Approximating the CLT using Stein's method

Ben Berckmoes

May 21, 2015 National University of Singapore

(joint work with B. Lowen, G. Molenberghs and J. Van Casteren)

Independent observations of $N(\mu, 1)$

$$X_1, X_2, \ldots, X_k, \ldots$$

are contaminated according to the inflated variance model, i.e.

$$X_k \sim (1-p_k)N(\mu,1) + p_kN(\mu,\sigma_k^2)$$

with $p_k \in [0,1]$ and $\sigma_k \in [1,\infty[$. Under which conditions is the sample mean

$$\widetilde{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k$$

(weakly) consistent for μ and asymptotically normal?

Proposition

$$\mathbb{E}[\widetilde{\mu}_n] = \mu$$

and

$$\operatorname{Var}[\widetilde{\mu}_n] = \left(\frac{s_n}{n}\right)^2$$

where

$$s_n^2 = \sum_{k=1}^n [(1 - p_k) + p_k \sigma_k^2].$$

Theorem

Suppose that

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{k=1}^n p_k\sigma_k^2=0.$$

Then

$$\widetilde{\mu}_n \stackrel{\mathbb{P}}{\to} \mu.$$

Theorem

Suppose that

$$\lim_{n\to\infty} \frac{1}{n} \max_{k=1}^{n} \sigma_k^2 = 0.$$

Then

$$\frac{n}{s_n}\left(\widetilde{\mu}_n-\mu\right)\stackrel{w}{\to} N(0,1).$$

Theorem

Suppose that

$$\sigma_n \uparrow \infty$$
 and $\liminf_{n \to \infty} \frac{\sigma_n}{n} > 0$

and

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n p_k\sigma_k^2=L.$$

Then

$$\widetilde{\mu}_n \stackrel{\mathbb{P}}{\to} \mu$$

and

$$\frac{n}{s_n}(\widetilde{\mu}_n-\mu)\stackrel{w}{\to} N(0,1) \Leftrightarrow L=0.$$

What happens if $L \neq 0$?

Central Limit Theorem

A Feller standard triangular array (FSTA) of rv's

has the following properties:

- (a) $\forall n: \xi_{n,1}, \dots, \xi_{n,n}$ are independent,
- (b) $\forall n, k : \mathbb{E}\left[\xi_{n,k}\right] = 0$,
- (c) $\forall n : \sum_{k=1}^{n} \sigma_{n,k}^2 = 1$ with $\sigma_{n,k}^2 = \mathbb{E}\left[\xi_{n,k}^2\right]$,
- (d) $\max_{k=1}^{n} \sigma_{n,k}^{2} \rightarrow 0$. (Feller negligible)

Central Limit Theorem

Theorem (CLT)

For an FSTA $\{\xi_{n,k}\}$ TFAE:

- (a) $\sum_{k=1}^{n} \xi_{n,k} \stackrel{w}{\rightarrow} N(0,1)$.
- (b) $\forall \epsilon > 0 : \sum_{k=1}^{n} \mathbb{E}\left[\xi_{n,k}^{2}; \left|\xi_{n,k}\right| \geq \epsilon\right] \to 0$. (Lindeberg's condition)

Let $\xi \sim N(0,1)$ and K be the **Kolmogorov distance**. That is,

$$K(\eta, \zeta) = \sup_{x \in \mathbb{R}} |\mathbb{P}[\eta \le x] - \mathbb{P}[\zeta \le x]|.$$

Then

$$\limsup_{n\to\infty} K\left(\xi, \sum_{k=1}^n \xi_{n,k}\right) = 0 \Leftrightarrow \sum_{k=1}^n \xi_{n,k} \stackrel{w}{\to} \xi,$$

$$\limsup_{n\to\infty} K\left(\xi, \sum_{k=1}^{n} \xi_{n,k}\right) = \sup_{h\in\mathcal{H}} \limsup_{n\to\infty} \left| \mathbb{E}\left[h\left(\xi\right) - h\left(\sum_{k=1}^{n} \xi_{n,k}\right)\right]\right|,$$

$$\mathcal{H} = \left\{ \mathbb{R} \stackrel{h}{\to} [0,1] \mid h \text{ strictly } \downarrow, C^{\infty}, \lim_{x \to -\infty} h(x) = 1, \lim_{x \to \infty} h(x) = 0 \right\}.$$

The **classical method** (e.g. Fourier analysis, Gaussian transforms) performs an **analysis of** h which leads to

$$\begin{split} & \left| \mathbb{E} \left[h\left(\xi\right) - h\left(\sum_{k=1}^{n} \xi_{n,k}\right) \right] \right| \\ & \leq & \frac{1}{6} \left\| h''' \right\|_{\infty} \left(\mathbb{E} \left[\left| \xi \right|^{3} \right] \max_{k=1}^{n} \sigma_{n,k} + \epsilon \right) + \left\| h'' \right\|_{\infty} \sum_{k=1}^{n} \mathbb{E} \left[\xi_{n,k}^{2}; \left| \xi_{n,k} \right| \geq \epsilon \right] \end{split}$$

which, after taking the lim sup, recalling Feller's negligibility condition and letting $\epsilon \downarrow 0$, reduces to

$$\begin{aligned} &\limsup_{n \to \infty} \left| \mathbb{E} \left[h(\xi) - h \left(\sum_{k=1}^{n} \xi_{n,k} \right) \right] \right| \\ & \leq \|h''\|_{\infty} \left(\sup_{\epsilon > 0} \limsup_{n \to \infty} \sum_{k=1}^{n} \mathbb{E} \left[\xi_{n,k}^{2}; \left| \xi_{n,k} \right| \ge \epsilon \right] \right). \end{aligned}$$

We call

$$\operatorname{Lin}\left(\left\{\xi_{n,k}\right\}\right) = \sup_{\epsilon>0} \limsup_{n\to\infty} \sum_{k=1}^{n} \mathbb{E}\left[\xi_{n,k}^{2}; \left|\xi_{n,k}\right| \geq \epsilon\right]$$

the Lindeberg index. It has the following properties:

- (a) $\operatorname{Lin}(\{\xi_{n,k}\}) = 0 \Leftrightarrow \{\xi_{n,k}\}\$ satisfies Lindeberg's condition,
- (b) $0 \le \operatorname{Lin}(\{\xi_{n,k}\}) \le 1$.

The classical method has thus produced the inequality

$$\limsup_{n\to\infty} \left| \mathbb{E}\left[h(\xi) - h\left(\sum_{k=1}^{n} \xi_{n,k}\right) \right] \right| \le \left\| h'' \right\|_{\infty} \operatorname{Lin}\left(\left\{ \xi_{n,k} \right\} \right) \tag{1}$$

which holds for every test function h. This proves that Lindeberg's condition is sufficient for normal convergence.

However, since $\|h''\|_{\infty}$ blows up if we let h run through \mathcal{H} , (1) is useless to derive an upper bound for the number $\limsup_{n\to\infty} K\left(\xi, \sum_{k=1}^n \xi_{n,k}\right)$.

The **Stein-Chen method** starts with the observation

$$\begin{split} & \left| \mathbb{E} \left[h\left(\xi\right) - h\left(\sum_{k=1}^{n} \xi_{n,k}\right) \right] \right| \\ & = \left| \mathbb{E} \left[\left(\sum_{k=1}^{n} \xi_{n,k}\right) f_h\left(\sum_{k=1}^{n} \xi_{n,k}\right) - f_h'\left(\sum_{k=1}^{n} \xi_{n,k}\right) \right] \right| \end{split}$$

where

$$f_h(x) = e^{x^2/2} \int_{-\infty}^{x} (h(t) - \mathbb{E}[h(\xi)]) e^{-t^2/2} dt,$$

and then performs an analysis of f_h which leads to

$$\begin{split} & \left| \mathbb{E} \left[h(\xi) - h \left(\sum_{k=1}^{n} \xi_{n,k} \right) \right] \right| \\ & \leq \frac{1}{2} \left\| f_{h}'' \right\|_{\infty} \epsilon + \left(\sup_{x_{1}, x_{2} \in \mathbb{R}} \left| f_{h}'(x_{1}) - f_{h}'(x_{2}) \right| \right) \sum_{k=1}^{n} \mathbb{E} \left[\left| \xi_{n,k} \right|^{2} ; \left| \xi_{n,k} \right| \geq \epsilon \right] \\ & + \left(\sup_{x_{1}, x_{2} \in \mathbb{R}} \left| f_{h}''(x_{1}) - f_{h}''(x_{2}) \right| \right) \max_{k=1}^{n} \sigma_{n,k} \end{split}$$

which, after taking the lim sup, recalling Feller's negligibility condition and letting $\epsilon \downarrow 0$, reduces to

$$\begin{split} & \limsup_{n \to \infty} \left| \mathbb{E} \left[h(\xi) - h \left(\sum_{k=1}^{n} \xi_{n,k} \right) \right] \right| \\ & \leq \left(\sup_{x_1, x_2 \in \mathbb{R}} \left| f_h'(x_1) - f_h'(x_2) \right| \right) \operatorname{Lin} \left(\left\{ \xi_{n,k} \right\} \right). \end{split}$$

Now $\sup_{x_1,x_2\in\mathbb{R}}\left|f_h'(x_1)-f_h'(x_2)\right|$ does not blow up if we let h run through \mathcal{H} as it is always bounded by $\mathbf{1}$.

Therefore we get

Theorem (Approximate CLT)

For an FSTA
$$\{\xi_{n,k}\}$$

$$\limsup_{n\to\infty} K\left(N(0,1),\sum_{k=1}^n \xi_{n,k}\right) \leq \operatorname{Lin}\left(\left\{\xi_{n,k}\right\}\right).$$

Theorem

Suppose that

$$\sigma_n \uparrow \infty$$
 and $\liminf_{n \to \infty} \frac{\sigma_n}{n} > 0$

and

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n p_k\sigma_k^2=L.$$

Then

$$\widetilde{\mu}_n \stackrel{\mathbb{P}}{\to} \mu$$

and

$$\frac{n}{s_n}(\widetilde{\mu}_n-\mu)\stackrel{w}{\to} N(0,1) \Leftrightarrow L=0.$$

What happens if $L \neq 0$?

Proposition

$$\left\{\frac{1}{s_n}\left(X_k-\mu\right)\right\}$$
 is an FSTA

and

$$\sum_{k=1}^{n} \frac{1}{s_n} \left(X_k - \mu \right) = \frac{n}{s_n} \left(\widetilde{\mu}_n - \mu \right)$$

and

$$\operatorname{Lin}\left(\left\{\frac{1}{s_n}(X_k-\mu)\right\}\right)=\frac{L}{1+L}.$$

$\mathsf{Theorem}$

Suppose that

$$\sigma_n \uparrow \infty$$
 and $\liminf_{n \to \infty} \frac{\sigma_n}{n} > 0$

and

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n p_k\sigma_k^2=L.$$

Then

$$\widetilde{\mu}_n \stackrel{\mathbb{P}}{\to} \mu$$

and

$$\limsup_{n\to\infty} K\left(N(0,1),\frac{n}{s_n}(\widetilde{\mu}_n-\mu)\right) \leq \frac{L}{1+L}.$$

Figure: Lin = 0.02

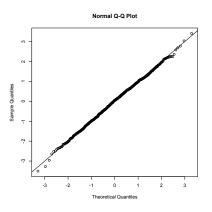


Figure: Lin = 0.18

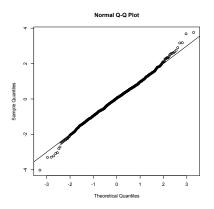


Figure: Lin = 0.44

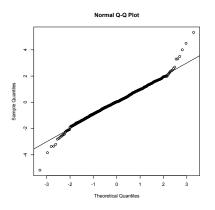
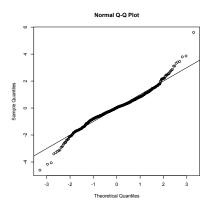



Figure: Lin = 0.82

