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Background Information

• Two corner-stone distributions

– Continuous: normal and the central limit theorem, in

the Kolmogorov distance

– Discrete: Poisson and the law of small numbers, in the

total variation
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Poisson approximation

• The Stein–Chen method (Chen, 1975)

• Barbour and Hall (1984)
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• The message: Poisson has only one parameter, so to

improve on the quality of approximation, more

parameters should be introduced.

[Slide 3]



Improvements

Translated Poisson (Röllin 2005), perturbation (Barbour and

X. 1999, Barbour, Čekanavičius and X. 2007), polynomial

birth-death (Brown and X. 2001), zero biasing with

birth-death process (Goldstein and X. 2006), discretised

normal (Roy 2003, Chen and Leong (2010), and

Fang (2014)).
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Multivariate approximation

• Normal: Gotze 1991, Goldstein and Rinott 1996, Rinott

and Rotar (1996), . . .

• Discrete version?

– Multivariate Poisson (Barbour 1988, Roos 1999)

– How to introduce more parameters?

∗ Multivariate Poisson with negative correlation?

∗ Transform a multivariate Poisson?

∗ Discretise multivariate normal?

· Stein’s identity?

∗ How to extract Stein’s constants?
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One dimension

• Stein’s equation for Poisson(λ):

λg(i+ 1)− ig(i) = f(i)− Pn(λ)(f).

• Birth-death process interpretation (Barbour 1988): by

taking g(i) = h(i)− h(i− 1),

Ah(i) := λ(h(i+1)−h(i))+i(h(i−1)−h(i)) = f(i)−Pn(λ)(f).

– A is the generator of the birth-death process with

birth rate λ and each individual has lifetime of exp(1),

independent of others.
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– The solution of the Stein equation is

h(i) = −
∫ ∞

0
[Ef(Zi(t))− Pn(λ)(f)]dt,

where Zi is a birth-death process with generator A
and initial value Zi(0) = i.

– Stein’s constants are from estimates of

‖∆h‖ := supi |h(i+ 1)− h(i)| and

‖∆2h‖ := supi |∆h(i+ 1)−∆h(i)|.
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Discrete CLT: Goldstein and X. 2006

Ah(i) := αi(h(i+ 1)− h(i)) + βi(h(i− 1)− h(i)),

where

αi =

 σ2, i ≥ κ,

σ2 + µ− i i ≤ κ− 1,
βi =

 σ2 + i− µ i ≥ κ,

σ2 i ≤ κ− 1.

• A is the generator of the bilateral birth-death processes with

“birth” rates {αi : i ∈ Z} and “death” rates {βi : i ∈ Z}.

• Similarly, h can be represented in terms of Zi(t), t ≥ 0, the

Markov process with generator A and initial value i.

• If µ− σ2 is an integer and κ = µ− σ2, the states < κ are

transient: translated Poisson.
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Fang 2014

Works on

σ2f ′(s)− (s− µ)f(s) = h(s)− Eh(Zµ,σ2),

where h is constant on [i− 0.5, i+ 0.5) for i ∈ Z, so can

extract Stein’s factors for discretised normal from those of

normal approximation.
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Multivariate

• d-dimensional Ornstein-Uhlenbeck operator

Ah(w) =
n

2
Tr(σ2D2h(w)) +DhT (w)A(w − nc), w ∈ Rd

on twice differentiable functions h : Rd → R.

– A is a matrix whose eigenvalues all have negative real

parts.

– σ2 is a positive definite symmetric matrix.

– The equilibrium distribution is Nd(nc, nΣ) with

AΣ + ΣAT + σ2 = 0.

∗ Σ =
∫∞

0 eAtσ2eA
T tdt.
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Discrete version

• Consider DN d(nc, nΣ) as discretised version of

Nd(nc, nΣ): for (i1, . . . , id) ∈ Zd,

DN d(nc, nΣ){(i1, . . . , id)}

= Nd(nc, nΣ)([i1 − 0.5, i1 + 0.5)× · · · × [id − 0.5, id + 0.5)).

• Fix c ∈ Rd. For h : Zd → R, define the generator

Anh(w) =
n

2
Tr
(
σ2∆2h(w)

)
+ ∆hT (w)A(w−nc), w ∈ Zd.

– A, σ2: as above.

– ∆jh(w) = h(w + e(j))− h(w), ∆2
jkh(w) =

∆j(∆kh)(w), 1 ≤ j, k ≤ d.

[Slide 11]



Markov population process

• Xn has transition rates ngJ(n−1w) from w to w + J ,

w ∈ Zd, J ∈ J , where J is a finite subset of Zd.

– gJ is twice continuously differentiable.

– Define F (ξ) =
∑

J∈J Jg
J(ξ), we assume

dξ

dt
= F (ξ)

has an equilibrium point c so F (c) = 0 and

A = DF (c).

– This Markov population process has the equilibrium

distribution Πn.
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Modification of the Markov population process

• Xn has small chance to “drift away” from its “centre” nc

but if it happens, . . .

• DN d(nc, nΣ) essentially distributes in a region of radius

nδ around nc:

In,δ =

{
ξ ∈ Zd :

√
(ξ − nc)TΣ−1(ξ − nc) ≤ nδ

}
.

• We can focus on approximating any arbitrary Zd-valued

random element W in In,δ first and then add in the errors

outside this region

• We modify Xn to keep it in In,δ
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Modification (2)

• Modify Xn to Xδ
n with transition rates from w to w + J :

ngJδ (n−1w) =


ngJ(n−1w), if w − nc, w + J − nc

∈ In,δ,

0, otherwise.

• If Xδ
n starts in In,δ, then it stays in In,δ.

• We assume conditions to ensure it is irreducible so it has

the unique equilibrium distribution Πδ
n
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Πδ
n approximation

• Generator

Aδn(w) = n
∑
J∈J

gJδ (n−1w){h(w + J)− h(w)}, w ∈ Zd

• Stein’s equation:

AδnhB(w) = 1B(w)−Πδ
n(B), B ⊂ In,δ.

• The solution hB can be written as

hB(w) = −
∫ ∞

0
(P(Xδ

n(t) ∈ B|Xδ
n(0) = w)−Πδ

n(B))dt.
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• Estimates:

‖hB(w)‖ ≤ c0 lnn,

‖∆hB(w)‖ ≤ c1n
−1/2 lnn;

‖∆2hB(w)‖ ≤ c2n
−1 lnn

for w in a nδ/4-neighbourhood of nc and n sufficiently

large.
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• For any Zd valued random element W , B ⊂ In,δ, we have

P(W ∈ B)−Πδ
n(B)

= E{(1B(W )−Πδ
n(B))1W∈In,δ′} −Πn(B)P(W 6∈ In,δ′)

= E{AδnhB(W )1W∈In,δ′} −Πn(B)P(W 6∈ In,δ′),

hence

dTV (L(W ),Πδ
n)

≤ sup
B⊂In,δ

∣∣∣E{AδnhB(W )1W∈In,δ′}
∣∣∣+ P(W 6∈ In,δ′)︸ ︷︷ ︸

Bienaymé-Chebyshev ineq.

.
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Multivariate in total variation

Assume

• E|W − nc|2 ≤ V n,

• dTV (L(W ),L(W + e(j))) ≤ ε1, 1 ≤ j ≤ d,

• and

|E{Anh(W )}1[|W−nc|≤c1n]|

≤ c2 ‖h‖︸︷︷︸
∼c lnn

ε20 + c3 n
1/2‖∆h‖︸ ︷︷ ︸
∼c lnn

ε21 + c4 n‖∆2h‖︸ ︷︷ ︸
∼c lnn

ε22,

where h is the solution for Aδn, ‖h‖, ‖∆h‖ and ‖∆2h‖ are

estimates around an ηn neighbourhood of nc.
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Then

dTV (L(W ),DN d(nc, nΣ))

≤ O

lnn

 n−1/2︸ ︷︷ ︸
diff of DN d and Πn

+ε1 + ε20 + ε21 + ε22

 .
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