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What about the data?

Stein’s method - what about the data?

Stein’s method is used to obtain bounds in distributional distances.

A motivation for these distances is that real data sets are always finite and
hence asymptotic results should be quantified.

Usually in Stein’s method the input are random variables.

Uusally in statistics the input are observations.

How to bridge this gap?
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What about the data?

Three examples

Here we look at three examples.

1. Maximum likelihood estimators and confidence intervals.

2. The effect of the prior on the posterior in Bayesian analysis.

3. An almost sure central limit theorem.
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What about the data?

Distances

We use the bounded Wasserstein distance, with random variables standing
for their distributions,

dbW (F ,G ) = sup {|E[h(F )]− E[h(G )]| : h ∈ H} ,

with

H =

h : R→ R : sup
x 6=y
x,y∈R

|h(x)− h(y)|
|x − y |

+ ‖h‖ ≤ 1

 .

We also use the Wasserstein distance,

dW (F ,G ) = sup {|E[h(F )]− E[h(G )]| : h ∈ H} ,

with

H =

h : R→ R : sup
x 6=y
x,y∈R

|h(x)− h(y)|
|x − y |

≤ 1

 .
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Maximum likelihood estimators and confidence intervals

Maximum likelihood estimators and confidence intervals

(joint work with Andreas Anastasiou, and discussions with Robert Gaunt)

Let X = (X1,X2, . . . ,Xn) be i i.i.d. with joint density function f (x |θ), with
unknown parameter θ ∈ Θ ⊂ R. Let θ0 be the true parameter.

For observations x = (x1, . . . , xn) estimate θ by θ̂ = θ̂n(x) which maximises
the likelihood L(θ; x) = f (x |θ).

We assume that θ̂ exists and is unique; that l = log L is smooth both in x
and in θ, that Eθ[l ′(θ; X )] = 0.

Define the Fisher information i(θ) through

Varθ[l ′(θ; X )] = Eθ(−l ′′(θ0; X )) = n i(θ)

and assume that i(θ0) 6= 0.
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Maximum likelihood estimators and confidence intervals

Theorem
(Fisher, 1925)
Let X1,X2, . . . ,Xn be i.i.d. random variables with probability density (or
mass) function f (xi |θ), where θ is the scalar parameter. Assume that the
MLE exists and it is unique and some regularity conditions are satisfied.
Then

(a)
1√
n
l ′(θ0; X )

d−−−→
n→∞

N(0, i(θ0))

(b)
√

n i(θ0)(θ̂n(X )− θ0)
d−−−→

n→∞
N(0, 1).

This theorem gives only a qualitative result as n→∞.
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Maximum likelihood estimators and confidence intervals

Confidence intervals

This confidence interval takes the observations as input.

For Z ∼ N(0, 1), suppose that

dbW

(√
n i(θ0)(θ̂n(X )− θ0),Z

)
= BbW .

If i(θ0), is known, then a conservative 100(1− α)% confidence interval for
θ0 is given by(

θ̂n(x)−
Φ−1 (1− α

2 + 2
√
BbW

)√
n i(θ0)

, θ̂n(x)−
Φ−1 (α

2 − 2
√
BbW

)√
n i(θ0)

)
.

For applications, BbW should be small.
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Maximum likelihood estimators and confidence intervals

Heuristic for a normal approximation

We have that l ′(θ̂n(x); x) = 0. Taylor expansion about θ0 gives

l ′′(θ0; x)
(
θ̂n(x)− θ0

)
= −l ′(θ0; x)− R1(θ0; x),

so that

−n i(θ0)
(
θ̂n(x)− θ0

)
= −l ′(θ0; x)− R1(θ0; x)

−
(
θ̂n(x)− θ0

) [
l ′′(θ0; x) + n i(θ0)

]
.

Re-arranging,

θ̂n(x)− θ0 =
l ′(θ0; x) + R1(θ0; x) + R2(θ0, x)

n i(θ0)
.

Here

R1(θ0; x) =
1
2

(
θ̂n(x)− θ0

)2
l (3)(θ∗; x), some θ∗, and

R2(θ0, x) = (θ̂n(x)− θ0)
(
l ′′(θ0; x) + n i(θ0)

)
.
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Maximum likelihood estimators and confidence intervals

Moreover

l ′(θ0; X ) =
n∑

i=1

d

dθ
log f (Xi |θ)

is the sum of i.i.d. random variables, and we can apply standard Stein
results to this term, such as

Lemma

Let Y1,Y2, . . . ,Yn be independent with E(Yi ) = 0,Var(Yi ) = σ2 > 0 and
E |Yi |3 <∞. Let W = 1√

n

∑n
i=1 Yi and K ∼ N(0, σ2). Then

dbW (W ,K ) ≤ 1√
n

(
2 +

1
σ3

[
E |Y1|3

])
.
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Maximum likelihood estimators and confidence intervals

Theorem

Assume further that E
∣∣ d
dθ logf (X1|θ0)

∣∣3 <∞ and E
(
θ̂n(X )− θ0

)4
<∞.

Let 0 < ε be such that (θ0 − ε, θ0 + ε) ⊂ Θ and Z ∼ N(0, 1). Then

dbW
(√

n i(θ0)(θ̂n(X )− θ0),Z
)

≤ 1√
n

(
2 +

1
[i(θ0)]

3
2

[
E
∣∣∣∣ d
dθ

logf (X1|θ0)

∣∣∣∣3
])

+ 2
E
(
θ̂n(X )− θ0

)2

ε2

+
1√

n i(θ0)

E
(
|R2(θ0; X )|

∣∣∣|θ̂n(X )− θ0| ≤ ε
)

+
1
2

[
E

(
sup

θ:|θ−θ0|≤ε

∣∣∣l (3)(θ; X )
∣∣∣2∣∣∣∣∣|θ̂n(X )− θ0| ≤ ε

)
E
(
θ̂n(X )− θ0

)4
] 1

2
 .
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Maximum likelihood estimators and confidence intervals

We also have a bound which does not depend on an explicit form of
θ̂n; we can bound the mean square error of θ̂n using the theorem for a
special Lipschitz function.
When θ̂n is on the boundary of the parameter space with positive
probability, such as for the Poisson distribution, then we use a
perturbation approach - and we acknowledge very helpful discussions
with Robert Gaunt.
The multivariate parameter version is under way.
The bound depends on the unknown true parameter θ0. This is
plausible but affects the construction of confidence intervals.
With this bound we obtain conservative confidence intervals which
depend on the data explicitly through θ̂(x).
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The effect of the prior on the posterior in Bayesian analysis

The effect of the prior on the posterior in Bayesian analysis

(joint work with Christophe Ley and Yvik Swan)

Given realisations x = (x1, x2, . . . , xn) of random variables X1, . . . ,Xn with
joint distribution

π1(x1, x2, . . . , xn|θ),

where θ is a realistion of a random variable Θ, we would like to draw
inference on Θ.

Before any observation has been made (a priori) we think that Θ has the
(prior) distribution p0. We update our belief on Θ in light of the
observations by applying Bayes’ formula, so that the posterior density of Θ,
given the observations y, is

p2(θ|x) = π1(x|θ)p0(θ) = κ1(x)p1(θ, x)p0(θ).

Here p1(θ, x) is a probability density for θ.
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The effect of the prior on the posterior in Bayesian analysis

The structure of the problem

We are comparing two distributions whose densities p1 with support [a1, b1]
and p2 are of product type, in the sense that p2 = π0p1 for a non-negative
function p0. Let X1 ∼ p1 and X2 ∼ p2.

Assume that p1 and p2 are absolutely continuous, that π0 is differentiable
and that for all Lipschitz-continuous functions h with Eh(X1) <∞,

lim
x→a1

π0(x)

∫ x

a1

(h(y)− E[h(X1)])p1(y)dy = 0

lim
x→b1

π0(x)

∫ b1

x
(h(y)− E[h(X1)])p1(y)dy = 0.
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The effect of the prior on the posterior in Bayesian analysis

In general, if EX1 = µ exists, then the Stein kernel τ1 : [a1, b1]→ R for X1
is

τ1(x) =
1

p(x)

∫ x

−∞
(µ− y)p(y)dy .

Theorem
The Wasserstein distance between X1 ∼ p1 and X2 ∼ p2 = π0p1 satisfies
the following inequalities:

|EX2 − EX1| ≤ dW(X1,X2) ≤ E
[∣∣(log π0(X2))′

∣∣ τ1(X2)
]
,

where τ1 is the Stein kernel associated with p1.
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The effect of the prior on the posterior in Bayesian analysis

Heuristical explanation

For a random variable X with continuous univariate density p having
support I, define TX as Stein operator acting on a suitable class of
functions F(X ) through

TX : F(X )→ L1(p) : f 7→ TX f =
(fp)′

p
.

Then for Y with support I,

E[TX f (Y )] = 0 for all f ∈ F(X ) ⇐⇒ Y ∼ p.

Now if p2 = π0p1 then

T2(f ) = T1(f ) + f
π′0
π0

= T1(f ) + f (log π0)′.

Hence
T2(f )− T1(f ) = f (log π0)′.

Set g = f /τ1 and use ||g || ≤ ||h′|| to obtain the theorem.
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The effect of the prior on the posterior in Bayesian analysis

Bayesian interpretation

We observe data points x := (x1, x2, . . . , xn) with sampling distribution
π1(x | θ). We take θ, the one dimensional parameter, to be distributed
according to some (possibly improper) prior p0(θ), and let the posterior be
given by p2(θ; x) ∝ p0(θ)p1(θ; x). Set

Θ1 ∼ p1(θ; x) = κ1(x)π1(x ; θ)

and
Θ2 ∼ p2(θ; x) = κ2π0(θ)π1(x , θ).

Then our theorem applies,

dW(Θ1,Θ2) ≤ κ2

κ1
E
∣∣π′0(Θ1)τ1(Θ1)

∣∣ ,
and we can assess the influence of the prior on the posterior.
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The effect of the prior on the posterior in Bayesian analysis

Example: Binomial model, Beta prior

Assume x ∼ Binomial(n, θ), with known n, and the prior for θ is

π0(θ) = κ0θ
α−1(1− θ)β−1, θ ∈ [0, 1],

with α > 0 and β > 0. Then τ1(θ) = θ(1−θ)
n+2 . A direct computation gives

dW(Θ1,Θ2) ≤ 1
n + 2

(
|2− β − α| α + x

α + β + n
+ |α− 1|

)
.

Unless α = 1 the bound will be of order 1/n no matter how favourable
x is.
If α = 1 but β 6= 1 then the bound is smallest when x = 0, and is
then of order 1/n2.
If α = 1 = β then the bound is zero, as it should be as then p1 = p2,
the prior is uniform.
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The effect of the prior on the posterior in Bayesian analysis

Example: Binomial model, non-informative prior

Using the Haldane prior p0(θ) = κ0(θ(1− θ))−1, direct computation gives

dW(Θ1,Θ2) ≤ 2
n + 2

(∣∣∣∣xn − 1
2

∣∣∣∣+

√
x(n − x)

n2(n + 1)

)
.

If x = n
2 then the bound is of order n−

3
2 .

Using Jeffreys’ prior p0(θ) = κ0(θ(1− θ))−
1
2 , direct computation gives

dW(Θ1,Θ2) ≤ 1
n + 2

∣∣∣∣∣x + 1
2

n + 1
− 1

2

∣∣∣∣∣+

√
(x + 1

2)(n − x + 1
2)

(n + 1)2(n + 2)

 .

Again if x = n
2 then the bound is of order n−

3
2 .
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The effect of the prior on the posterior in Bayesian analysis

The bounds appear to be the first explicit bounds of this nature.
The data appear explicitly in the bounds.
The multivariate case is under way.
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An almost sure central limit theorem

An almost sure central limit theorem

(joint work with George Deligiannidis and Larry Goldstein)

Brosamler (1988) and Schatte (1988) show the following result. For k ∈ N
and some δ > 0, let

Sk = X1 + · · ·Xk ,

the kth partial sum of i.i.d. real valued random variables Xi with mean
zero, variance 1, and finite (2 + δ)th moment, defined on a probability
space (Ω,F ,P). Then there is a P-null set N such that for all ω ∈ Nc ,

1
log n

n∑
k=1

1
k
δ
k−

1
2 Sk (ω)

D−→ N (0, 1) as n→∞

where D−→ denotes convergence in distribution, and N (0, 1) the standard
normal distribution. Lacey and Philipp (1990) show that (log n)−1 is the
correct scaling in order to get a nontrivial limit.

Can we quantify this result?
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An almost sure central limit theorem

Our strategy is as follows. We first consider a deterministic vector
x = (x1, . . . , xn) with distinct values, and consider the empirical (non
random) measure

νn,x = κn

n∑
k=1

1
k
δxk ,

where κn =
(∑n

k=1
1
k

)−1.

1 We assess, in terms of x, how far νn,x is from a normal distribution.
2 In the next step we show that for xk = Sk√

k
where Sk is the kth partial

sum of bounded mean zero variables with variance one, the bound will
go to zero almost surely.
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An almost sure central limit theorem

Fix h ∈ Lip(1) and denote by f the unique bounded solution of the Stein
equation

h(x)− Nh = f ′(x)− xf (x)

for the N (0, 1) distribution, where Nh = Eh(Z ) for Z ∼ N (0, 1).

Theorem

Let x = (x1, . . . , xn) be a vector of fixed real numbers, not all zero, let

νn,x = κn

n∑
k=1

1
k
δxk .

Let f denote the unique bounded solution of the Stein equation for h. Then∫
hdνn,x − Nh = κn

n∑
k=1

1
k

{
f ′(xk)− xk f (xk)

}
.

This equality is true for any x = (x1, . . . , xn).
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An almost sure central limit theorem

Proof.

Let the random index I have distribution

P(I = k) = pk where pk =
κn
k
,

and let
XI = xI .

Then for any function g ,

E[g(XI )] =
n∑

k=1

pkg(xk) =

∫
gdνn,x .

From the Stein equation,∫
hdνn,x − Nh = Eh(XI )− Nh = Ef ′(XI )− EXI f (XI )

= κn

n∑
k=1

1
k

{
f ′(xk)− xk f (xk)

}
,

yielding the assertion.
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An almost sure central limit theorem

Why is this helpful?

Corollary
Let

ξn =
1
κn

n∑
k=1

1
k
δxk (ω) =

1
κn

n∑
k=1

1
k
δ
k−

1
2 Sk (ω)

,

then∫
hdξn − Nh = R = R(h)(ω)

= κn

n∑
k=1

1
k

{
f ′
(
k−

1
2Sk(ω)

)
− k−

1
2Sk(ω)f

(
k−

1
2Sk(ω)

)}
.
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An almost sure central limit theorem

McDiarmid’s concentration inequality and Borel-Cantelli give:

Theorem

Let hl ∈ Lip(Cl) for l = 1, 2, . . . , such that
∑∞

l=k
Cl

l
3
2
≤ Ak−

1
2 for a

constant A > 0 . Let y = (y1, . . . , yn) with yi ∈ [−B,B] and let

g(y) = κn

n∑
l=1

1
l

hl

 1√
l

l∑
j=1

yj

− Nhl

 .

Let X = (X1,X2, . . . ,Xn) be i.i.d. mean zero, variance 1, with |Xi | ≤ B
and let µn(g) = Eg(X). Then for all t > 0

P(|g(X)− µn(g)| ≥ t) ≤ 2e−
2t2

4A2B2κn .

In particular, g(X)− µn(g)→ 0 almost surely.

26 / 35



An almost sure central limit theorem

Now use Stein’s method for normal approximation to show that

|µn| =

∣∣∣∣∣κn
n∑

k=1

1
k
{Eh(Xk)− Nh}

∣∣∣∣∣ ≤ 3||h′||κn
(
1 + E|X 3

1 |
)

= O((log n)−1).

Here is the final result.

Theorem

Fix h ∈ Lip(1) . For all s > 0, and
∫
hdξn − Nh = R = R(h)(ω),

P(|R| > s) ≤ e−
2(s−µn)2

c + e−
2(s+µn)2

c

where
c = 4A2B2κn.

Moreover,
R(ω)→ 0 almost surely.
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An almost sure central limit theorem

Note that

dW

(
κn

n∑
k=1

1
k
δ
k−

1
2 Sk (ω)

,N (0, 1)

)
= sup

h∈Lip(1)

∣∣∣∣∫ hdξn − Nh

∣∣∣∣
= sup

h∈Lip(1)
|R(h)(ω)|

but the convergence in the proposition is not (yet) uniform over all h ...

Work is under way!
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An almost sure central limit theorem

Some ideas for a uniform result

Let x = (x1, . . . , xn) be n distinct values.

Derive a Stein operator for the distribution of Y , where

P(Y = xk) = pk , k = 1, . . . , n.

using Ley, Swan and R. (2014).

Define
∆x f (xk) = f (xk+1)− f (xk);

the subscript x is a reminder that ∆x is not the usual forward difference.

The inverse of ∆x is

∆−1
x = −

n∑
l=k

f (xl).
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An almost sure central limit theorem

We set as Stein operator T

T f (xk) =
1

p(xk)
∆x(fp)(xk).

Its inverse is
T −1f =

1
p

∆−1
x (fp).

Let

µn = µn(id) =
n∑

k=1

p(xk)xk .

Similarly let σ2
n be the variance of Y .
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An almost sure central limit theorem

Evaluating T −1 at the function f = id − µn we obtain the so-called Stein
kernel τ

τ(xk) = − 1
p(xk)

n∑
l=k

(xl − µn)p(xl).

It follows similarly as for the zero bias construction that

−Eτ(Y )∆∗x f (Y ) = E(Y − µn)f (Y ).

As the value x1, . . . , xn are not assumed to be ordered, in general τ does
not have to be non-negative, and hence does not have to be a density.
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An almost sure central limit theorem

Then we have

Eσ2
nf
′(Y )− (Y − µn)f (Y )

= Eσ2
nf
′(Y ) + τ(Y )∆∗x f (Y )

=
∑
k

p(xk)f ′(xk)σ2
n +

∑
k

p(xk)τ(xk)(xk − xk−1)
∆∗x f (xk)

xk − xk−1

=
∑
k

p(xk)
∆∗x f (xk)

xk − xk−1

{
σ2
n + τ(xk)(xk − xk−1)

}
+
∑
k

p(xk)

(
f ′(xk)− ∆∗x f (xk)

xk − xk−1

)
.

The second term covers the discretisation error. The first term should be
boundable!
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An almost sure central limit theorem

Possible generalisations:

Almost sure invariance principle (Lacey and Philipp (1990)

Associated sequences, mixing sequences (Peligrad and Shao (1995))

Other averages, independent but not identically distributed (Rychlik and
Szuster (2003))

Martingales (Bercu et al. (2009))

Applications to stochastic approximation algorithms (Cenac (2013))

Self-normalised products of partial sums (Wu and Chen (2013))

...
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Summary and Outlook

Summary and Outlook

Stein’s method can be used to get bounds which depend explictly on the
observations.

There are many more statistics problems which could potentially be tackled
in this way!
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