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Estimation of p with Xi ~ (1= px)N (g, 1) + pcN(p2, 03

Independent observations of N(u,1)
X1, X0, ..., Xy, ...
are contaminated according to the inflated variance model, i.e.

X~ (L= p)N(p, 1) + peN(ps, 0%)

with px € [0,1] and oy € [1,00[. Under which conditions is the
sample mean
1 n
Pn = — Z Xk
=1

(weakly) consistent for ;1 and asymptotically normal?
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

and

where

n
sp= 2 [(1=pe) + peoi]-
k=1
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Estimation of p with Xi ~ (1= px)N (g, 1) + pcN(p2, 03

Suppose that

.1 2
lim —zkzlpkak =0.

n—-oco N

Then
_ P
Hn = K.
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

Suppose that

.1 a
lim — maxai =0.
n—oo n j_q

Then

n  __ w
5 (Ba=p) > N(O,1).
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

Suppose that
on 1 oo and Iimimcﬁ >0

n—oo n
and
i 1 i 2 _
im — o; = L.
n—oo n k=1 pk k
Then
P
Hn = [
and

n  __ w
o (Hn—p) > N0, 1) = L =0.

What happens if L # 07
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Central Limit Theorem

A Feller standard triangular array (FSTA) of rv's

11
&1 &2

&1 &32 &3

has the following properties:

(a) Yn:&n1,...,&nn are independent,

(b) Vn,k:E [én,k] =0,

(c) Vn:Xiyop,=1withof, =E[&,].
(d) maxj_, o2, — 0. (Feller negligible)

Ben Berckmoes Approximating the CLT using Stein's method



Central Limit Theorem

For an FSTA {&,x} TFAE:

(a) Xho1énk 5 N(0,1).

(b) Ve>0:>7 1 E [5,2,7,(; |£n,k‘ > e] — 0. (Lindeberg's condition)
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Approximate Central Limit Theorem

Let £ ~ N(0,1) and K be the Kolmogorov distance. That is,

K(n,¢) :su]g!P[néX] -P[¢ <x]].

Then
I|msupK(§ ank) =0« an,sza
n—o0 k=1

lim supK(&, > §n7k) = sup limsup

n—o00 k=1 heH n—oo

(5]

H = {R 510,1] | hstrictly J, €, lim h(x) = 1, lim h(x) = o}.
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Approximate Central Limit Theorem

The classical method (e.g. Fourier analysis, Gaussian transforms)
performs an analysis of h which leads to

‘E[h(@ _ h(z m)”
k=1
L1 (P o+ )+ 1, 3Bl
k=1 k=1

which, after taking the limsup, recalling Feller’s negligibility
condition and letting € | 0, reduces to

()

Hh//Hoo (suplim sup Z E [5,2,7,(; ‘5,,7k| > e]) )
e>0 n—-oo 7
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Approximate Central Limit Theorem

We call

Lin ({&nk}) = supllm sup Z E [fn i |€ni| > €]

n—oo k=1
the Lindeberg index. It has the following properties:

(a) Lin({émk}) =0 {5,,7;(} satisfies Lindeberg's condition,

(b) 0<Lin({&}) < 1.
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Approximate Central Limit Theorem

The classical method has thus produced the inequality

E[h(&) - h(kzlgk)]

which holds for every test function h. This proves that Lindeberg's
condition is sufficient for normal convergence.

However, since |h”||., blows up if we let h run through H, (1) is
useless to derive an upper bound for the number

limsup,_e0 K (& Xh1 &nk)-

limsup

n—oo

<Al tin({ene)) (@)
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Approximate Central Limit Theorem

The Stein-Chen method starts with the observation

2|0 Sen
<Pl e (ge) (5]

() =2 [ (h(e) - E[h(©)]) & e,

where
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Approximate Central Limit Theorem

and then performs an analysis of f, which leads to

‘E[h(f)_h(j’:gn,k)”

k=1

< —1 Hf"H €+( sup |f'(x)—f'(x )‘) En E[‘{ ‘2’5 ‘>e]
= 2 A e ]Rhl h2k=1 mkl Skl

X1,X2€

+ ( sup |fh"(X1) — fh”(X2)‘) T’éxamk
=1

X1 ,XQER
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Approximate Central Limit Theorem

which, after taking the limsup, recalling Feller's negligibility
condition and letting € | 0, reduces to

E[h(g)—h(znjfn,k):”
k=1
< (sup |fh'(X1)—fﬁ(Xz)\)Lin({gn»k})'

x1,x2€R

limsup

n—oo

Now sup |fi(x1) - f;(x2)| does not blow up if we let h run
X1,X2€R

through H as it is always bounded by 1.
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Approximate Central Limit Theorem

Therefore we get

Theorem (Approximate CLT)

For an FSTA {&, «}

limsup K (N(O, 1), an: fn,k) < Lin ({én’k}) )
=il

n—oo
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

Suppose that
on 1 oo and Iimimcﬁ >0

n—oo n
and
i 1 i 2 _
im — o; = L.
n—oo n k=1 pk k
Then
P
Hn = [
and

n  __ w
o (Hn—p) > N0, 1) = L =0.

What happens if L # 07
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

1
{— (X — u)} is an FSTA
Sn

and 2 q
n  __
2 K= ()

= n

(L) 11

and
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

Suppose that
on 1 oo and Iimim‘ﬁ >0

n—oo n

and
I|m—2pkak—L
n=oon 3
Then
P
Hn = |
and i
li K| N(0,1 < .
msup K (N(O,1), (70 —1)) < 77
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

Figure: Lin = 0.02

Normal Q-Q Plot

Sample Quantiles
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

Figure: Lin = 0.18

Normal Q-Q Plot

Sample Quantiles
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

Figure: Lin = 0.44

Normal Q-Q Plot

Sample Quantiles
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Estimation of p with Xi ~ (1= px)N (g, 1) + pN(p2, 07)

Figure: Lin = 0.82

Normal Q-Q Plot
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