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Main idea

Definition 1
Let (W ,W ′,G ) be a coupling of square integrable random variables. We call
(W ,W ′,G ) a Stein coupling if

E{Gf (W ′)− Gf (W )} = E{Wf (W )},

for all functions for which the expectation exists.

B With the choice f (x) = eθx , we have

m′(θ) = E{Wf (W )} = E{Gf (W ′)− Gf (W )} (1)

= E
{
G
(
eθW

′ − eθW
)}

.

B This can be bounded using information about the typical size of G and W −W ′,
and a bound on m′(θ) leads to concentration inequalities.
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Comparison with the literature

B The case when

• W = f (X ),W ′ = f (X ′), and (X ,X ′) is an exchangeable pair, and

• G = −F (X ,X ′) such that F is an antisymmetric function

was studied by Chatterjee (2007), and further extended in Chatterjee & Dey (2010).

B Chatterjee (2012) proves concentration inequalities using a non-exchangeable
coupling construction, that is not a Stein-coupling, but similarly implies bounds on the
moment generating function.
B Application: sharp bounds for the number of triangles in an Erdős-Rényi graph.

B However, his main theorem is optimised for this particular problem, and it is not
applicable to our examples.

B Ghosh & Goldstein (2011) and Goldstein & Islak (2013) use size biasing and zero
biasing to obtain concentration inequalities.
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A Stein coupling for sums, motivated by local dependence

B Suppose that X1, . . . ,Xn are dependent random variables, and

W = X1 + . . .+ Xn.

B Let
G = n · XI ,

and I be uniformly distributed on [n] := {1, . . . , n}.
B Suppose that we can construct W ′ such that

• E(W ′) = 0, and

• W ′ is independent of XI .

B Then (W ,W ′,G ) is a Stein coupling.

B Such couplings can exist even when X1, . . . ,Xn are not defined as functions of
independent random variables, a situation that is difficult to handle with other
methods in the literature of concentration inequalities.
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Result: Proposition 1

B Let
G (−) := ess sup(G )− G . (2)

Proposition 1

If W and W ′ have the same distribution, then for any θ ∈ R,

|m′(θ)| ≤ E

(
|θ|G (−)|W −W ′|

(
eθW + eθW

′

2

))
. (3)

Proof.
We can bound E

{
G
(
eθW

′ − eθW
)}

by the right hand side using the fact that W

and W ′ has the same distribution, and the inequality |ex − ey | ≤ ex+ey

2 · |x − y |.
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B The following lemma can be used together with Proposition 1 to obtain
concentration inequalities.

Lemma 1
Let W be a centered random variable with moment generating function m(θ). Let
C ,D ≥ 0, suppose that m(θ) is finite, and continuously differentiable in [0, 1/C ), and
satisfies

m′(θ) ≤ Cθm′(θ) + Dθm(θ).

Then for 0 ≤ θ < 1/C,

log(m(θ)) ≤ Dθ2

2(1− Cθ)
, (4)

and for every t ≥ 0,

P(W ≥ t) ≤ exp

(
− t2

2(D + Ct)

)
. (5)
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Example: Large subgraphs of huge graphs
B Consider a fixed graph with N vertices, called host graph.
B Vertices of the graph: [N] := {1, . . . ,N}.
B Edges of the graph: (Ei ,j)1≤i<j≤N .
B Graph: G := ([N], (Ei ,j)1≤i<j≤N).

B Let I (1), . . . , I (n) be random variables chosen from [N] by sampling without
replacement, uniformly from the N · . . . · (N − n + 1) possibilities.

B Consider a random subgraph with vertices I (1), . . . , I (n), denoted
H := ({I (1), . . . , I (n)}, (EI (i),I (j))1≤i<j≤n)).

B A natural question: if F a small fixed subgraph with k vertices, then how many
copies of F are in our subgraph H, and how is this related to the total number of such
copies in the host graph G?
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B Let NF (H) denote the number of full copies of a fixed graph
F := {[k], (Fi ,j)1≤i<j≤k} in H.
B The following proposition shows a concentration inequality for this quantity, in
terms of NF (G), the number of full copies of F in the host graph G.

Theorem 1
For any t ≥ 0, we have

P (|NF (H)− E(NF (H))| ≥ t)

≤ 2 exp

(
− t2

2k2nk−1 · E(NF (H)) + k2nk−1t

)
,

where E(NF (H)) = NF (G) · n(n−1)...(n−k+1)
N(N−1)...(N−k+1) .
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B This theorem can be viewed as a non-asymptotic law of large numbers.
B When N and n are large, and k is small, and F is quite frequent in G in the sense
that NF (G) = O(Nk), then E(NF (H)) = O(nk), while the typical deviation of NF (H)
is of O(knk−1/2).
B This implies that NF (H) is concentrated around its mean, which is determined by G.
B Thus we can read the structure of G, in the sense of subgraph frequencies, and
make small error with high probability, from just one large sample H.
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Proof of Theorem 1.
B Firstly, we construct a Stein coupling (W ,W ′,G ).
B W will correspond to NF (H)− ENF (H).
B For notational simplicity, we define W ′ first, then G and finally W .
B Let I ′(1), . . . , I ′(n) be sampled without replacement from [N], and define W ′ as the
centered version of the number of full copies of F in the subgraph H′ of G with
vertices I ′(1), . . . , I ′(n).
B Let J(1), J(2), . . . , J(k) be sampled without replacement from [N], independently of
I ′(1), . . . , I ′(n), and let GJ be the subgraph of G with these vertices, and

G := −n · . . . · (n − k + 1) · (1 [GJ = F ]− P [GJ = F ]) ,

B This is a rescaled, centered version of the indicator function corresponding to
whether the subgraph of G with vertices J(1), . . . , J(k) equals to F .
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B Because of the independence, it follows that

E(G |W ′) = 0.

B We define I (1), . . . , I (n) as follows. First, set

I (1) := I ′(1), . . . , I (n) := I ′(n).

B Whenever an element of the sequence I (1), . . . , I (n) is also a member of the
sequence J(1), . . . , J(k), we mark it in both sequences.

B Suppose that there are r non-marked elements left in the sequence J(1), . . . , J(k).

B We choose r elements at random from the non-marked elements of I (1), . . . , I (n),
and replace them with the corresponding non-marked element of J(1), . . . , J(k).

B This ensures that the sequence J(1), . . . , J(k) is distributed as if it were sampled
without replacement from I (1), . . . , I (n).
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B Let H be the subgraph of G with vertices I (1), . . . , I (n), and W be the centered
version of the number of full copies of F in H.
B Then E(G |W ) = −W , thus (W ,W ′,G ) is a Stein coupling.
B Here W ′ and W have the same distribution (also exchangeable). Moreover, there
are at most k indices i in [n] such that I (i) differs from I ′(i), therefore

|W −W ′| ≤ n · . . . · (n − k + 1)− (n − k) · . . . · (n − 2k + 1) ≤ k2nk−1.

B The result now follows from Proposition 1 and Lemma 1.
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Result: Proposition 2

Proposition 2

Let (W ,W ′,G ) be a Stein coupling. Let

G (−) := ess sup(G )− G , (6)

where ess sup(G ) denotes the supremum of G in the almost sure sense. Suppose that
W and W ′ have the same distribution. Suppose that Wmax and Wmin are random
variables such that |W −W ′| ≤Wmax −Wmin, and conditioned on some σ-field F , G
is independent of Wmax −Wmin and W ′. Suppose that Wmax −Wmin ≤ M <∞
almost surely. Then

m′(θ) ≤ E
(
E
(
G (−)

∣∣∣F)(eθ(Wmax−Wmin) − 1
)
eθW

′
)

for θ > 0, thus (7)

m′(θ) ≤ E
(

2θE
(
G (−)

∣∣∣F) (Wmax −Wmin)eθW
′
)

for 0 ≤ θ ≤ 1/M, and (8)

m′(θ) ≥ E
(
θE
(
G (−)

∣∣∣F) (Wmax −Wmin)eθW
′
)

for θ < 0. (9)
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B The following lemma allows us to bound expectations of the form E(eθWV ).

Lemma 2 (Massart (2000))

For real valued random variables V and W , any L > 0, for every θ ∈ R, we have

E(eθWV ) ≤ L−1 logE(eLV )m(θ) + L−1θm′(θ)− L−1m(θ) log(m(θ)),

if the expectations on both sides exist.
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Example: Number of edges in geometric random graphs

B We define a Geo(n, c) as follows.
B Let Ω = [0, 1]2, and X1, . . . ,Xn be i.i.d. uniform in Ω.
B Define the distance function d : Ω2 → R+ as the torus distance between two points
(this assumption is made to avoid edge effects).
B For some c > 0, we put an edge between two points Xi and Xj if their distance is
less than c .
B We call the resulting graph Geo(n, c), the random geometric graph.
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Theorem 2
Denote by E the number of edges in the geometric random graph Geo(n, c). Let

CL :=
√

6πnc , DL := 12(log(1/c) + nc2π)n2c2π

CU := max(
√

12πnc , 2n), DU := 24(log(1/c) + nc2π)n2c2π.

Then for any t ≥ 0,

P(E − E(E) ≥ t) ≤ exp

(
− t2

2(DU + CUt)

)
, and

P(E − E(E) ≤ −t) ≤ exp

(
− t2

2(DL + CLt)

)
.

B Applying McDiarmid’s bounded differences inequalities would only give a
concentration inequality of order exp(−t2/n3), independent of c . Our result depends
on c , thus it is better when c is much smaller than 1.
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Proof of Theorem 2.
B Denote by Ei ,j the indicator function of the edge between the points Xi and Xj , then
the total number of edges is

E =
∑

1≤i<j≤n
Ei ,j .

B We have E(Ei ,j) = c2π, so E(E) =
(n
2

)
c2π.

B Let I and J be random indices such that I < J, uniformly chosen among the
(n
2

)
possibilities.
B Let

G :=

(
n

2

)(
−EI ,J + c2π

)
,

then

G (−) =

(
n

2

)
EI ,J .

B Let W = E − E(E). We create W ′ by replacing XI and XJ by an independent copy
and evaluating W on the resulting graph.
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B Let Emax be the maximum number of edges in the geometric random graph that
only differs from our graph in XI and XJ (i.e. we move them to the most dense areas).
B Similarly, let Emin be the number of edges of the graph created by removing XI and
XJ .
B Let Wmax := Emax − E(E), and Wmin := Emin − E(E).
B Conditions of Proposition 2 hold if F is σ-field generated by I , J. For θ < 0,

m′(θ) ≥ E
(
θE(G (−)|F)(Wmax −Wmin)eθW

′
)

≥ θ

(
n

2

)
c2π · E

(
(Wmax −Wmin)eθW

′
)
.

B Moreover, we have

Wmax −Wmin ≤ 2 · max number of points in a circle of size c .
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B The square can be cut into 1/(4c2) small squares of edge length 2c.
B By putting a circle of radius c centered in the middle of each square and on the
vertices of each square, we cover the original square with 1/(2c2) circles.
B Since any circle of radius c can cross at most 6 of these circles, we have

Wmax −Wmin ≤ 12 · max no. of points in a circ. among the 1/(2c2) circ.

B Since the number of points in a circle of radius c is just the sum of n independent
Bernoulli random variables with parameter c2π, we have that for any L > 0,

E
(
eL(Wmax−Wmin)

)
≤ 1

2c2

(
1− c2π + c2π · e12L

)n
,

and the results follow by Lemma 2 and Proposition 2.
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Result: Proposition 3

Proposition 3

Suppose that W ≥W ′ almost surely. Then for any θ ≥ 0,

m′(θ) = E(−G (eθW − eθW
′
)) ≤ E(θG−(W −W ′) · eθW ). (10)

Similarly, if W ′ ≥W almost surely, then for any θ ≤ 0,

m′(θ) = E(−G (eθW − eθW
′
)) ≥ E(θG+(W ′ −W ) · eθW ). (11)

Here G− := −G · 1[G < 0] and G+ := G · 1[G > 0] denotes the negative, and positive
parts of G .

B Note that if E(G |W ′) = 0, then we can shift W ′ by a constant and ensure that the
conditions of this theorem hold.
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Example: Isolated vertices in Erdős-Rényi graphs

B Let G (n, p) be an Erdős-Rényi graph, with edges X := (Xi ,j)1≤i<j≤n being i.i.d.
Bernoulli random variables with parameter p. B Denote the number of its isolated
vertices (i.e. the vertices with zero incurring edges) by I(X ). Then the following
proposition bounds the lower tail of I(X ).

Proposition 4

For any t ≥ 0, we have

P(I(X ) ≤ E(I(X ))− t) ≤ exp

(
− t2

4n(1− p)n−1

)
. (12)

Remark 1
Ghosh et al. (2011) have shown the same bound using size biasing.
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Proof.
B E(I(X )) = n(1− p)n−1, thus we set

W := I(X )− n(1− p)n−1.

B X ′ is defined picking a vertex I uniformly from [n], and removing all the edges
connected to it.

W ′ := I(X ′)− n(1− p)n−1.

G := −n1[I is an isolated vertex] + n(1− p)n−1.

B Then (W ,W ′,G ) is a Stein coupling, E(G |W ′) = 0, and W ′ ≥W almost surely.
B From Proposition 3, we obtain that for θ < 0,

m′(θ) ≥ E(G+θ(W ′ −W )eθW ) ≥ n(1− p)n−1θE((W ′ −W )eθW ).
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B Now we are left to bound E(W ′ −W |W ). We will show that for any graph X ,

E(W ′ −W |W ) ≤ 2.

B Here W ′−W expresses the number of new isolated vertices created by erasing all of
the edges of a randomly picked vertex from X . B This operation can only create new
isolated vertices from those that only had one incurring edge.
B Such vertices are organised into groups of two (two vertices are connected to each
other and isolated from the rest) or groups of k ≥ 3 (k − 1 vertices have their only
edge connected to the kth vertex, which we call root vertex).
B Let N2(X ) denote the number of groups of two, and Nk denote the number of
groups of 3 ≤ k ≤ n. Since the total number of vertices n, we must have∑

k≥2 kNk ≤ n.
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B If we pick the vertex I from a group of two, that will create two new isolated
vertices. If we pick a root vertex from a group of k ≥ 3, we create k new isolated
vertices, while if we pick any other vertex, we create only one new isolated vertex.
B Therefore, we have

E(W ′ −W |X ) ≤ 2N2

n
· 2 +

n∑
k=3

(
Nk

n
k +

(k − 1)Nk

n

)
≤
∑n

k=2 2kNk

n
≤ 2.

B This implies that E(W ′ −W |W ) ≤ 2, and by substituting this into our bound on
the moment generating function, we get that for θ ≤ 0, m′(θ) ≥ 2n(1− p)n−1θm(θ).
B From this, we obtain our concentration bound by a standard argument.
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Conclusion

• Stein-type couplings can be used to show concentration inequalities for sums of
dependent random variables.

• These inequalities are non-asymptotic. They can be applied even when there is no
limiting distribution, or the limiting distribution is not known.

• Unlike most of the other methods in the literature, they can be also applied in
situations when the random variables are not defined in terms of underlying
independent random variables.

• By appropriate construction of the coupling, model specific information can be
taken into account, and good bounds can be obtained.

• The arguments can be extended to obtain moment bounds as well.
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THANK YOU!
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