue density can
be written as a product of two determinants. The Fredholm
determinant expression for the largest eigenvalue comes also

from this.

Once we have a measure in the form of a product of two
determinants, there is an associated determinantal process

and the Fredholm determinant appears naturally.
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"TASEP is determinantal”’: Schur measure
e Finite t formula

h(0,t) — t/4

1 o,
_2—4/341/3 < S] ~— /[O,S]N H(fcj—fci)z He IZIdCEi

1<J i

As t — oo we get Fs(s).

e The proof is based on Robinson-Schensted-Knuth (RSK)
correspondence. For a discrete TASEP with parameters
a=(ai, -+ ,an),b = (by,--- ,bps) associated with the
Schur measure for a partition A

1
—sx(a)sx(b
—sx(a)sA(b)
The schur function sy can be written as a single determinant

(Jacobi-Trudi identity).
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Dyson’s Brownian motion

In GUE, one can replace the Gaussian random variables by
Brownian motions. The eigenvalues are now stochastic process,
satisfying SDE

dt

dXi:dBi_l_Zx._x.
i j

ji

known as the Dyson’s Brownian motion.
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Warren’s Brownian motion in Gelfand-Tsetlin cone

Let Y () be the Dyson’'s BM with m particles starting from the
origin and let X (t) be a process with (m + 1) components

which are interlaced with those of Y, i.e.,
X1(t) < Yi(t) < Xa(t) < -+ < Vin(t) < Xonpa (2)
and satisfies
X;(t) = x; + vi(t) + {L; (t) — L ()}

Here v;, 1 < 2 < m are indep. BM and L,,::t are local times.

Warren showed that the process X is distributed as a Dyson's BM
with (m + 1) particles.
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m = 3 Dyson BM
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m = 3,4 Dyson BM




Warren’s Brownian motion in Gelfand-Tsetlin cone

e Repeating the same procedure form = 1,2,...,n — 1, one
can construct a process Xg, 1<73<n,1<2<731in
Gelfand-Tsetlin cone

e The marginal X?,1 < 2 < n is the diffusion limit of TASEP
(reflective BMs). One can understand how the random matrix

expression for TASEP appears.

1
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Ty x5
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n n n n n
Ly Ly Lg Ln_1 Lp
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The formala for KPZ equation

Thm ( )
For the initial condition Z(x,0) = d(x) (narrow wedge for KPZ)

L — s
. [e_eh(o,t)+24 Tt ] — det(l — Ks,t)L2(R_|_)

where ¢ = (t/2)Y/2 and K, is

% Ai(z + N)Ai(y + A)

KS,t(m7 y) — »/—oo dA 6713(8_)‘) 4+ 1

The final result is written as a Fredholm determinant, but this was
obtained without using a measure in the form of a product of two
determinants (Bethe ansatz, Macdonald measure, replica, §-Bose

gas).
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3 O’Connell-Yor polymer

Semi-discrete directed polymer in random media
B;,1 < < N: independent Brownian motions

Energy of the polymer 7
E[rw] = B1(s1) + Ba2(s1,82) + -+ + BN(SN-1,1)
Partition function

Zn(t) = / ePEmldsy - v dsn_1
0<s1<--<sny—-1<t

B = 1/kpT: inverse temperature

In a limit, this becomes the polymer related to KPZ equation.
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Whittaker measure: non-determinantal

discovered that the OY polymer is related to the

quantum version of the Toda lattice, with Hamiltonian

P Lj—Lq—
H=D) gt 2 e
1=1 4 1=1

and as a generalization of Schur measure appears a measure
written as a product of the two Whittaker functions (which is the

eigenfunction of the Toda Hamiltonian):

1
E‘IJO(/Bmla ce a/BmN)\IJu(/Bmla ce 9/333N)

A determinant formula for ¥ is not known.

23



From this connection one can find a formala

Prob (Fn(t) < s5) = /

N
H dr; - my(T1,-++ ,TN)
(—o0,s]V j=1
where mg(x1,+++ , TN) H;\rzl dx; is given by
mt(mla' ° e 9331\7) — ‘IIO(/Bmlv' *e 9/833N)

X / d\ - U_)(Bxy,:--- ,,B:UN)eZ;'ilkr?t/zsN()\)
(iR)N

where sn () is the Sklyanin measure

Doing asymptotics using this expression has not been possible.
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Macdonald measure and Fredholm determinant formula
iIntroduced the Macdonald measure

_PA(@)Q(b)

Here Py(a), Qx(b) are the Macdonald polynomials, which are
also not known to be a determinant.

By using this, they found a formula for OY polymer
e BUz (1)
32(N—1) ] — det (]_ —+ L)Lz(Co)

where the kernel L(v,v’;t) is written as

Ele

1 71'/,3 wNe’w(tz/Z—u) 1
o dw

r(1+v'/8)N
271 JiR4-6

sin(v/ — w)/Bv'Nev(t*/2=vw) yp — v T'(1 + w/B)N

By using this expression, one can study asymptotics.
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Our formula for finite 3
e BUzZ (1)

N
E <€_ 32(N—1) ) — AN H ngJfF(mJ — u) . W(wl’... ,a’;N;t)

W(xi, - ,zN3t) = H H (xr, — x;) - det (YPr—1(x;3t)

j=1"" 1<j<k<N

where fr(x) = 1/(eP® 4+ 1) is Fermi distribution function and

1) — i > —iwx—w?t/2 (iw)"
Yr(z5t) = o /_Oo dwe T+ iw/3)"

A formula in terms of a determinantal measure W for finite

temperature polymer.

From this one gets the Fredholm determinant by using standard

techniques of random matrix theory and does asymptotics.
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Proof of the formula

We start from a formula by O'Connell

e—Bu N N
E 8_ BZ(]\TZiVl()t) _ / H &e—ukj+)\§t/2r (_AJ) SN
(tR—e)N :_~ B B

where € > 0.

This is a formula which is obtained by using Whittaker measure.

In this sense, we have not really found a determinant structure for
the OY polymer itself.
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An intermediate formula

e Puzn®) N N
E <e BN — / N [ deefr(ze — w) - det (Fju(zj5t)) 0y

R =1

with (0 < € < 3)

Fip(xz;t) = /f,;R—e 271'7:11 (% 4 1>N

Now it is sufficient to prove the relation

d\ e~ T +A’t/2 (71. 71.)\)3'—1 o
CcO A
B B

N
/R I dtefr(te — ) - det (Fy(tss ) k=1
£=1

N
B /RN [ dejfr(z; —u) - W(za,--- sansb).
j=1
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A determinantal measure on RNV(N+1)/2

For 2y, := (2,1 < i < j < k) € RF(EFD/2 e define a
measure R, (x5 t)dxn with Ry, given by
N

H 0 det (fz(w(e) (e 1)))

(IN),
11 - det (Flz (z; t))

,J=1 i,7=1

where :cée_l) =u, TN = vazl ngl dng),

iy = | Fr@ = /(P 4 .
\fB(iB) :=1/(eP* —1) i > 2.

and Fy4(x;t) is given by Fj;(x;t) with 5 = 1 in the previous
slide.
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Two ways of integrations

/ dx Ry (xp;t)
RN(N+1)/2
N

_ /RN f[l 4o g (o8 — u) - det (Ey (ng—jJrl);t))j,k:l

/ drnRy(zN;t)
RN(N+1)/2

= /N ﬁ dw§N)fF (w§N) — u) - W (ng),--- ,:L'%V);t>
RN -4
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Lemma

1. For 3 > 0and a € C with —3 < Re a < 0, we have

/oo e  “fp(x)dx = T cot Za.
BB

— OO

2. Let Go(x) = fr(x) and

Gj(z) = [T _dyfe(z —y)Gj—1(y), j=1,2,---.
Then we have formm =0,1,2,---

Gn(@) = Fr(@) (2 + pma(@) )

where p_1(x) = 0 and pg(x)(k = 0,1,2,:--) is some
kth order polynomial.
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Dynamics of X

The density for the positions of XV, 1 < ¢ < NN satisfies

?

0
aw(wla'” 7mN;t)
1, 92 - 9
— — a_ 2 L1y s LN s
23:1 8:B.7
N 1 )
— Z Z W(wla' 933N9t)
=1 \ iz T, —xj | Ox;

which is the equation for the Dyson’s Brownian motion.
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Dynamics of X!'s
The transition density of X,L?"s

R(:cl, c** s LN} t) = det (ij ($k5 t));'\,rk:1

satisfy
o 1 L 92
aR(w].?.'. ’{BN;t) p— —Z 8m R(w]_, . 9$N;t)

71=1

e~ 5 (@jt1—x;)

As 3 — oo, the latter becomes

amiR(w17 ** LN t)|ar:7;+1=aci—|—0 =0

which represents reflective interaction like TASEP.
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Summary

A determinantal formula for finite temperature O'Connell-Yor
polymer

Techniques from random matrix theory can readily be applied.
Asymptotics possible.

We started from a formula which is obtained from Whittaker
measure. In this sense we have not found a determinantal

structure for the OY polymer model itself.

The proof is by generalizing Warren's process on
Gelfand-Tsetlin cone. There are interesting generalizations of

Dyson’s Brownian motion and reflective Brownian motions.
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