# Applications of the Chen-Stein method to random graphs

Ayalvadi Ganesh University of Bristol

Workshop on New Directions in Stein's method, Singapore

#### Outline

- Stein's method widely applied to problems in stochastic geometry and random graphs
- Discuss two applications today
  - Small world networks
  - Colouring random geometric graphs
- Motivation for many such problems comes from wireless networks

# Connectivity of spatial small-world networks

Joint work with Feng Xue

#### Background: Spatial random graphs

- n nodes placed independently and uniformly at random on unit torus
- Random geometric graph (RGG)
  - Also known as Gilbert's disk model
  - Edge present between two nodes if they are within distance r = r(n) of each other
- k-nearest neighbour graph (k-NN)
  - Edge present between two nodes if either is among the k=k(n) nearest neighbours of the other

#### Connectivity

- For what parameter values are these random graphs connected?
- RGG (Penrose, 2003): Threshold for connectivity at  $\pi r^2 n = \log n$
- k —NN graph (Balister, Bollobas, Sarkar & Walters, 2009; Falgas-Ravry & Walters, 2012): Threshold for connectivity at  $\pi r^2 n = c \log n$

### Background: Small world networks

- Start with a lattice / ring / torus
- Augment with random shortcuts



How does diameter scale?

#### Diameter scalings: Barbour & Reinert

- Model: uniformly distributed shortcuts
  - Shortcut between every pair of nodes present with probability p/n, independent of other
- Scalings: Let  $p \sim n^{\alpha}$ ,  $\alpha \in (-1,1)$
- Distance between nodes scales as:
  - a fractional power of n (< 0)
  - logarithmic in n (= 0)
  - constant ( $\alpha > 0$ )

# Diameter scalings : Coppersmith, Gamarnik & Sviridenko

- Model: distance-biased shortcuts
  - Lattice on  $\{1, \dots, n\}^d$
  - Shortcut (x, y) present with prob.  $\propto |x y|^{-s}$
- Distance between nodes scales as
  - fractional power of  $n (s \ge 2d)$
  - poly-logarithmic in n (d < s < 2d)

$$-\frac{\log n}{\log\log n} (s=d)$$

#### Spatial small-world network models

- Start with RGG or k-NN
- Augment with random shortcuts, present with probability p between each pair of nodes, independent of everything else
- Union of spatial and Erdős-Rényi random graphs
- For what parameter values are the graphs connected?

#### Results: RGG + shortcuts model

- Suppose that  $n\pi r^2 + np = \log n + c$
- Then,  $P(connectivity) \le e^{-e^{-c}} + O\left(\frac{\log n}{\sqrt{n}}\right)$

#### Idea of proof:

Number of isolated nodes is approximately Poisson distributed with parameter  $e^{-c}$  (Chen-Stein)

#### Results: k-NN + shortcuts model

• Suppose that  $\delta > 0$ ,  $k/n \to 0$ , and  $(k+1)np > 2(1+\delta)\log\frac{n}{k+1}$ 

 Then, with high probability, the graph is connected, and its diameter is bounded above

by 
$$7\left(\log\frac{n}{k+1}+1\right)$$

# Colouring random geometric graphs

Joint work with Divya Mohan and Simon Armour

### Model and problem statement

- N nodes distributed independently and uniformly on the unit square
- K channels or colours available
- Each node has to be assigned a colour
- Think of  $N, K \to \infty, N \gg K$

• Objective: maximise  $D_{min}$  , the minimum distance between two nodes with the same colour

## Background

- Problem posed by Ni, Srikant and Wu (2011), who showed the following:
  - $-D_{min} \le 2\sqrt{K/\pi N}$  for any colouring algorithm and any node configuration
  - $-P(D_{min} < \frac{K}{N}) \rightarrow 1$  for nodes placed and coloured independently and uniformly at random
- Big gap!
  - Is there a colouring algorithm that can do better?
  - Is there one that is decentralised?

# Upper bound on $D_{\min}$ for arbitrary algorithms and node configurations



# Upper bound on $D_{\min}$ for random placement and colouring



### Greedy colouring algorithm

- Proposed by Ni, Srikant and Wu (2011)
- Order the nodes arbitrarily, and colour them sequentially, picking a best colour at each step
- They showed that, if  $K = \Omega(\log N)$ , then
  - $-D_{min} = \Omega(\sqrt{K/N})$  for the greedy algorithm, and
  - $-D_{min} = O(\sqrt{K/N})$  for any algorithm

## Results: Random colouring

Theorem (G, Mohan & Armour):

The sequence of random variables  $\frac{N}{\sqrt{K}}D_{min}$  converge in distribution to a Rayleigh random variable, i.e., for all x>0,

$$P\left(D_{min} > \frac{\sqrt{K}}{N}x\right) \to e^{-x^2/2}$$

#### **Proof idea**

• Fix x > 0. For any two nodes u and v,

$$P(|u - v| < x \text{ and } u, v \text{ have same colour })$$

$$= \frac{\pi x^2}{K}$$

- Events for distinct node pairs aren't independent, but dependence is weak
- Number of node pairs is  $\approx N^2/2$

## Proof idea (continued)

• Chen-Stein method: Random number of node pairs satisfying above property approximately  $Poisson\left(\frac{\pi x^2 N^2}{2K}\right)$ 

•  $\{D_{min} > x\} \Leftrightarrow \text{no such node pairs}$ 

$$P(D_{min} > x) \approx P\left(\text{Poisson}\left(\frac{\pi x^2 N^2}{2K}\right) = 0\right)$$

## Node colouring is a game

- Players are nodes, actions are colours
- The payoff to a player is the negative of its distance to the nearest node with the same colour
- Pure Nash equilibrium: colouring in which no single node benefits by changing its colour
- Could have multiple Nash equilibria

#### Questions

 Are there decentralised dynamics for the players (in discrete or continuous time) that are guaranteed to converge to a Nash equilibrium?

If so, how long does it take?

### Greedy algorithm

- Nodes update their colours according to independent clocks
  - choosing a colour to maximise their distance to another node of the same colour
  - choice could be same as current colour
- Corresponds to asynchronous best response dynamics in the game

### Convergence of greedy algorithm

- $D_{min}$  is non-decreasing, and
  - is either a Nash equilibrium, or
  - can be increased by re-colouring some node
- Only finitely many possible colourings
- Must reach Nash equilibrium in finite time, under mild assumptions
- But time could be exponentially large
- We analyse performance after each node has performed at least one update step

# Performance of greedy algorithm: lower bound on $D_{min}$

- Greedy algorithm always picks a colour different from K-1 nearest neighbours
- So  $D_{min} < x \Rightarrow$  there is a node u such that B(u, x) has K or more nodes in it
- Number of nodes in B(u, x) is  $Bin(n, \pi x^2)$
- Large deviations for Binomial + union bound

## Upper bound on $D_{min}$

• If there is a circle of diameter x that contains K+1 or more nodes, then  $D_{min} < x$ 

 Large deviations for Binomial + second moment method

# Bounds on $D_{min}$ in pictures



# Bounds on $D_{\min}$ for greedy algorithm



## Bounds on $D_{min}$

- G(n,r): geometric random graph on n nodes with threshold distance r
- For any graph *G*, denote
  - $-\chi(G)$ : chromatic number
  - $-\omega(G)$ : clique number
  - $-\Delta(G)$ : maximum degree

$$D_{min} < x \qquad (G(n, x)) > K$$

# Bounds on $D_{min}$

• For any graph G, we have

$$\omega(G) \le \chi(G) \le \Delta(G) + 1$$

- Which of these is closer to  $\chi(G)$ ?
- McDiarmid and Muller give bounds on the ratio of chromatic number to clique number