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Background Information

e T'wo corner-stone distributions

— Continuous: normal and the central limit theorem, in

the Kolmogorov distance

— Discrete: Poisson and the law of small numbers, in the

total variation
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Poisson approximation
e The Stein—Chen method (Chen, 1975)
e Barbour and Hall (1984)
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e The message: Poisson has only one parameter, so to
improve on the quality of approximation, more

parameters should be introduced.
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Improvements

Translated Poisson (Rollin 2005), perturbation (Barbour and
X. 1999, Barbour, Cekanavi¢ius and X. 2007), polynomial
birth-death (Brown and X. 2001), zero biasing with
birth-death process (Goldstein and X. 2006), discretised
normal (Roy 2003, Chen and Leong (2010), and

Fang (2014)).



Multivariate approximation

e Normal: Gotze 1991, Goldstein and Rinott 1996, Rinott
and Rotar (1996), ...

e Discrete version?

— Multivariate Poisson (Barbour 1988, Roos 1999)

— How to introduce more parameters?
x Multivariate Poisson with negative correlation?
x Transform a multivariate Poisson?
x Discretise multivariate normal?
- Stein’s identity?

x* How to extract Stein’s constants?

[Slide 5]



One dimension

e Stein’s equation for Poisson(\):
Ag(i+-1) —ig(i) = f(i) = Pn(A)(f).

e Birth-death process interpretation (Barbour 1988): by
taking g(¢) = h(i) — h(z — 1),

Ah(2) :== A(h(i+1)=h(i))+i(h(i—1)—h(i)) = f(i)—Pn(A)(f).

— A is the generator of the birth-death process with
birth rate A and each individual has lifetime of exp(1),

independent of others.

[Slide 6]



[Slide 7]

The solution of the Stein equation is

h(i) = — /0 TEF(Zit)) — PuOh)(f)]dt,

where Z; is a birth-death process with generator A
and initial value Z;(0) = 1.

Stein’s constants are from estimates of

|Ah| :=sup; |h(i + 1) — h(2)| and

|AZh]| := sup; |AR(i + 1) — Ah(37)].



Discrete CLT: Goldstein and X. 2006

Ah(i) == a;(h(i + 1) = h(2)) + Bi(h(i — 1) — h(3)),
where

o2, 1> K, ol +i—p 1>k,
o = < o Bi = 4 ,

ol +pu—i i<Kk-—1, o
\

e A is the generator of the bilateral birth-death processes with
“birth” rates {a; : ¢ € Z} and “death” rates {§; : 1 € Z}.

e Similarly, h can be represented in terms of Z;(t),t > 0, the
Markov process with generator A and initial value 1.

o If 4 — 0? is an integer and kK = p — o2, the states < k are

transient: translated Poisson.

[Slide 8]



Fang 2014
Works on
o f'(s) = (s — p) f(s) = h(s) — EN(Z,, ,),

where h is constant on [i — 0.5,7 4 0.5) for ¢ € Z, so can
extract Stein’s factors for discretised normal from those of

normal approximation.
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Multivariate

e d-dimensional Ornstein-Uhlenbeck operator
Ah(w) = gTr(J2D2h(w)) + Dh!(w)A(w — ne), w € R

on twice differentiable functions A : R? — R.

— A is a matrix whose eigenvalues all have negative real
parts.
2

— 0“ 18 a positive definite symmetric matrix.
— The equilibrium distribution is Ny(nec, n) with
AY +SAT + 0% =0.

T
* Y = fooo eAtg2e4 Lt
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Discrete version

e Consider DN 4(nc,nY) as discretised version of
Ny(ne,nX): for (i,...,iq) € Z4,

DN g(ne,nX){(i1,...,iq)}
— Ny(ne,n2)([i1 — 0.5,i1 +0.5) X - X [ig — 0.5,iq + 0.5)).

e Fix c € R% For h: Z% — R, define the generator
Anh(w) = gTr (02 A%h(w)) + AT (w) A(w — ne), w € Z%

— A, 0% as above.
— Ajh(w) = h(w + W) — h(w), A2 h(w) =
Aj(Agh)(w), 1 <7,k <d.
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Markov population process
e X, has transition rates ng’ (n"tw) from w to w + J,
weZ% Je J, where J is a finite subset of Z¢.

— ¢” is twice continuously differentiable.

— Define F(£) =Y ;7 J9” (§), we assume

i _

dt

has an equilibrium point ¢ so F(c¢) = 0 and
A= DF(c).

F (&)

— This Markov population process has the equilibrium
distribution II,,.
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Modification of the Markov population process

e X, has small chance to “drift away” from its “centre” nc

but if it happens, ...

e DN 4(nc,n3l) essentially distributes in a region of radius

nod around nc:

Ios = {g € 2% \/(€ —ne)TEL(E — ne) < n5} |

e We can focus on approximating any arbitrary Z%valued
random element W in I,, 5 first and then add in the errors

outside this region

e We modify X, to keep it in I, s
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Modification (2)

e Modify X,, to X? with transition rates from w to w + J:

y

ng’ (n"w), if w—nec, w4+ J—nc

ngs (n~ w) = € Ings,

0, otherwise.
\

o If X,‘Z starts in [, s, then it stays in I, 5.

e We assume conditions to ensure it is irreducible so it has

the unique equilibrium distribution Hg
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[1° approximation

e (Generator

A (w) =nY  gf(n~ w){h(w+J) — h(w)}, we Z¢
JeJ

e Stein’s equation:
A hp(w) = 1p(w) —°(B), B C I,
e The solution hp can be written as

his(w) = — / T(P(X (1) € BIXA(0) = w) — TIB(B))dt.
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e Kstimates:

hp(w)|| < colnn,
Ahp(w)|| < cyn™ 2 Inn;

A?hp(w)|| < contlnn

for w in a nd/4-neighbourhood of nc and n sufficiently

large.
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e For any Z% valued random element W, B C I, s, we have
P(W € B) —II°(B)
= E{(1s(W) —TI}(B))lwer, ,,} — Tn(B)P(W & I, 5)
= E{ A hs(W)lwer, ) — Tn(B)P(W & I, s),
hence

dry (L(W), 112)

< _Sup E{AghB(W)lwan,y} + PW & 1,s)
C n,o ~ ~~ o

Bienaymé-Chebyshev ineq.
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Multivariate in total variation

Assume
e E|W —nc|* < Vn,
o dry(LW), LW 4+e)) <&y, 1<j<d,
e and

’E{Anh(w) } 1 [|W—nc|<cin] ‘

< cy ||h|| €20 + c3n/?||Ah| ea1 4 can|| A% e20,
N N — —_—

~clnn ~clnn ~clnn

where h is the solution for A%, ||h||, ||Ahk| and ||A2h|| are

estimates around an nn neighbourhood of nc.
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Then

dry (L(W), DN 4(nc, n¥))

(
<0< Inn n~1/2
——

L diff of DN 4 and II,
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