Stein's method for Gibbs process approximation in the total variation metric

Dominic Schuhmacher
Institute for Mathematical Stochastics
University of Göttingen
Joint work with Kaspar Stucki

25 May 2015
Workshop on
New Directions in Stein's method
IMS, National University of Singapore

A short history of Stein's method for point process approximation

Poisson process approximation:

Barbour and Brown (1992); Brown, Weinberg and Xia (2000); Chen and Xia (2004); S and Xia (2008); S (2009).

Compound poisson process approximation:
Barbour and Månsson (2002).
"Polynomial birth-death" point process approximation:
Xia and Zhang (2012).

In all of these articles the locations of (multi-)points are independent.

Outline

- Gibbs processes
- A coupling of two spatial birth-death processes
- Generator approach
- Upper bounds in the total variation metric

Gibbs point processes

Point process preliminaries

- (\mathcal{X}, d) compact metric space with Borel σ-algebra.
- α diffuse, finite measure on \mathcal{X}.
- $(\mathfrak{N}, \mathcal{N})$ space of finite counting measures on \mathcal{X} with usual σ-algebra.
- PoP (α) distribution of Poisson process with expectation measure α. Will be our reference measure for point process distributions, write $P_{0}:=\operatorname{PoP}(\alpha)$.

Point process preliminaries

- (\mathcal{X}, d) compact metric space with Borel σ-algebra.
- α diffuse, finite measure on \mathcal{X}.
- $(\mathfrak{N}, \mathcal{N})$ space of finite counting measures on \mathcal{X} with usual σ-algebra.
- PoP (α) distribution of Poisson process with expectation measure α. Will be our reference measure for point process distributions, write $P_{0}:=\operatorname{PoP}(\alpha)$.
E.g. $\mathcal{X} \subset \mathbb{R}^{d}, \alpha$ Lebesgue measure, P_{0} homogeneous Poisson process on \mathcal{X}.

Gibbs processes

A function $u: \mathfrak{N} \rightarrow \mathbb{R}_{+}$is called hereditary if $u(\xi)=0$ implies $u(\eta)=0$ for all point configurations $\xi, \eta \in \mathfrak{N}$ with $\xi \subset \eta$.

A point process I is called a Gibbs process if it has a hereditary density $u: \mathcal{F} \rightarrow \mathbb{R}_{+}$with respect to the standard Poisson process distribution P_{0}.

Gibbs processes

A function $u: \mathfrak{N} \rightarrow \mathbb{R}_{+}$is called hereditary if $u(\xi)=0$ implies $u(\eta)=0$ for all point configurations $\xi, \eta \in \mathfrak{N}$ with $\xi \subset \eta$.

A point process I is called a Gibbs process if it has a hereditary density $u: \mathcal{F} \rightarrow \mathbb{R}_{+}$with respect to the standard Poisson process distribution P_{0}.

A Gibbs process is completely described by its conditional intensity $\lambda(\cdot \mid \cdot)$, where

$$
\lambda(x \mid \xi)=\frac{u\left(\xi+\delta_{x}\right)}{u(\xi)} \quad \text { for all } \xi \in \mathfrak{N}, x \in \mathcal{X} \text { with } \xi(\{x\})=0
$$

Intuitively the pressure to have a point at x given we know that the point pattern everywhere else is ξ.

We write $\operatorname{Gibbs}(\lambda)$ for the distribution of this Gibbs process.

Pairwise interaction process (PIP)

A pairwise interaction process (PIP) has density of the form

$$
u(\xi)=c\left(\prod_{x \in \xi} \beta(x)\right)\left(\prod_{\{x, y\} \subset \xi} \varphi_{2}(x, y)\right)
$$

for suitable functions $\beta: \mathcal{X} \rightarrow \mathbb{R}_{+}$and $\varphi_{2}: \mathcal{X}^{2} \rightarrow \mathbb{R}_{+}$(symmetric).

Pairwise interaction process (PIP)

A pairwise interaction process (PIP) has density of the form

$$
u(\xi)=c\left(\prod_{x \in \xi} \beta(x)\right)\left(\prod_{\{x, y\} \subset \xi} \varphi_{2}(x, y)\right)
$$

for suitable functions $\beta: \mathcal{X} \rightarrow \mathbb{R}_{+}$and $\varphi_{2}: \mathcal{X}^{2} \rightarrow \mathbb{R}_{+}$(symmetric).
E.g. Homogeneous Strauss process:

$$
\varphi_{2}(x, y)= \begin{cases}\gamma & \text { if } d(x, y) \leq R \\ 1 & \text { otherwise }\end{cases}
$$

where $\gamma \in[0,1], R>0$; furthermore $\beta>0$ constant.
In this case

$$
u(\xi)=\boldsymbol{c} \beta^{|\xi|} \gamma^{\#\{\{x, y\} \subset \xi: d(x, y) \leq R\}}
$$

Simulated Strauss processes

Other parameters are $R=0.1$ and $\beta=500$.

Interactions of arbitrary order: the homogeneous AIP

The homogeneous area-interaction process has density

$$
u(\xi):=c \beta^{|\xi|} \gamma^{-\alpha\left(U_{R}(\xi)\right)},
$$

where $\gamma>0, R>0$, and $\beta>0$.
$U_{R}(\xi)=\bigcup_{x \in \xi} B(x, R)$ denotes the green area.

Simulated area-interaction processes

$R=0.02$ and β was adjusted so that expected number of points remains the same.

Conditional intensities

For the $\operatorname{Strauss}(\beta, \gamma ; R)$-Process

$$
\lambda(x \mid \xi)=\beta \gamma^{\#\{y \in \xi \backslash\{x\}: d(y, x) \leq R\}}
$$

For the $\operatorname{AIP}(\beta, \gamma ; R)$

$$
\lambda(x \mid \xi)=\beta \gamma^{-\alpha\left(\mathbb{B}(x, R) \backslash U_{R}(\xi \backslash\{x\})\right)}
$$

The conditional intensity is (usually) explicit, without the "unknown" factor c.

Conditional intensities

For the $\operatorname{Strauss}(\beta, \gamma ; R)$-Process

$$
\lambda(x \mid \xi)=\beta \gamma^{\#\{y \in \xi \backslash\{x\}: d(y, x) \leq R\}}
$$

For the $\operatorname{AIP}(\beta, \gamma ; R)$

$$
\lambda(x \mid \xi)=\beta \gamma^{-\alpha\left(\mathbb{B}(x, R) \backslash U_{R}(\xi \backslash\{x\})\right)}
$$

The conditional intensity is (usually) explicit, without the "unknown" factor c.
Furthermore the Georgii-Nguyen-Zessin equation holds

$$
\mathbb{E}\left(\int_{\mathcal{X}} h\left(x, \Xi-\delta_{x}\right) \Xi(d x)\right)=\int_{\mathcal{X}} \mathbb{E}(h(x, \Xi) \lambda(x \mid \equiv)) \alpha(d x)
$$

for every measurable $h: \mathcal{X} \times \mathfrak{N} \rightarrow \mathbb{R}_{+}$.

Stability condition

Let H always be a Gibbs process with conditional intensity λ that satisfies the following "stability condition":
(S)

$$
\sup _{\xi \in \mathfrak{N}} \int_{\mathcal{X}} \lambda(x \mid \xi) \alpha(d x)<\infty
$$

Stability condition

Let H always be a Gibbs process with conditional intensity λ that satisfies the following "stability condition":
(S)

$$
\sup _{\xi \in \mathfrak{N}} \int_{\mathcal{X}} \lambda(x \mid \xi) \alpha(\boldsymbol{d} x)<\infty
$$

Is satisfied if H is locally stable, i.e. if

$$
\lambda(x \mid \xi) \leq \psi^{*}(x)
$$

where $\psi^{*}: \mathcal{X} \rightarrow \mathbb{R}_{+}$is an integrable function.
Satisfied e.g. if H is an AIP or an inhibitory PIP (i.e. $\varphi_{2} \leq 1$).

A coupling of two spatial birth-death processes

Spatial birth-death processes

Suppose that we have birth rates and death rates

$$
\begin{array}{ll}
b(\cdot \mid \cdot): \mathcal{X} \times \mathfrak{N} \rightarrow \mathbb{R}_{+} \quad \text { with } \bar{b}(\xi):=\int_{\mathcal{X}} b(x \mid \xi) \alpha(d x)<\infty ; \\
d(\cdot \mid \cdot): \mathcal{X} \times \mathfrak{N} \rightarrow \mathbb{R}_{+} \quad \text { with } \bar{d}(\xi):=\sum_{x \in \xi} d(x \mid \xi)<\infty .
\end{array}
$$

Let $\bar{a}(\xi)=\bar{b}(\xi)+\bar{d}(\xi)$.

Spatial birth-death processes

Suppose that we have birth rates and death rates

$$
\begin{array}{ll}
b(\cdot \mid \cdot): \mathcal{X} \times \mathfrak{N} \rightarrow \mathbb{R}_{+} \quad \text { with } \bar{b}(\xi):=\int_{\mathcal{X}} b(x \mid \xi) \alpha(d x)<\infty ; \\
d(\cdot \mid \cdot): \mathcal{X} \times \mathfrak{N} \rightarrow \mathbb{R}_{+} \quad \text { with } \bar{d}(\xi):=\sum_{x \in \xi} d(x \mid \xi)<\infty .
\end{array}
$$

Let $\bar{a}(\xi)=\bar{b}(\xi)+\bar{d}(\xi)$.
A SBD ${ }^{\left(\xi_{0}\right)}(b, d)$-process is a pure-jump Markov process on \mathfrak{N} that starts in $\xi_{0} \in \mathfrak{N}$ and holds each state ξ for an $\operatorname{Exp}(\bar{a}(\xi))$-distributed time, after which

- with probability $\bar{b}(\xi) / \bar{a}(\xi)$ a point is added, positioned according to the density $b(\cdot \mid \xi) / \bar{b}(\xi)$, or
- with probability $d(x \mid \xi) / \bar{a}(\xi)$ the point at x is deleted.

SBD($\lambda, 1$)-process

In what follows always $b=\lambda, d \equiv 1$ ("unit per-capita death rate").
Let $Z=(Z(t))_{t \geq 0} \sim \operatorname{SBD}(\lambda, 1)$. Under Condition (S)

- Z is non-explosive;

SBD($\lambda, 1$)-process

In what follows always $b=\lambda, d \equiv 1$ ("unit per-capita death rate").
Let $Z=(Z(t))_{t \geq 0} \sim \operatorname{SBD}(\lambda, 1)$. Under Condition (S)

- Z is non-explosive;
- Z has $\operatorname{Gibbs}(\lambda)$ as its unique stationary distribution.

SBD($\lambda, 1$)-process

In what follows always $b=\lambda, d \equiv 1$ ("unit per-capita death rate").
Let $Z=(Z(t))_{t \geq 0} \sim \operatorname{SBD}(\lambda, 1)$. Under Condition (S)

- Z is non-explosive;
- Z has $\operatorname{Gibbs}(\lambda)$ as its unique stationary distribution.
- Z has the infinitesimal generator

$$
\mathcal{A} h(\xi)=\int_{\mathcal{X}}\left[h\left(\xi+\delta_{x}\right)-h(\xi)\right] \lambda(x \mid \xi) \alpha(d x)+\int_{\mathcal{X}}\left[h\left(\xi-\delta_{x}\right)-h(\xi)\right] \xi(d x)
$$

for certain functions $h: \mathfrak{N} \rightarrow \mathbb{R}$.

A coupling of $\operatorname{SBD}(\lambda, 1)$-processes

Goal: For $\xi, \eta \in \mathfrak{N}$ find a coupling $\left(Z_{1}, Z_{2}\right)$ with $Z_{1} \sim \operatorname{SBD}^{(\xi)}(\lambda, 1)$, $Z_{2} \sim \operatorname{SBD}^{(\eta)}(\lambda, 1)$ so that Z_{1} and Z_{2} coincide "as soon as possible".

A coupling of $\operatorname{SBD}(\lambda, 1)$-processes

Goal: For $\xi, \eta \in \mathfrak{N}$ find a coupling $\left(Z_{1}, Z_{2}\right)$ with $Z_{1} \sim \operatorname{SBD}^{(\xi)}(\lambda, 1)$, $Z_{2} \sim \operatorname{SBD}^{(\eta)}(\lambda, 1)$ so that Z_{1} and Z_{2} coincide "as soon as possible".

Construction: For $\zeta_{1}, \zeta_{2} \in \mathfrak{N}$ let

$$
\begin{array}{ll}
\lambda_{\max }\left(x \mid \zeta_{1}, \zeta_{2}\right)=\max \left(\lambda\left(x \mid \zeta_{1}\right), \lambda\left(x \mid \zeta_{2}\right)\right) & \bar{\lambda}_{\max }\left(\zeta_{1}, \zeta_{2}\right)=\int_{\mathcal{X}} \lambda_{\max }\left(x \mid \zeta_{1}, \zeta_{2}\right) \alpha(d x) \\
\lambda_{\min }\left(x \mid \zeta_{1}, \zeta_{2}\right)=\min \left(\lambda\left(x \mid \zeta_{1}\right), \lambda\left(x \mid \zeta_{2}\right)\right) & \bar{\lambda}_{\min }\left(\zeta_{1}, \zeta_{2}\right)=\int_{\mathcal{X}} \lambda_{\min }\left(x \mid \zeta_{1}, \zeta_{2}\right) \alpha(d x),
\end{array}
$$ and furthermore $\bar{a}\left(\zeta_{1}, \zeta_{2}\right)=\bar{\lambda}_{\max }\left(\zeta_{1}, \zeta_{2}\right)+\left|\zeta_{1} \cup \zeta_{2}\right|$.

A coupling of $\operatorname{SBD}(\lambda, 1)$-processes

Goal: For $\xi, \eta \in \mathfrak{N}$ find a coupling $\left(Z_{1}, Z_{2}\right)$ with $Z_{1} \sim \operatorname{SBD}^{(\xi)}(\lambda, 1)$, $Z_{2} \sim \operatorname{SBD}^{(\eta)}(\lambda, 1)$ so that Z_{1} and Z_{2} coincide "as soon as possible".

Construction: For $\zeta_{1}, \zeta_{2} \in \mathfrak{N}$ let

$$
\begin{array}{ll}
\lambda_{\max }\left(x \mid \zeta_{1}, \zeta_{2}\right)=\max \left(\lambda\left(x \mid \zeta_{1}\right), \lambda\left(x \mid \zeta_{2}\right)\right) & \bar{\lambda}_{\max }\left(\zeta_{1}, \zeta_{2}\right)=\int_{\mathcal{X}} \lambda_{\max }\left(x \mid \zeta_{1}, \zeta_{2}\right) \alpha(d x) \\
\lambda_{\min }\left(x \mid \zeta_{1}, \zeta_{2}\right)=\min \left(\lambda\left(x \mid \zeta_{1}\right), \lambda\left(x \mid \zeta_{2}\right)\right) & \bar{\lambda}_{\min }\left(\zeta_{1}, \zeta_{2}\right)=\int_{\mathcal{X}} \lambda_{\min }\left(x \mid \zeta_{1}, \zeta_{2}\right) \alpha(d x),
\end{array}
$$ and furthermore $\bar{a}\left(\zeta_{1}, \zeta_{2}\right)=\bar{\lambda}_{\max }\left(\zeta_{1}, \zeta_{2}\right)+\left|\zeta_{1} \cup \zeta_{2}\right|$.

Let $\left(Z_{1}, Z_{2}\right)$ be the pure-jump Markov process on $\mathfrak{N} \times \mathfrak{N}$ that starts in (ξ, η) and holds each state $\left(\zeta_{1}, \zeta_{2}\right)$ for an $\operatorname{Exp}\left(\bar{a}\left(\zeta_{1}, \zeta_{2}\right)\right)$-distributed time, after which

- with probability $\bar{\lambda}_{\text {max }}\left(\zeta_{1}, \zeta_{2}\right) / \bar{a}\left(\zeta_{1}, \zeta_{2}\right)$ a birth occurs at $X \sim \lambda_{\max }\left(\cdot \mid \zeta_{1}, \zeta_{2}\right) / \bar{\lambda}_{\max }\left(\zeta_{1}, \zeta_{2}\right)$. Given X, a point at X is added to the process Z_{i} with probability $\lambda\left(X \mid \zeta_{i}\right) / \lambda_{\max }\left(X \mid \zeta_{1}, \zeta_{2}\right)$.
- with probability $1 / \bar{a}\left(\zeta_{1}, \zeta_{2}\right)$ a death occurs at $X \in \zeta_{1} \cup \zeta_{2}$. Given X, a point at X is deleted from the process Z_{i} if it has such a point.

A coupling of $\operatorname{SBD}(\lambda, 1)$-processes

How can we control how quickly the two processes meet?

A coupling of $\operatorname{SBD}(\lambda, 1)$-processes

How can we control how quickly the two processes meet?
Consider the jump chain $\left(Z_{1}\left(T_{j}\right), Z_{2}\left(T_{j}\right)\right)_{j \in \mathbb{N}}$. At each step j there are three possibilities:
(1) Z_{1} and Z_{2} both have the same birth or death event.
(2) Only one process has a birth ("bad birth"). We have

$$
\begin{aligned}
& \mathbb{P} \text { ("bad birth" } \mid \\
& \left.\quad Z_{1}\left(T_{j-1}\right), Z_{2}\left(T_{j-1}\right)\right)= \\
& \\
& \quad \frac{\bar{\lambda}_{\max }\left(Z_{1}\left(T_{j-1}\right), Z_{2}\left(T_{j-1}\right)\right)-\bar{\lambda}_{\min }\left(Z_{1}\left(T_{j-1}\right), Z_{2}\left(T_{j-1}\right)\right)}{\bar{\lambda}_{\max }\left(Z_{1}\left(T_{j-1}\right), Z_{2}\left(T_{j-1}\right)\right)+\left|Z_{1}\left(T_{j-1}\right) \cup Z_{2}\left(T_{j-1}\right)\right|} .
\end{aligned}
$$

(3) One of the non-common points of $Z_{1}\left(T_{j-1}\right)$ and $Z_{2}\left(T_{j-1}\right)$ dies ("good death"). Then

$$
\begin{aligned}
& \mathbb{P}\left(\text { "good death" } \mid Z_{1}\left(T_{j-1}\right), Z_{2}\left(T_{j-1}\right)\right)= \\
& \\
& \quad \frac{\left\|Z_{1}\left(T_{j-1}\right)-Z_{2}\left(T_{j-1}\right)\right\|}{\bar{\lambda}_{\max }\left(Z_{1}\left(T_{j-1}\right), Z_{2}\left(T_{j-1}\right)\right)+\left|Z_{1}\left(T_{j-1}\right) \cup Z_{2}\left(T_{j-1}\right)\right|} .
\end{aligned}
$$

Probability for becoming closer

Suppose that in the total variation norm $\left\|\zeta_{1}-\zeta_{2}\right\|=n$, i.e. ζ_{1} and ζ_{2} differ in n points.
Let A_{n} be the event that good death occurs before bad birth, i.e. the next time something interesting happens the two BDPs come closer together.

Lemma

The probability of the event A_{n} is bounded from below as

$$
\mathbb{P}\left(A_{n}\right) \geq\left(1+\frac{1}{n} \sup _{\left\|\xi^{\prime}-\eta^{\prime}\right\|=n} \int_{\mathcal{X}}\left|\lambda\left(x \mid \xi^{\prime}\right)-\lambda\left(x \mid \eta^{\prime}\right)\right| \alpha(d x)\right)^{-1}
$$

which is >0 by the stability condition (S).

Coupling time

Theorem

For all configurations ξ, η the coupling time $\tau_{\xi, \eta}:=\inf \left\{t \geq 0: Z_{1}^{(\xi)}(t)=Z_{2}^{(\eta)}(t)\right\}$ has finite expectation. In particular if ξ and η differ in only one point, we have

$$
\mathbb{E} \tau_{\xi, \eta} \leq \frac{e^{c}-1}{c}+\int_{0}^{c} \frac{e^{s}-1}{s} d s
$$

where $c=\sup _{\xi^{\prime}, \eta^{\prime} \in \mathfrak{N}} \int_{\mathcal{X}}\left|\lambda\left(x \mid \xi^{\prime}\right)-\lambda\left(x \mid \eta^{\prime}\right)\right| \alpha(d x)$, which is finite by the stability condition (S).

Idea of the proof

- Denote by $X(t)=\left(\left\|Z_{1}^{(\xi)}(t)-Z_{2}^{(\eta)}(t)\right\|\right)_{t \geq 0}$ the process counting the non-common points of $Z_{1}^{(\xi)}$ and $Z_{2}^{(\eta)}$. Let $p_{n}=(1+c / n)^{-1} \leq \mathbb{P}\left(A_{n}\right)$.

Idea of the proof

- Denote by $X(t)=\left(\left\|Z_{1}^{(\xi)}(t)-Z_{2}^{(\eta)}(t)\right\|\right)_{t \geq 0}$ the process counting the non-common points of $Z_{1}^{(\xi)}$ and $Z_{2}^{(\eta)}$. Let $p_{n}=(1+c / n)^{-1} \leq \mathbb{P}\left(A_{n}\right)$.
- Construct a (non-spatial) birth-death process $(Y(t))_{t \geq 0}$ with birth rate $\left(1-p_{n}\right) n$ and death rate $p_{n} n$ such that

$$
\tau_{\xi, \eta}=\tau^{(X, 0)} \leq_{s t} \tau^{(Y, 0)}
$$

where $\tau^{(X, 0)}, \tau^{(Y, 0)}$ are the hitting times in 0 .

Idea of the proof

- Denote by $X(t)=\left(\left\|Z_{1}^{(\xi)}(t)-Z_{2}^{(\eta)}(t)\right\|\right)_{t \geq 0}$ the process counting the non-common points of $Z_{1}^{(\xi)}$ and $Z_{2}^{(\eta)}$. Let $p_{n}=(1+c / n)^{-1} \leq \mathbb{P}\left(A_{n}\right)$.
- Construct a (non-spatial) birth-death process $(Y(t))_{t \geq 0}$ with birth rate $\left(1-p_{n}\right) n$ and death rate $p_{n} n$ such that

$$
\tau_{\xi, \eta}=\tau^{(X, 0)} \leq_{s t} \tau^{(Y, 0)}
$$

where $\tau^{(X, 0)}, \tau^{(Y, 0)}$ are the hitting times in 0 .

- Compute $\mathbb{E} \tau^{(Y, 0)}$ by standard techniques for pure-jump Markov processes, i.e. as smallest solution of a certain recurrence relation.

Construction of $(Y(t))_{t \geq 0}$

(1) Set $Y^{\prime}(0)=X(0)$.
(2) If $Y^{\prime}(t)=X(t)=n$ for some t, let the next jump of $Y^{\prime}(t)$ occur at the same time T_{j} as the next jump of $X(t)$. The jump for $Y^{\prime}(t)$ goes to $n-1$ with probability $p_{n}=(1+c / n)^{-1} \leq \mathbb{P}\left(A_{n}\right)$ and to $n+1$ with probability $1-p_{n}$, coupled with $X(t)$ in such a way that $Y^{\prime}\left(T_{j}\right) \geq X\left(T_{j}\right)$.
(3) If $Y^{\prime}(t)>X(t)$, let $Y^{\prime}(t)$ behave like an independent birth-death process with birth rate $\left(1-p_{n}\right) n$ and death rate $p_{n} n$ until $Y^{\prime}(t)$ and $X(t)$ meet again.
(4) $\left(Y^{\prime}(t)\right)$ has the right up-/down-probabilities, and its holding times in n can be stochastically dominated by $\operatorname{Exp}(n)$-random variables. $\rightsquigarrow(Y(t))$.

A refined bound

Theorem

If ξ and η differ in only one point, we have for any $n^{*} \in \mathbb{N} \cup\{\infty\}$
$\mathbb{E} \tau_{\xi, \eta} \leq\left(n^{*}-1\right)!\left(\frac{\varepsilon}{c}\right)^{n^{*}-1}\left(\frac{1}{c} \sum_{i=n^{*}}^{\infty} \frac{c^{i}}{i!}+\int_{0}^{c} \frac{1}{s} \sum_{i=n^{*}}^{\infty} \frac{s^{i}}{i!} d s\right)+\frac{1+\varepsilon}{\varepsilon} \sum_{i=1}^{n^{*}-1} \frac{\varepsilon^{i}}{i}=: c_{1}(\lambda)$,
where

$$
\begin{aligned}
& \varepsilon=\sup _{\|\xi-\eta\|=1} \int_{\mathcal{X}}|\lambda(x \mid \xi)-\lambda(x \mid \eta)| \alpha(d x) \quad \text { and } \\
& c=c\left(n^{*}\right)=\sup _{\|\xi-\eta\| \geq n^{*}} \int_{\mathcal{X}}|\lambda(x \mid \xi)-\lambda(x \mid \eta)| \alpha(d x) .
\end{aligned}
$$

In particular, if $\varepsilon<1$, we may choose $n^{*}=\infty$, so that

$$
\mathbb{E} \tau_{\xi, \eta} \leq \frac{1+\varepsilon}{\varepsilon} \log \left(\frac{1}{1-\varepsilon}\right) \leq \frac{1+\varepsilon}{1-\varepsilon} .
$$

Some Examples

- Poisson: $\lambda(x \mid \xi)=\lambda(x)$, hence

$$
\varepsilon=0
$$

- Inhibitory PIP: $\lambda(x \mid \xi)=\beta(x) \prod_{y \in \xi \backslash\{x\}} \varphi_{2}(x, y)$, hence

$$
\varepsilon \leq \sup _{y \in \mathcal{X}} \int_{\mathcal{X}} \beta(x)\left(1-\varphi_{2}(x, y)\right) \alpha(d x)
$$

- Homogeneous Strauss: $\lambda(x \mid \xi)=\beta \prod_{y \in \xi \backslash\{x\}} \gamma^{1\left\{d_{0}(x, y) \leq R\right\}}$, hence

$$
\varepsilon \leq \beta(1-\gamma) \sup _{y \in \mathcal{X}} \alpha\left(B_{R}(y)\right) .
$$

The generator approach

Overview

Our goal:

Find upper bound for the total variation distance

$$
d_{T V}(\operatorname{Gibbs}(\nu), \operatorname{Gibbs}(\lambda))=\sup _{f \in \mathcal{F}}|\mathbb{E} f(\pm)-\mathbb{E} f(\mathrm{H})|,
$$

where λ satisfies the stability condition (S), $\mathcal{F}=\mathcal{F}_{T V}=\left\{1_{C} ; C \in \mathcal{N}\right\}$ and王 $\sim \operatorname{Gibbs}(\nu), \mathrm{H} \sim \operatorname{Gibbs}(\lambda)$.

Generator approach (Barbour, 1988)

For every $f \in \mathcal{F}$ find $h=h_{f}: \mathfrak{N} \rightarrow \mathbb{R}$ such that

$$
f(\xi)-\mathbb{E} f(\mathrm{H})=\mathscr{A} h(\xi) \quad \text { for all } \xi \in \mathfrak{N}, \quad \text { (Stein equation) }
$$

where \mathscr{A} is the generator of a Markov process with stationary distribution Gibbs (λ) (generator approach).

Generator approach (Barbour, 1988)

For every $f \in \mathcal{F}$ find $h=h_{f}: \mathfrak{N} \rightarrow \mathbb{R}$ such that

$$
f(\xi)-\mathbb{E} f(\mathrm{H})=\mathscr{A} h(\xi) \quad \text { for all } \xi \in \mathfrak{N}, \quad \text { (Stein equation) }
$$

where \mathscr{A} is the generator of a Markov process with stationary distribution Gibbs (λ) (generator approach).

Natural choice: the $\operatorname{SBD}^{(\xi)}(\lambda, 1)$-process $Z^{(\xi)}:=\left(Z_{t}^{(\xi)}\right)_{t \geq 0}$ from earlier.

Solution of the Stein equation

It can be shown for bounded f that the function $h=h_{f}: \mathfrak{N} \rightarrow \mathbb{R}$,

$$
h(\xi):=-\int_{0}^{\infty}\left[\mathbb{E} f\left(Z_{t}^{(\xi)}\right)-\mathbb{E} f(\mathrm{H})\right] d t,
$$

is well-defined and solves the Stein equation $f(\xi)-\mathbb{E} f(\mathrm{H})=\mathscr{A} h(\xi)$.

Bounding the first differences

By our result on expected coupling times (coupling $\left(Z_{t}^{\left(\xi+\delta_{x}\right)}\right)$ and $\left(Z_{t}^{(\xi)}\right)$ accordingly) we have for every $\xi \in \mathfrak{N}$ and every $x \in \mathcal{X}$

$$
\begin{aligned}
& \left|h_{f}\left(\xi+\delta_{x}\right)-h_{f}(\xi)\right| \\
& \quad=\left|\int_{0}^{\infty}\left[\mathbb{E}\left(f\left(Z_{t}^{\left(\xi+\delta_{x}\right)}\right)\right)-\mathbb{E} f(\mathrm{H})\right] d t-\int_{0}^{\infty}\left[\mathbb{E}\left(f\left(Z_{t}^{(\xi)}\right)\right)-\mathbb{E} f(\mathrm{H})\right] d t\right| \\
& \quad=\left|\mathbb{E} \int_{0}^{\infty}\left[f\left(Z_{t}^{\left(\xi+\delta_{x}\right)}\right)-f\left(Z_{t}^{(\xi)}\right)\right] 1\left\{\tau_{\xi+\delta_{x}, \xi}>t\right\} d t\right| \\
& \quad \leq \sup _{\xi^{\prime}, \eta^{\prime} \in \mathfrak{N}}\left|f\left(\xi^{\prime}\right)-f\left(\eta^{\prime}\right)\right| \int_{0}^{\infty} \mathbb{P}\left(\tau_{\xi+\delta_{x}, \xi}>t\right) d t \\
& \quad \leq \mathbb{E} \tau_{\xi+\delta_{x}, \xi} \\
& \quad \leq c_{1}(\lambda) .
\end{aligned}
$$

(Same argument as in Barbour and Brown, 1992)

Bounding the Stein equation

If now $玉$ is a $\operatorname{Gibbs}(\nu)$ process（does not need to satisfy stability），we obtain by the Georgii－Nguyen－Zessin equation

$$
\begin{aligned}
& \mid \mathbb{E} f(\text { 王 })-\mathbb{E} f(\mathrm{H}) \mid \\
& =\left|\mathbb{E} \mathcal{A} h_{f}(\mathrm{I})\right| \\
& =\left|\mathbb{E} \int_{\mathcal{X}}\left[h_{f}\left(\Xi+\delta_{x}\right)-h_{f}(\Xi)\right] \lambda(x \mid \equiv) \alpha(d x)+\mathbb{E} \int_{\mathcal{X}}\left[h_{f}\left(\Xi-\delta_{x}\right)-h_{f}(\Xi)\right] \Xi(d x)\right| \\
& =\left|\mathbb{E} \int_{\mathcal{X}}\left[h_{f}\left(\Xi+\delta_{X}\right)-h_{f}(\Xi)\right](\lambda(x \mid \equiv)-\nu(x \mid \equiv)) \alpha(d x)\right| \\
& \leq \sup _{\xi \in \mathfrak{N}, x \in \mathcal{X}}\left|h_{f}\left(\xi+\delta_{X}\right)-h_{f}(\xi)\right| \int_{\mathcal{X}} \mathbb{E}|\nu(x \mid \pm)-\lambda(x \mid \equiv)| \alpha(d x) \\
& \leq c_{1}(\lambda) \int_{\mathcal{X}} \mathbb{E} \mid \nu(x \mid \text { 王 })-\lambda(x \mid \text { 王)| } \alpha(d x) .
\end{aligned}
$$

Upper bounds in the total variation metric

Upper bound

Theorem（S and Stucki，2014）

For any two Gibbs point processes
王 with conditional intensity $\nu(\cdot \mid \cdot)$ ，
H with conditional intensity $\lambda(\cdot \mid \cdot)$ satisfying the stability condition（S）， we have

$$
d_{T V}(\mathscr{L}(\text { 王 }), \mathscr{L}(H)) \leq c_{1}(\lambda) \int_{\mathcal{X}} \mathbb{E} \mid \nu(x \mid \text { 王 })-\lambda(x \mid \text { 王) } \mid \alpha(d x)
$$

where the general formula for $c_{1}(\lambda)$ was given earlier．E．g．if

$$
\varepsilon=\sup _{\xi \in \mathfrak{N}, y \in \mathcal{X}} \int_{\mathcal{X}}\left|\lambda\left(x \mid \xi+\delta_{y}\right)-\lambda(x \mid \xi)\right| \alpha(d x)<1
$$

we have

$$
c_{1}(\lambda)=\frac{1+\varepsilon}{\varepsilon} \log \left(\frac{1}{1-\varepsilon}\right) \leq \frac{1+\varepsilon}{1-\varepsilon}
$$

Two consequences

- Suppose that $\mathcal{X} \subset \mathbb{R}^{D}$, and $玉 \sim \operatorname{PIP}\left(\beta, \varphi_{1}\right)$ and $\mathrm{H} \sim \operatorname{PIP}\left(\beta, \varphi_{2}\right)$ are stationary and inhibitory, i.e. β is constant and $\varphi_{i}(x, y)=\varphi_{i}(x-y) \leq 1$ for all $x, y \in \mathcal{X}$. Then

$$
d_{T V}(\mathscr{L}(\Xi), \mathscr{L}(\mathrm{H})) \leq c_{1}(\lambda) \beta \mathbb{E}|\nexists| \int_{\mathbb{R}^{D}}\left|\varphi_{1}(x)-\varphi_{2}(x)\right| d x .
$$

- Suppose that $\mathcal{X} \subset \mathbb{R}^{D}$, and $玉 \sim \operatorname{AIP}\left(\beta \gamma^{\alpha_{D}(R / 2)^{D}}, \gamma ; R / 2\right)$ and $\mathrm{H} \sim \operatorname{Strauss}(\beta, 0 ; R)$, where α_{D} is the volume of the unit ball in \mathbb{R}^{D}. Then

$$
d_{T V}(\mathscr{L}(\pm), \mathscr{L}(\mathrm{H})) \leq c_{1}(\lambda) 2 D \alpha_{D} R^{D-1} \beta \mathbb{E}|\equiv|\left(\log \gamma^{-\alpha_{D}}\right)^{-1 / D}
$$

Rate for the convergence result in Baddeley and Van Lieshout (1995).

