Concentration inequalities by Stein couplings

Daniel Paulin
National University of Singapore, Department of Statistics and Applied Probability

May 21, 2015

Workshop on New Directions in Stein's Method, Singapore

Joint work with Adrian Röllin.

Main idea

Definition 1

Let $\left(W, W^{\prime}, G\right)$ be a coupling of square integrable random variables. We call $\left(W, W^{\prime}, G\right)$ a Stein coupling if

$$
\mathbb{E}\left\{G f\left(W^{\prime}\right)-G f(W)\right\}=\mathbb{E}\{W f(W)\}
$$

for all functions for which the expectation exists.
\triangleright With the choice $f(x)=e^{\theta x}$, we have

$$
\begin{align*}
m^{\prime}(\theta) & =\mathbb{E}\{W f(W)\}=\mathbb{E}\left\{G f\left(W^{\prime}\right)-G f(W)\right\} \tag{1}\\
& =\mathbb{E}\left\{G\left(e^{\theta W^{\prime}}-e^{\theta W}\right)\right\}
\end{align*}
$$

\triangleright This can be bounded using information about the typical size of G and $W-W^{\prime}$, and a bound on $m^{\prime}(\theta)$ leads to concentration inequalities.

Comparison with the literature

\triangleright The case when

- $W=f(X), W^{\prime}=f\left(X^{\prime}\right)$, and $\left(X, X^{\prime}\right)$ is an exchangeable pair, and
- $G=-F\left(X, X^{\prime}\right)$ such that F is an antisymmetric function
was studied by Chatterjee (2007), and further extended in Chatterjee \& Dey (2010).
\triangleright Chatterjee (2012) proves concentration inequalities using a non-exchangeable coupling construction, that is not a Stein-coupling, but similarly implies bounds on the moment generating function.
\triangleright Application: sharp bounds for the number of triangles in an Erdős-Rényi graph.
\triangleright However, his main theorem is optimised for this particular problem, and it is not applicable to our examples.
\triangleright Ghosh \& Goldstein (2011) and Goldstein \& Islak (2013) use size biasing and zero biasing to obtain concentration inequalities.

A Stein coupling for sums, motivated by local dependence
\triangleright Suppose that X_{1}, \ldots, X_{n} are dependent random variables, and

$$
W=X_{1}+\ldots+X_{n}
$$

\triangleright Let

$$
G=n \cdot X_{l},
$$

and I be uniformly distributed on $[n]:=\{1, \ldots, n\}$.
\triangleright Suppose that we can construct W^{\prime} such that

- $\mathbb{E}\left(W^{\prime}\right)=0$, and
- W^{\prime} is independent of X_{l}.
\triangleright Then $\left(W, W^{\prime}, G\right)$ is a Stein coupling.
\triangleright Such couplings can exist even when X_{1}, \ldots, X_{n} are not defined as functions of independent random variables, a situation that is difficult to handle with other methods in the literature of concentration inequalities.

Result: Proposition 1

\triangleright Let

$$
\begin{equation*}
G^{(-)}:=\operatorname{ess} \sup (G)-G . \tag{2}
\end{equation*}
$$

Proposition 1
If W and W^{\prime} have the same distribution, then for any $\theta \in \mathbb{R}$,

$$
\begin{equation*}
\left|m^{\prime}(\theta)\right| \leq \mathbb{E}\left(|\theta| G^{(-)}\left|W-W^{\prime}\right|\left(\frac{e^{\theta W}+e^{\theta W^{\prime}}}{2}\right)\right) \tag{3}
\end{equation*}
$$

Proof.

We can bound $\mathbb{E}\left\{G\left(e^{\theta W^{\prime}}-e^{\theta W}\right)\right\}$ by the right hand side using the fact that W and W^{\prime} has the same distribution, and the inequality $\left|e^{x}-e^{y}\right| \leq \frac{e^{x}+e^{y}}{2} \cdot|x-y|$.
\triangleright The following lemma can be used together with Proposition 1 to obtain concentration inequalities.

Lemma 1

Let W be a centered random variable with moment generating function $m(\theta)$. Let $C, D \geq 0$, suppose that $m(\theta)$ is finite, and continuously differentiable in $[0,1 / C)$, and satisfies

$$
m^{\prime}(\theta) \leq C \theta m^{\prime}(\theta)+D \theta m(\theta)
$$

Then for $0 \leq \theta<1 / C$,

$$
\begin{equation*}
\log (m(\theta)) \leq \frac{D \theta^{2}}{2(1-C \theta)} \tag{4}
\end{equation*}
$$

and for every $t \geq 0$,

$$
\begin{equation*}
\mathbb{P}(W \geq t) \leq \exp \left(-\frac{t^{2}}{2(D+C t)}\right) \tag{5}
\end{equation*}
$$

Example: Large subgraphs of huge graphs

\triangleright Consider a fixed graph with N vertices, called host graph.
\triangleright Vertices of the graph: $[N]:=\{1, \ldots, N\}$.
\triangleright Edges of the graph: $\left(E_{i, j}\right)_{1 \leq i<j \leq N}$.
\triangleright Graph: $\mathcal{G}:=\left([N],\left(E_{i, j}\right)_{1 \leq i<j \leq N}\right)$.
\triangleright Let $I(1), \ldots, I(n)$ be random variables chosen from [N] by sampling without replacement, uniformly from the $N \cdot \ldots \cdot(N-n+1)$ possibilities.
\triangleright Consider a random subgraph with vertices $I(1), \ldots, I(n)$, denoted $\left.\mathcal{H}:=\left(\{I(1), \ldots, I(n)\},\left(E_{l(i), I(j)}\right)_{1 \leq i<j \leq n}\right)\right)$.
$\triangleright A$ natural question: if \mathcal{F} a small fixed subgraph with k vertices, then how many copies of \mathcal{F} are in our subgraph \mathcal{H}, and how is this related to the total number of such copies in the host graph \mathcal{G} ?
\triangleright Let $N_{\mathcal{F}}(\mathcal{H})$ denote the number of full copies of a fixed graph $\mathcal{F}:=\left\{[k],\left(F_{i, j}\right)_{1 \leq i<j \leq k}\right\}$ in \mathcal{H}.
\triangleright The following proposition shows a concentration inequality for this quantity, in terms of $N_{\mathcal{F}}(\mathcal{G})$, the number of full copies of \mathcal{F} in the host graph \mathcal{G}.

Theorem 1
For any $t \geq 0$, we have

$$
\begin{aligned}
& \mathbb{P}\left(\left|N_{\mathcal{F}}(\mathcal{H})-\mathbb{E}\left(N_{\mathcal{F}}(\mathcal{H})\right)\right| \geq t\right) \\
& \leq 2 \exp \left(-\frac{t^{2}}{2 k^{2} n^{k-1} \cdot \mathbb{E}\left(N_{\mathcal{F}}(\mathcal{H})\right)+k^{2} n^{k-1} t}\right)
\end{aligned}
$$

where $\mathbb{E}\left(N_{\mathcal{F}}(\mathcal{H})\right)=N_{\mathcal{F}}(\mathcal{G}) \cdot \frac{n(n-1) \ldots(n-k+1)}{N(N-1) \ldots(N-k+1)}$.
\triangleright This theorem can be viewed as a non-asymptotic law of large numbers.
\triangleright When N and n are large, and k is small, and \mathcal{F} is quite frequent in \mathcal{G} in the sense that $N_{\mathcal{F}}(\mathcal{G})=\mathcal{O}\left(N^{k}\right)$, then $\mathbb{E}\left(N_{\mathcal{F}}(\mathcal{H})\right)=\mathcal{O}\left(n^{k}\right)$, while the typical deviation of $N_{\mathcal{F}}(\mathcal{H})$ is of $\mathcal{O}\left(k n^{k-1 / 2}\right)$.
\triangleright This implies that $N_{\mathcal{F}}(\mathcal{H})$ is concentrated around its mean, which is determined by \mathcal{G}.
\triangleright Thus we can read the structure of \mathcal{G}, in the sense of subgraph frequencies, and make small error with high probability, from just one large sample \mathcal{H}.

Proof of Theorem 1.

\triangleright Firstly, we construct a Stein coupling $\left(W, W^{\prime}, G\right)$.
$\triangleright W$ will correspond to $N_{\mathcal{F}}(\mathcal{H})-\mathbb{E} N_{\mathcal{F}}(\mathcal{H})$.
\triangleright For notational simplicity, we define W^{\prime} first, then G and finally W.
\triangleright Let $I^{\prime}(1), \ldots, I^{\prime}(n)$ be sampled without replacement from [N], and define W^{\prime} as the centered version of the number of full copies of \mathcal{F} in the subgraph \mathcal{H}^{\prime} of \mathcal{G} with vertices $I^{\prime}(1), \ldots, I^{\prime}(n)$.
\triangleright Let $J(1), J(2), \ldots, J(k)$ be sampled without replacement from [N], independently of $I^{\prime}(1), \ldots, I^{\prime}(n)$, and let $\mathcal{G} J$ be the subgraph of \mathcal{G} with these vertices, and

$$
G:=-n \cdot \ldots \cdot(n-k+1) \cdot\left(\mathbb{1}\left[\mathcal{G}_{J}=\mathcal{F}\right]-\mathbb{P}\left[\mathcal{G}_{J}=\mathcal{F}\right]\right)
$$

\triangleright This is a rescaled, centered version of the indicator function corresponding to whether the subgraph of \mathcal{G} with vertices $J(1), \ldots, J(k)$ equals to \mathcal{F}.
\triangleright Because of the independence, it follows that

$$
\mathbb{E}\left(G \mid W^{\prime}\right)=0
$$

\triangleright We define $I(1), \ldots, I(n)$ as follows. First, set

$$
I(1):=I^{\prime}(1), \ldots, I(n):=I^{\prime}(n) .
$$

\triangleright Whenever an element of the sequence $I(1), \ldots, I(n)$ is also a member of the sequence $J(1), \ldots, J(k)$, we mark it in both sequences.
\triangleright Suppose that there are r non-marked elements left in the sequence $J(1), \ldots, J(k)$.
\triangleright We choose r elements at random from the non-marked elements of $I(1), \ldots, I(n)$, and replace them with the corresponding non-marked element of $J(1), \ldots, J(k)$.
\triangleright This ensures that the sequence $J(1), \ldots, J(k)$ is distributed as if it were sampled without replacement from $I(1), \ldots, I(n)$.
\triangleright Let \mathcal{H} be the subgraph of \mathcal{G} with vertices $I(1), \ldots, I(n)$, and W be the centered version of the number of full copies of \mathcal{F} in \mathcal{H}.
\triangleright Then $\mathbb{E}(G \mid W)=-W$, thus $\left(W, W^{\prime}, G\right)$ is a Stein coupling.
\triangleright Here W^{\prime} and W have the same distribution (also exchangeable). Moreover, there are at most k indices i in $[n]$ such that $I(i)$ differs from $I^{\prime}(i)$, therefore

$$
\left|W-W^{\prime}\right| \leq n \cdot \ldots \cdot(n-k+1)-(n-k) \cdot \ldots \cdot(n-2 k+1) \leq k^{2} n^{k-1}
$$

\triangleright The result now follows from Proposition 1 and Lemma 1.

Result: Proposition 2

Proposition 2

Let $\left(W, W^{\prime}, G\right)$ be a Stein coupling. Let

$$
\begin{equation*}
G^{(-)}:=\operatorname{ess} \sup (G)-G, \tag{6}
\end{equation*}
$$

where ess $\sup (G)$ denotes the supremum of G in the almost sure sense. Suppose that W and W^{\prime} have the same distribution. Suppose that $W_{\max }$ and $W_{\min }$ are random variables such that $\left|W-W^{\prime}\right| \leq W_{\max }-W_{\min }$, and conditioned on some σ-field \mathcal{F}, G is independent of $W_{\max }-W_{\min }$ and W^{\prime}. Suppose that $W_{\max }-W_{\min } \leq M<\infty$ almost surely. Then

$$
\begin{align*}
& m^{\prime}(\theta) \leq \mathbb{E}\left(\mathbb{E}\left(G^{(-)} \mid \mathcal{F}\right)\left(e^{\theta\left(W_{\max }-W_{\min }\right)}-1\right) e^{\theta W^{\prime}}\right) \text { for } \theta>0, \text { thus } \tag{7}\\
& m^{\prime}(\theta) \leq \mathbb{E}\left(2 \theta \mathbb{E}\left(G^{(-)} \mid \mathcal{F}\right)\left(W_{\max }-W_{\min }\right) e^{\theta W^{\prime}}\right) \text { for } 0 \leq \theta \leq 1 / M, \text { and } \tag{8}\\
& m^{\prime}(\theta) \geq \mathbb{E}\left(\theta \mathbb{E}\left(G^{(-)} \mid \mathcal{F}\right)\left(W_{\max }-W_{\min }\right) e^{\theta W^{\prime}}\right) \text { for } \theta<0 \tag{9}
\end{align*}
$$

\triangleright The following lemma allows us to bound expectations of the form $\mathbb{E}\left(e^{\theta W} V\right)$. Lemma 2 (Massart (2000))
For real valued random variables V and W, any $L>0$, for every $\theta \in \mathbb{R}$, we have

$$
\mathbb{E}\left(e^{\theta W} V\right) \leq L^{-1} \log \mathbb{E}\left(e^{L V}\right) m(\theta)+L^{-1} \theta m^{\prime}(\theta)-L^{-1} m(\theta) \log (m(\theta))
$$

if the expectations on both sides exist.

Example: Number of edges in geometric random graphs

\triangleright We define a $\operatorname{Geo}(n, c)$ as follows.
\triangleright Let $\Omega=[0,1]^{2}$, and X_{1}, \ldots, X_{n} be i.i.d. uniform in Ω.
\triangleright Define the distance function $d: \Omega^{2} \rightarrow \mathbb{R}_{+}$as the torus distance between two points (this assumption is made to avoid edge effects).
\triangleright For some $c>0$, we put an edge between two points X_{i} and X_{j} if their distance is less than c.
\triangleright We call the resulting graph $\operatorname{Geo}(n, c)$, the random geometric graph.

Theorem 2

Denote by \mathcal{E} the number of edges in the geometric random graph $\operatorname{Geo}(n, c)$. Let

$$
\begin{aligned}
C_{L}:=\sqrt{6 \pi} n c, & D_{L}:=12\left(\log (1 / c)+n c^{2} \pi\right) n^{2} c^{2} \pi \\
C_{U}:=\max (\sqrt{12 \pi} n c, 2 n), & D_{U}:=24\left(\log (1 / c)+n c^{2} \pi\right) n^{2} c^{2} \pi
\end{aligned}
$$

Then for any $t \geq 0$,

$$
\begin{aligned}
& \mathbb{P}(\mathcal{E}-\mathbb{E}(\mathcal{E}) \geq t) \leq \exp \left(-\frac{t^{2}}{2\left(D_{U}+C_{U} t\right)}\right), \text { and } \\
& \mathbb{P}(\mathcal{E}-\mathbb{E}(\mathcal{E}) \leq-t) \leq \exp \left(-\frac{t^{2}}{2\left(D_{L}+C_{L} t\right)}\right)
\end{aligned}
$$

\triangleright Applying McDiarmid's bounded differences inequalities would only give a concentration inequality of order $\exp \left(-t^{2} / n^{3}\right)$, independent of c. Our result depends on c, thus it is better when c is much smaller than 1 .

Proof of Theorem 2.

\triangleright Denote by $\mathcal{E}_{i, j}$ the indicator function of the edge between the points X_{i} and X_{j}, then the total number of edges is

$$
\mathcal{E}=\sum_{1 \leq i<j \leq n} \mathcal{E}_{i, j}
$$

\triangleright We have $\mathbb{E}\left(\mathcal{E}_{i, j}\right)=c^{2} \pi$, so $\mathbb{E}(\mathcal{E})=\binom{n}{2} c^{2} \pi$.
\triangleright Let I and J be random indices such that $I<J$, uniformly chosen among the $\binom{n}{2}$ possibilities.
\triangleright Let

$$
G:=\binom{n}{2}\left(-\mathcal{E}_{l, J}+c^{2} \pi\right),
$$

then

$$
G^{(-)}=\binom{n}{2} \mathcal{E}_{l, J .}
$$

\triangleright Let $W=\mathcal{E}-\mathbb{E}(\mathcal{E})$. We create W^{\prime} by replacing X_{I} and X_{J} by an independent copy and evaluating W on the resulting graph.
\triangleright Let $\mathcal{E}_{\text {max }}$ be the maximum number of edges in the geometric random graph that only differs from our graph in X_{I} and X_{J} (i.e. we move them to the most dense areas). \triangleright Similarly, let $\mathcal{E}_{\text {min }}$ be the number of edges of the graph created by removing X_{I} and X_{J}.
\triangleright Let $W_{\text {max }}:=\mathcal{E}_{\text {max }}-\mathbb{E}(\mathcal{E})$, and $W_{\text {min }}:=\mathcal{E}_{\text {min }}-\mathbb{E}(\mathcal{E})$.
\triangleright Conditions of Proposition 2 hold if \mathcal{F} is σ-field generated by I, J. For $\theta<0$,

$$
\begin{aligned}
m^{\prime}(\theta) & \geq \mathbb{E}\left(\theta \mathbb{E}\left(G^{(-)} \mid \mathcal{F}\right)\left(W_{\max }-W_{\min }\right) e^{\theta W^{\prime}}\right) \\
& \geq \theta\binom{n}{2} c^{2} \pi \cdot \mathbb{E}\left(\left(W_{\max }-W_{\min }\right) e^{\theta W^{\prime}}\right)
\end{aligned}
$$

\triangleright Moreover, we have

$$
W_{\max }-W_{\min } \leq 2 \cdot \max \text { number of points in a circle of size } c .
$$

\triangleright The square can be cut into $1 /\left(4 c^{2}\right)$ small squares of edge length $2 c$.
\triangleright By putting a circle of radius c centered in the middle of each square and on the vertices of each square, we cover the original square with $1 /\left(2 c^{2}\right)$ circles.
\triangleright Since any circle of radius c can cross at most 6 of these circles, we have

$$
W_{\max }-W_{\min } \leq 12 \cdot \max \text { no. of points in a circ. among the } 1 /\left(2 c^{2}\right) \text { circ. }
$$

\triangleright Since the number of points in a circle of radius c is just the sum of n independent Bernoulli random variables with parameter $c^{2} \pi$, we have that for any $L>0$,

$$
\mathbb{E}\left(e^{L\left(W_{\max }-W_{\min }\right)}\right) \leq \frac{1}{2 c^{2}}\left(1-c^{2} \pi+c^{2} \pi \cdot e^{12 L}\right)^{n},
$$

and the results follow by Lemma 2 and Proposition 2.

Result: Proposition 3

Proposition 3

Suppose that $W \geq W^{\prime}$ almost surely. Then for any $\theta \geq 0$,

$$
\begin{equation*}
m^{\prime}(\theta)=\mathbb{E}\left(-G\left(e^{\theta W}-e^{\theta W^{\prime}}\right)\right) \leq \mathbb{E}\left(\theta G_{-}\left(W-W^{\prime}\right) \cdot e^{\theta W}\right) \tag{10}
\end{equation*}
$$

Similarly, if $W^{\prime} \geq W$ almost surely, then for any $\theta \leq 0$,

$$
\begin{equation*}
m^{\prime}(\theta)=\mathbb{E}\left(-G\left(e^{\theta W}-e^{\theta W^{\prime}}\right)\right) \geq \mathbb{E}\left(\theta G_{+}\left(W^{\prime}-W\right) \cdot e^{\theta W}\right) \tag{11}
\end{equation*}
$$

Here $G_{-}:=-G \cdot \mathbb{1}[G<0]$ and $G_{+}:=G \cdot \mathbb{1}[G>0]$ denotes the negative, and positive parts of G.
\triangleright Note that if $\mathbb{E}\left(G \mid W^{\prime}\right)=0$, then we can shift W^{\prime} by a constant and ensure that the conditions of this theorem hold.

Example: Isolated vertices in Erdős-Rényi graphs

\triangleright Let $G(n, p)$ be an Erdős-Rényi graph, with edges $X:=\left(X_{i, j}\right)_{1 \leq i<j \leq n}$ being i.i.d. Bernoulli random variables with parameter $p . \triangleright$ Denote the number of its isolated vertices (i.e. the vertices with zero incurring edges) by $\mathcal{I}(X)$. Then the following proposition bounds the lower tail of $\mathcal{I}(X)$.

Proposition 4

For any $t \geq 0$, we have

$$
\begin{equation*}
\mathbb{P}(\mathcal{I}(X) \leq \mathbb{E}(\mathcal{I}(X))-t) \leq \exp \left(-\frac{t^{2}}{4 n(1-p)^{n-1}}\right) \tag{12}
\end{equation*}
$$

Remark 1
Ghosh et al. (2011) have shown the same bound using size biasing.

Proof.

$\triangleright \mathbb{E}(\mathcal{I}(X))=n(1-p)^{n-1}$, thus we set

$$
W:=\mathcal{I}(X)-n(1-p)^{n-1}
$$

$\triangleright X^{\prime}$ is defined picking a vertex I uniformly from [n], and removing all the edges connected to it.

$$
\begin{aligned}
W^{\prime} & :=\mathcal{I}\left(X^{\prime}\right)-n(1-p)^{n-1} \\
G & :=-n \mathbb{1}[/ \text { is an isolated vertex }]+n(1-p)^{n-1}
\end{aligned}
$$

\triangleright Then $\left(W, W^{\prime}, G\right)$ is a Stein coupling, $\mathbb{E}\left(G \mid W^{\prime}\right)=0$, and $W^{\prime} \geq W$ almost surely.
\triangleright From Proposition 3, we obtain that for $\theta<0$,

$$
m^{\prime}(\theta) \geq \mathbb{E}\left(G_{+} \theta\left(W^{\prime}-W\right) e^{\theta W}\right) \geq n(1-p)^{n-1} \theta \mathbb{E}\left(\left(W^{\prime}-W\right) e^{\theta W}\right)
$$

\triangleright Now we are left to bound $\mathbb{E}\left(W^{\prime}-W \mid W\right)$. We will show that for any graph X,

$$
\mathbb{E}\left(W^{\prime}-W \mid W\right) \leq 2
$$

\triangleright Here $W^{\prime}-W$ expresses the number of new isolated vertices created by erasing all of the edges of a randomly picked vertex from X. \triangleright This operation can only create new isolated vertices from those that only had one incurring edge.
\triangleright Such vertices are organised into groups of two (two vertices are connected to each other and isolated from the rest) or groups of $k \geq 3$ ($k-1$ vertices have their only edge connected to the k th vertex, which we call root vertex).
\triangleright Let $N_{2}(X)$ denote the number of groups of two, and N_{k} denote the number of groups of $3 \leq k \leq n$. Since the total number of vertices n, we must have $\sum_{k \geq 2} k N_{k} \leq n$.
Δ If we pick the vertex I from a group of two, that will create two new isolated vertices. If we pick a root vertex from a group of $k \geq 3$, we create k new isolated vertices, while if we pick any other vertex, we create only one new isolated vertex. \triangleright Therefore, we have

$$
\mathbb{E}\left(W^{\prime}-W \mid X\right) \leq \frac{2 N_{2}}{n} \cdot 2+\sum_{k=3}^{n}\left(\frac{N_{k}}{n} k+\frac{(k-1) N_{k}}{n}\right) \leq \frac{\sum_{k=2}^{n} 2 k N_{k}}{n} \leq 2 .
$$

\triangleright This implies that $\mathbb{E}\left(W^{\prime}-W \mid W\right) \leq 2$, and by substituting this into our bound on the moment generating function, we get that for $\theta \leq 0, m^{\prime}(\theta) \geq 2 n(1-p)^{n-1} \theta m(\theta)$. \triangleright From this, we obtain our concentration bound by a standard argument.

Conclusion

- Stein-type couplings can be used to show concentration inequalities for sums of dependent random variables.
- These inequalities are non-asymptotic. They can be applied even when there is no limiting distribution, or the limiting distribution is not known.
- Unlike most of the other methods in the literature, they can be also applied in situations when the random variables are not defined in terms of underlying independent random variables.
- By appropriate construction of the coupling, model specific information can be taken into account, and good bounds can be obtained.
- The arguments can be extended to obtain moment bounds as well.

THANK YOU!

Chatterjee, Sourav. 2007. Stein's method for concentration inequalities. Probab. Theory Related Fields, 138(1-2), 305-321.
Chatterjee, Sourav. 2012. The missing log in large deviations for triangle counts. Random Structures Algorithms, 40(4), 437-451.
Chatterjee, Sourav, \& Dey, Partha S. 2010. Applications of Stein's method for concentration inequalities. Ann. Probab., 38(6), 2443-2485.
Ghosh, Subhankar, \& Goldstein, Larry. 2011. Concentration of measures via size-biased couplings. Probab. Theory Related Fields, 149(1-2), 271-278.

Ghosh, Subhankar, Goldstein, Larry, \& Raič, Martin. 2011. Concentration of measure for the number of isolated vertices in the Erdős-Rényi random graph by size bias couplings. Statistics \& Probability Letters, 81(11), 1565-1570.
Goldstein, Larry, \& Islak, Umit. 2013. Concentration inequalities via zero bias couplings. arXiv preprint arXiv:1304.5001.
Massart, Pascal. 2000. About the constants in Talagrand's concentration inequalities for empirical processes. Ann. Probab., 28(2), 863-884.

