Multivariate approximation in total variation

A. D. Barbour, M. J. Luczak and A. Xia*
*Department of Mathematics and Statistics
The University of Melbourne, VIC 3010

29 May, 2015

Background Information

- Two corner-stone distributions
- Continuous: normal and the central limit theorem, in the Kolmogorov distance
- Discrete: Poisson and the law of small numbers, in the total variation

Poisson approximation

- The Stein-Chen method (Chen, 1975)
- Barbour and Hall (1984)

$$
\frac{1}{32} \min \left\{\frac{1}{\lambda}, 1\right\} \sum_{i=1}^{n} p_{i}^{2} \leq d_{T V}(\mathcal{L}(W), \operatorname{Pn}(\lambda)) \leq \frac{1-e^{-\lambda}}{\lambda} \sum_{i=1}^{n} p_{i}^{2}
$$

- The message: Poisson has only one parameter, so to improve on the quality of approximation, more parameters should be introduced.

Improvements

Translated Poisson (Röllin 2005), perturbation (Barbour and X. 1999, Barbour, Čekanavičius and X. 2007), polynomial birth-death (Brown and X. 2001), zero biasing with birth-death process (Goldstein and X. 2006), discretised normal (Roy 2003, Chen and Leong (2010), and
Fang (2014)).

Multivariate approximation

- Normal: Gotze 1991, Goldstein and Rinott 1996, Rinott and Rotar (1996), ...
- Discrete version?
- Multivariate Poisson (Barbour 1988, Roos 1999)
- How to introduce more parameters?
* Multivariate Poisson with negative correlation?
* Transform a multivariate Poisson?
* Discretise multivariate normal?
- Stein's identity?
* How to extract Stein's constants?

One dimension

- Stein's equation for Poisson (λ) :

$$
\lambda g(i+1)-i g(i)=f(i)-\operatorname{Pn}(\lambda)(f) .
$$

- Birth-death process interpretation (Barbour 1988): by taking $g(i)=h(i)-h(i-1)$,

$$
\mathcal{A} h(i):=\lambda(h(i+1)-h(i))+i(h(i-1)-h(i))=f(i)-\operatorname{Pn}(\lambda)(f) .
$$

$-\mathcal{A}$ is the generator of the birth-death process with birth rate λ and each individual has lifetime of $\exp (1)$, independent of others.

- The solution of the Stein equation is

$$
h(i)=-\int_{0}^{\infty}\left[\mathbb{E} f\left(Z_{i}(t)\right)-\operatorname{Pn}(\lambda)(f)\right] d t
$$

where Z_{i} is a birth-death process with generator \mathcal{A} and initial value $Z_{i}(0)=i$.

- Stein's constants are from estimates of

$$
\begin{aligned}
& \|\Delta h\|:=\sup _{i}|h(i+1)-h(i)| \text { and } \\
& \left\|\Delta^{2} h\right\|:=\sup _{i}|\Delta h(i+1)-\Delta h(i)| .
\end{aligned}
$$

Discrete CLT: Goldstein and X. 2006

$$
\mathcal{A} h(i):=\alpha_{i}(h(i+1)-h(i))+\beta_{i}(h(i-1)-h(i)),
$$

where
$\alpha_{i}=\left\{\begin{array}{cl}\sigma^{2}, & i \geq \kappa, \\ \sigma^{2}+\mu-i & i \leq \kappa-1,\end{array} \quad \beta_{i}=\left\{\begin{array}{cl}\sigma^{2}+i-\mu & i \geq \kappa, \\ \sigma^{2} & i \leq \kappa-1 .\end{array}\right.\right.$

- \mathcal{A} is the generator of the bilateral birth-death processes with "birth" rates $\left\{\alpha_{i}: i \in \mathbf{Z}\right\}$ and "death" rates $\left\{\beta_{i}: i \in \mathbf{Z}\right\}$.
- Similarly, h can be represented in terms of $Z_{i}(t), t \geq 0$, the Markov process with generator \mathcal{A} and initial value i.
- If $\mu-\sigma^{2}$ is an integer and $\kappa=\mu-\sigma^{2}$, the states $<\kappa$ are transient: translated Poisson.

Fang 2014

Works on

$$
\sigma^{2} f^{\prime}(s)-(s-\mu) f(s)=h(s)-\mathbb{E} h\left(Z_{\mu, \sigma^{2}}\right),
$$

where h is constant on $[i-0.5, i+0.5)$ for $i \in \mathbb{Z}$, so can extract Stein's factors for discretised normal from those of normal approximation.

Multivariate

- d-dimensional Ornstein-Uhlenbeck operator

$$
\mathcal{A} h(w)=\frac{n}{2} \operatorname{Tr}\left(\sigma^{2} D^{2} h(w)\right)+D h^{T}(w) A(w-n c), w \in \mathbb{R}^{d}
$$

on twice differentiable functions $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

- A is a matrix whose eigenvalues all have negative real parts.
$-\sigma^{2}$ is a positive definite symmetric matrix.
- The equilibrium distribution is $\mathcal{N}_{d}(n c, n \Sigma)$ with

$$
\begin{aligned}
& A \Sigma+\Sigma A^{T}+\sigma^{2}=0 . \\
& * \Sigma=\int_{0}^{\infty} e^{A t} \sigma^{2} e^{A^{T} t} d t .
\end{aligned}
$$

Discrete version

- Consider $\mathcal{D} \mathcal{N}_{d}(n c, n \Sigma)$ as discretised version of $\mathcal{N}_{d}(n c, n \Sigma)$: for $\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}$,

$$
\begin{aligned}
& \mathcal{D N}_{d}(n c, n \Sigma)\left\{\left(i_{1}, \ldots, i_{d}\right)\right\} \\
& =\mathcal{N}_{d}(n c, n \Sigma)\left(\left[i_{1}-0.5, i_{1}+0.5\right) \times \cdots \times\left[i_{d}-0.5, i_{d}+0.5\right)\right)
\end{aligned}
$$

- Fix $c \in \mathbb{R}^{d}$. For $h: \mathbb{Z}^{d} \rightarrow \mathbb{R}$, define the generator

$$
\mathcal{A}_{n} h(w)=\frac{n}{2} \operatorname{Tr}\left(\sigma^{2} \Delta^{2} h(w)\right)+\Delta h^{T}(w) A(w-n c), w \in \mathbb{Z}^{d} .
$$

$-A, \sigma^{2}$: as above.

$$
\begin{aligned}
& -\Delta_{j} h(w)=h\left(w+e^{(j)}\right)-h(w), \Delta_{j k}^{2} h(w)= \\
& \Delta_{j}\left(\Delta_{k} h\right)(w), 1 \leq j, k \leq d .
\end{aligned}
$$

Markov population process

- X_{n} has transition rates $n g^{J}\left(n^{-1} w\right)$ from w to $w+J$, $w \in \mathbb{Z}^{d}, J \in \mathcal{J}$, where \mathcal{J} is a finite subset of \mathbb{Z}^{d}.
$-g^{J}$ is twice continuously differentiable.
- Define $F(\xi)=\sum_{J \in \mathcal{J}} J g^{J}(\xi)$, we assume

$$
\frac{d \xi}{d t}=F(\xi)
$$

has an equilibrium point c so $F(c)=0$ and $A=D F(c)$.

- This Markov population process has the equilibrium distribution Π_{n}.

Modification of the Markov population process

- X_{n} has small chance to "drift away" from its "centre" $n c$ but if it happens, ...
- $\mathcal{D N}_{d}(n c, n \Sigma)$ essentially distributes in a region of radius $n \delta$ around $n c$:

$$
I_{n, \delta}=\left\{\xi \in \mathbb{Z}^{d}: \sqrt{(\xi-n c)^{T} \Sigma^{-1}(\xi-n c)} \leq n \delta\right\} .
$$

- We can focus on approximating any arbitrary \mathbb{Z}^{d}-valued random element W in $I_{n, \delta}$ first and then add in the errors outside this region
- We modify X_{n} to keep it in $I_{n, \delta}$

Modification (2)

- Modify X_{n} to X_{n}^{δ} with transition rates from w to $w+J$:

$$
n g_{\delta}^{J}\left(n^{-1} w\right)= \begin{cases}n g^{J}\left(n^{-1} w\right), & \text { if } w-n c, w+J-n c \\ & \in I_{n, \delta}, \\ 0, & \text { otherwise. }\end{cases}
$$

- If X_{n}^{δ} starts in $I_{n, \delta}$, then it stays in $I_{n, \delta}$.
- We assume conditions to ensure it is irreducible so it has the unique equilibrium distribution Π_{n}^{δ}

Π_{n}^{δ} approximation

- Generator

$$
\mathcal{A}_{n}^{\delta}(w)=n \sum_{J \in \mathcal{J}} g_{\delta}^{J}\left(n^{-1} w\right)\{h(w+J)-h(w)\}, w \in \mathbb{Z}^{d}
$$

- Stein's equation:

$$
\mathcal{A}_{n}^{\delta} h_{B}(w)=1_{B}(w)-\Pi_{n}^{\delta}(B), B \subset I_{n, \delta}
$$

- The solution h_{B} can be written as

$$
h_{B}(w)=-\int_{0}^{\infty}\left(\mathbb{P}\left(X_{n}^{\delta}(t) \in B \mid X_{n}^{\delta}(0)=w\right)-\Pi_{n}^{\delta}(B)\right) d t
$$

- Estimates:

$$
\begin{aligned}
& \left\|h_{B}(w)\right\| \leq c_{0} \ln n, \\
& \left\|\Delta h_{B}(w)\right\| \leq c_{1} n^{-1 / 2} \ln n ; \\
& \left\|\Delta^{2} h_{B}(w)\right\| \leq c_{2} n^{-1} \ln n
\end{aligned}
$$

for w in a $n \delta / 4$-neighbourhood of $n c$ and n sufficiently large.

- For any \mathbb{Z}^{d} valued random element $W, B \subset I_{n, \delta}$, we have

$$
\begin{aligned}
& \mathbb{P}(W \in B)-\Pi_{n}^{\delta}(B) \\
& =\mathbb{E}\left\{\left(1_{B}(W)-\Pi_{n}^{\delta}(B)\right) 1_{W \in I_{n, \delta^{\prime}}}\right\}-\Pi_{n}(B) \mathbb{P}\left(W \notin I_{n, \delta^{\prime}}\right) \\
& =\mathbb{E}\left\{\mathcal{A}_{n}^{\delta} h_{B}(W) 1_{W \in I_{n, \delta^{\prime}}}\right\}-\Pi_{n}(B) \mathbb{P}\left(W \notin I_{n, \delta^{\prime}}\right),
\end{aligned}
$$

hence

$$
\begin{aligned}
& d_{T V}\left(\mathcal{L}(W), \Pi_{n}^{\delta}\right) \\
\leq & \sup _{B \subset I_{n, \delta}}\left|\mathbb{E}\left\{\mathcal{A}_{n}^{\delta} h_{B}(W) 1_{W \in I_{n, \delta^{\prime}}}\right\}\right|+\underbrace{\mathbb{P}\left(W \notin I_{n, \delta^{\prime}}\right)}_{\text {Bienaymé-Chebyshev ineq. }}
\end{aligned}
$$

Multivariate in total variation

Assume

- $\mathbb{E}|W-n c|^{2} \leq V n$,
- $d_{T V}\left(\mathcal{L}(W), \mathcal{L}\left(W+e^{(j)}\right)\right) \leq \varepsilon_{1}, 1 \leq j \leq d$,
- and

$$
\begin{aligned}
& \left|\mathbb{E}\left\{\mathcal{A}_{n} h(W)\right\} 1_{\left[|W-n c| \leq c_{1} n\right]}\right| \\
& \leq c_{2} \underbrace{\|h\|}_{\sim c \ln n} \varepsilon_{20}+c_{3} \underbrace{n^{1 / 2}\|\Delta h\|}_{\sim c \ln n} \varepsilon_{21}+c_{4} \underbrace{n\left\|\Delta^{2} h\right\|}_{\sim c \ln n} \varepsilon_{22}
\end{aligned}
$$

where h is the solution for $\mathcal{A}_{n}^{\delta},\|h\|,\|\Delta h\|$ and $\left\|\Delta^{2} h\right\|$ are estimates around an ηn neighbourhood of $n c$.

Then

$$
\begin{aligned}
& d_{T V}\left(\mathcal{L}(W), \mathcal{D N}_{d}(n c, n \Sigma)\right) \\
& \leq O\{\ln n(\underbrace{n^{-1 / 2}}_{\text {diff of } \mathcal{D N}_{d} \text { and } \Pi_{n}}+\varepsilon_{1}+\varepsilon_{20}+\varepsilon_{21}+\varepsilon_{22})\} .
\end{aligned}
$$

