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A short history
of Stein’s method for point process approximation

Poisson process approximation:

Barbour and Brown (1992); Brown, Weinberg and Xia (2000); Chen
and Xia (2004); S and Xia (2008); S (2009).

Compound poisson process approximation:

Barbour and Månsson (2002).

“Polynomial birth-death” point process approximation:

Xia and Zhang (2012).

In all of these articles the locations of (multi-)points are independent.



Outline

• Gibbs processes

• A coupling of two spatial birth-death processes

• Generator approach

• Upper bounds in the total variation metric



Gibbs point processes



Gibbs point processes

Point process preliminaries

• (X ,d) compact metric space with Borel σ-algebra.

• α diffuse, finite measure on X .

• (N,N ) space of finite counting measures on X with usual σ-algebra.

• PoP(α) distribution of Poisson process with expectation measure α.
Will be our reference measure for point process distributions,
write P0 := PoP(α).

E.g. X ⊂ Rd , α Lebesgue measure, P0 homogeneous Poisson process on X .
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Gibbs point processes

Gibbs processes

A function u : N→ R+ is called hereditary if u(ξ) = 0 implies u(η) = 0 for all
point configurations ξ, η ∈ N with ξ ⊂ η.

A point process Ξ is called a Gibbs process if it has a hereditary density
u : F → R+ with respect to the standard Poisson process distribution P0.

A Gibbs process is completely described by its conditional intensity λ(· | ·),
where

λ(x | ξ) =
u(ξ + δx )

u(ξ)
for all ξ ∈ N, x ∈ X with ξ({x}) = 0.

Intuitively the pressure to have a point at x given we know that the point
pattern everywhere else is ξ.

We write Gibbs(λ) for the distribution of this Gibbs process.
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Gibbs point processes

Pairwise interaction process (PIP)

A pairwise interaction process (PIP) has density of the form

u(ξ) = c
(∏

x∈ξ

β(x)

)( ∏
{x,y}⊂ξ

ϕ2(x , y)

)

for suitable functions β : X → R+ and ϕ2 : X 2 → R+ (symmetric).

E.g. Homogeneous Strauss process:

ϕ2(x , y) =

{
γ if d(x , y) ≤ R,
1 otherwise,

where γ ∈ [0,1], R > 0; furthermore β > 0 constant.

In this case
u(ξ) = c β|ξ| γ#{{x,y}⊂ξ : d(x,y)≤R}
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Gibbs point processes

Simulated Strauss processes
γ = 1 γ = 0.8 γ = 0.6

γ = 0.4 γ = 0.2 γ = 0

Other parameters are R = 0.1 and β = 500.



Gibbs point processes

Interactions of arbitrary order: the homogeneous AIP

The homogeneous area-interaction process has density

u(ξ) := c β |ξ| γ−α(UR(ξ)),

where γ > 0, R > 0, and β > 0.
UR(ξ) =

⋃
x∈ξ B(x ,R) denotes the green area.



Gibbs point processes

Simulated area-interaction processes
β= 1500,  η = 0.001 β= 1000,  η = 0.15 β= 600,  η = 0.6

β= 450,  η = 2 β= 160,  η = 15 β= 48,  η = 100

R = 0.02 and β was adjusted so that expected number of points remains the
same.



Gibbs point processes

Conditional intensities

For the Strauss(β, γ; R)-Process

λ(x | ξ) = β γ#{y∈ξ\{x} : d(y,x)≤R}

For the AIP(β, γ; R)

λ(x | ξ) = β γ
−α

(
B(x,R) \ UR(ξ \ {x})

)

The conditional intensity is (usually) explicit, without the “unknown” factor c.

Furthermore the Georgii–Nguyen–Zessin equation holds

E
(∫
X

h(x ,Ξ− δx ) Ξ(dx)

)
=

∫
X
E
(
h(x ,Ξ)λ(x |Ξ)

)
α(dx)

for every measurable h : X ×N→ R+.
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Gibbs point processes

Stability condition

Let H always be a Gibbs process with conditional intensity λ that satisfies the
following “stability condition”:

(S) sup
ξ∈N

∫
X
λ(x | ξ) α(dx) <∞.

Is satisfied if H is locally stable, i.e. if

λ(x | ξ) ≤ ψ∗(x),

where ψ∗ : X → R+ is an integrable function.

Satisfied e.g. if H is an AIP or an inhibitory PIP (i.e. ϕ2 ≤ 1).
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A coupling of two spatial birth-death processes

Spatial birth-death processes

Suppose that we have birth rates and death rates

b(· | ·) : X ×N→ R+ with b̄(ξ) :=

∫
X

b(x | ξ) α(dx) <∞;

d(· | ·) : X ×N→ R+ with d̄(ξ) :=
∑
x∈ξ

d(x | ξ) <∞.

Let ā(ξ) = b̄(ξ) + d̄(ξ).

A SBD(ξ0)(b,d)-process is a pure-jump Markov process on N that starts in
ξ0 ∈ N and holds each state ξ for an Exp(ā(ξ))-distributed time, after which

• with probability b̄(ξ)/ā(ξ) a point is added,
positioned according to the density b(· | ξ)

/
b̄(ξ), or

• with probability d(x | ξ)/ā(ξ) the point at x is deleted.
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A coupling of two spatial birth-death processes

SBD(λ,1)-process

In what follows always b = λ, d ≡ 1 (“unit per-capita death rate”).

Let Z =
(
Z (t)

)
t≥0 ∼ SBD(λ,1). Under Condition (S)

• Z is non-explosive;

• Z has Gibbs(λ) as its unique stationary distribution.

• Z has the infinitesimal generator

Ah(ξ) =

∫
X

[
h(ξ + δx )− h(ξ)

]
λ(x | ξ) α(dx) +

∫
X

[
h(ξ − δx )− h(ξ)

]
ξ(dx)

for certain functions h : N→ R.
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A coupling of SBD(λ,1)-processes
Goal: For ξ, η ∈ N find a coupling (Z1,Z2) with Z1 ∼ SBD(ξ)(λ,1),
Z2 ∼ SBD(η)(λ,1) so that Z1 and Z2 coincide “as soon as possible”.

Construction: For ζ1, ζ2 ∈ N let

λmax(x | ζ1, ζ2) = max(λ(x | ζ1), λ(x | ζ2)) λ̄max(ζ1, ζ2) =

∫
X
λmax(x | ζ1, ζ2) α(dx)

λmin(x | ζ1, ζ2) = min(λ(x | ζ1), λ(x | ζ2)) λ̄min(ζ1, ζ2) =

∫
X
λmin(x | ζ1, ζ2) α(dx),

and furthermore ā(ζ1, ζ2) = λ̄max(ζ1, ζ2) + |ζ1 ∪ ζ2|.

Let (Z1,Z2) be the pure-jump Markov process on N×N that starts in (ξ, η)
and holds each state (ζ1, ζ2) for an Exp(ā(ζ1, ζ2))-distributed time, after which

• with probability λ̄max(ζ1, ζ2)/ā(ζ1, ζ2) a birth occurs at
X ∼ λmax(· | ζ1, ζ2)

/
λ̄max(ζ1, ζ2). Given X , a point at X is added to the

process Zi with probability λ(X | ζi )
/
λmax(X | ζ1, ζ2).

• with probability 1/ā(ζ1, ζ2) a death occurs at X ∈ ζ1 ∪ ζ2. Given X , a
point at X is deleted from the process Zi if it has such a point.
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A coupling of SBD(λ,1)-processes
How can we control how quickly the two processes meet?

Consider the jump chain (Z1(Tj ),Z2(Tj ))j∈N. At each step j there are three
possibilities:

(1) Z1 and Z2 both have the same birth or death event.

(2) Only one process has a birth (“bad birth”). We have

P
(
“bad birth”

∣∣ Z1(Tj−1),Z2(Tj−1)
)

=

λ̄max(Z1(Tj−1),Z2(Tj−1))− λ̄min(Z1(Tj−1),Z2(Tj−1))

λ̄max(Z1(Tj−1),Z2(Tj−1)) + |Z1(Tj−1) ∪ Z2(Tj−1)|
.

(3) One of the non-common points of Z1(Tj−1) and Z2(Tj−1) dies (“good
death”). Then

P
(
“good death”

∣∣ Z1(Tj−1),Z2(Tj−1)
)

=

‖Z1(Tj−1)− Z2(Tj−1)‖
λ̄max(Z1(Tj−1),Z2(Tj−1)) + |Z1(Tj−1) ∪ Z2(Tj−1)|

.
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A coupling of two spatial birth-death processes

Probability for becoming closer

Suppose that in the total variation norm ‖ζ1 − ζ2‖ = n, i.e. ζ1 and ζ2 differ in n
points.
Let An be the event that good death occurs before bad birth, i.e. the next time
something interesting happens the two BDPs come closer together.

Lemma
The probability of the event An is bounded from below as

P(An) ≥
(

1 +
1
n

sup
||ξ′−η′||=n

∫
X
|λ(x | ξ′)− λ(x | η′)|α(dx)

)−1

,

which is > 0 by the stability condition (S).



A coupling of two spatial birth-death processes

Coupling time

Theorem
For all configurations ξ, η the coupling time τξ,η := inf{t ≥ 0 : Z (ξ)

1 (t) = Z (η)
2 (t)}

has finite expectation. In particular if ξ and η differ in only one point, we have

Eτξ,η ≤
ec − 1

c
+

∫ c

0

es − 1
s

ds,

where c = supξ′,η′∈N
∫
X |λ(x | ξ′)− λ(x | η′)|α(dx), which is finite by the

stability condition (S).



A coupling of two spatial birth-death processes

Idea of the proof

• Denote by X (t) = (||Z (ξ)
1 (t)− Z (η)

2 (t)||)t≥0 the process counting the
non-common points of Z (ξ)

1 and Z (η)
2 . Let pn = (1 + c/n)−1 ≤ P(An).

• Construct a (non-spatial) birth-death process (Y (t))t≥0 with birth rate
(1− pn)n and death rate pnn such that

τξ,η = τ (X ,0) ≤st τ
(Y ,0),

where τ (X ,0), τ (Y ,0) are the hitting times in 0.

• Compute Eτ (Y ,0) by standard techniques for pure-jump Markov
processes, i.e. as smallest solution of a certain recurrence relation.
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A coupling of two spatial birth-death processes

Construction of (Y (t))t≥0

1 Set Y ′(0) = X (0).

2 If Y ′(t) = X (t) = n for some t , let the next jump of Y ′(t) occur at the
same time Tj as the next jump of X (t). The jump for Y ′(t) goes to n − 1
with probability pn = (1 + c/n)−1 ≤ P(An) and to n + 1 with probability
1− pn, coupled with X (t) in such a way that Y ′(Tj ) ≥ X (Tj ).

3 If Y ′(t) > X (t), let Y ′(t) behave like an independent birth-death process
with birth rate (1− pn)n and death rate pnn until Y ′(t) and X (t) meet
again.

4 (Y ′(t)) has the right up-/down-probabilities, and its holding times in n
can be stochastically dominated by Exp(n)-random variables.  (Y (t)).



A coupling of two spatial birth-death processes

A refined bound

Theorem
If ξ and η differ in only one point, we have for any n∗ ∈ N ∪ {∞}

Eτξ,η ≤ (n∗−1)!
( ε

c

)n∗−1
(

1
c

∞∑
i=n∗

c i

i!
+

∫ c

0

1
s

∞∑
i=n∗

si

i!
ds

)
+

1 + ε

ε

n∗−1∑
i=1

εi

i
=: c1(λ),

where

ε = sup
||ξ−η||=1

∫
X
|λ(x | ξ)− λ(x | η)| α(dx) and

c = c(n∗) = sup
||ξ−η||≥n∗

∫
X
|λ(x | ξ)− λ(x | η)| α(dx).

In particular, if ε < 1, we may choose n∗ =∞, so that

Eτξ,η ≤
1 + ε

ε
log
( 1

1− ε

)
≤ 1 + ε

1− ε
.



A coupling of two spatial birth-death processes

Some Examples

• Poisson: λ(x | ξ) = λ(x), hence

ε = 0.

• Inhibitory PIP: λ(x | ξ) = β(x)
∏

y∈ξ\{x} ϕ2(x , y), hence

ε ≤ sup
y∈X

∫
X
β(x)(1− ϕ2(x , y))α(dx).

• Homogeneous Strauss: λ(x | ξ) = β
∏

y∈ξ\{x} γ
1{d0(x,y)≤R}, hence

ε ≤ β(1− γ) sup
y∈X

α(BR(y)).



The generator approach



The generator approach

Overview

Our goal:

Find upper bound for the total variation distance

dTV
(
Gibbs(ν),Gibbs(λ)

)
= sup

f∈F

∣∣Ef (Ξ)− Ef (H)
∣∣,

where λ satisfies the stability condition (S), F = FTV = {1C ; C ∈ N} and
Ξ ∼ Gibbs(ν),H ∼ Gibbs(λ).



The generator approach

Generator approach (Barbour, 1988)

For every f ∈ F find h = hf : N→ R such that

f (ξ)− Ef (H) = A h(ξ) for all ξ ∈ N, (Stein equation)

where A is the generator of a Markov process with stationary distribution
Gibbs(λ) (generator approach).

Natural choice: the SBD(ξ)(λ,1)-process Z (ξ) :=
(
Z (ξ)

t

)
t≥0 from earlier.
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The generator approach

Solution of the Stein equation

It can be shown for bounded f that the function h = hf : N→ R,

h(ξ) := −
∫ ∞

0

[
Ef (Z (ξ)

t )− Ef (H)
]

dt ,

is well-defined and solves the Stein equation f (ξ)− Ef (H) = A h(ξ).



The generator approach

Bounding the first differences

By our result on expected coupling times (coupling (Z (ξ+δx )
t ) and (Z (ξ)

t )
accordingly) we have for every ξ ∈ N and every x ∈ X

|hf (ξ + δx )− hf (ξ)|

=

∣∣∣∣∫ ∞
0

[
E
(
f (Z (ξ+δx )

t )
)
− Ef (H)

]
dt −

∫ ∞
0

[
E
(
f (Z (ξ)

t )
)
− Ef (H)

]
dt
∣∣∣∣

=

∣∣∣∣E∫ ∞
0

[
f (Z (ξ+δx )

t )− f (Z (ξ)
t )
]
1{τξ+δx ,ξ > t} dt

∣∣∣∣
≤ sup
ξ′,η′∈N

|f (ξ′)− f (η′)|
∫ ∞

0
P(τξ+δx ,ξ > t) dt

≤ Eτξ+δx ,ξ

≤ c1(λ).

(Same argument as in Barbour and Brown, 1992)



The generator approach

Bounding the Stein equation

If now Ξ is a Gibbs(ν) process (does not need to satisfy stability), we obtain
by the Georgii–Nguyen–Zessin equation∣∣Ef (Ξ)− Ef (H)

∣∣
=
∣∣EAhf (Ξ)

∣∣
=

∣∣∣∣E∫
X

[
hf (Ξ + δx )− hf (Ξ)

]
λ(x |Ξ) α(dx) + E

∫
X

[
hf (Ξ− δx )− hf (Ξ)

]
Ξ(dx)

∣∣∣∣
=

∣∣∣∣E∫
X

[
hf (Ξ + δx )− hf (Ξ)

]
(λ(x |Ξ)− ν(x |Ξ)) α(dx)

∣∣∣∣
≤ sup
ξ∈N, x∈X

|hf (ξ + δx )− hf (ξ)|
∫
X
E|ν(x |Ξ)− λ(x |Ξ)| α(dx)

≤ c1(λ)

∫
X
E|ν(x |Ξ)− λ(x |Ξ)| α(dx).
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Upper bounds in the total variation metric

Upper bound

Theorem (S and Stucki, 2014)

For any two Gibbs point processes
Ξ with conditional intensity ν(· | ·),
H with conditional intensity λ(· | ·) satisfying the stability condition (S),

we have

dTV
(
L (Ξ),L (H)

)
≤ c1(λ)

∫
X
E
∣∣ν(x |Ξ)− λ(x |Ξ)

∣∣ α(dx),

where the general formula for c1(λ) was given earlier. E.g. if

ε = sup
ξ∈N, y∈X

∫
X

∣∣λ(x | ξ + δy )− λ(x | ξ)
∣∣ α(dx) < 1,

we have

c1(λ) =
1 + ε

ε
log
(

1
1− ε

)
≤ 1 + ε

1− ε
.



Upper bounds in the total variation metric

Two consequences

• Suppose that X ⊂ RD, and Ξ ∼ PIP(β, ϕ1) and H ∼ PIP(β, ϕ2) are
stationary and inhibitory, i.e. β is constant and ϕi (x , y) = ϕi (x − y) ≤ 1
for all x , y ∈ X . Then

dTV (L (Ξ),L (H)) ≤ c1(λ)β E|Ξ|
∫
RD
|ϕ1(x)− ϕ2(x)| dx .

• Suppose that X ⊂ RD, and Ξ ∼ AIP
(
βγαD(R/2)D

, γ; R/2
)

and
H ∼ Strauss(β,0; R), where αD is the volume of the unit ball in RD.
Then

dTV (L (Ξ),L (H)) ≤ c1(λ) 2DαDRD−1 β E|Ξ|
(
log γ−αD

)−1/D
.

Rate for the convergence result in Baddeley and Van Lieshout (1995).
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