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CREDITS

Based on two joint works: (1) Nourdin, Peccati and Swan (JFA, 2014),
and (2) Ledoux, Nourdin and Peccati (GAFA, 2015).
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A GENERAL QUESTION

I shall use the notation (Ω,F ,P) for a generic probability space, with
E indicating expectation with respect to P. Fix two integers k, d ≥ 1.

? G = (G1, ....,Gk) is a k-dimensional vector of i.i.d. standard
Gaussian random variables (the “underlying Gaussian field” )

? F = (f1(G), ..., fd(G)) is a d-dimensional vector of smooth (non-
linear) transformations of G (the “unknown distribution”) with
identity covariance matrix. We assume that F has a density.

? N = (N1, ...,Nd) is a d-dimensional vector of i.i.d. standard
Gaussian random variables (the “target distribution”).

Question: Can we (meaningfully!) bound the quantity

TV(F,N) = sup
A∈B(Rd)

|P(F ∈ A)− P(N ∈ A)| ?
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NOTATION

The law of N is denoted by γd, that is

γd(dx1, ..., dxd) = 1
(2π)d/2 exp

{
−1

2

d∑
i=1

x2
i

}
dx1 · · · dxd

:= φ(x)dx.

We shall assume that the law of F has a smooth density h with respect
to γd, that is:

P[F ∈ A] =
∫

A
h(x) γd(dx), A ⊆ Rd.

This implies, in particular, that

TV(F,N) = 1
2

∫
Rd
|h(x)− 1| γd(dx).
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THE ORNSTEIN-UHLENBECK SEMIGROUP

It will be useful to consider the standard interpolation:

Ft := e−tF +
√

1− e−2tN, t ≥ 0,

so that F0 = F and F∞ = N.

It is easy to prove that the density of Ft is given by Pth, where, for a
given test function g,

Ptg(x) = E[g(e−tx +
√

1− e−2tN)], t ≥ 0,

defines the Ornstein-Uhlenbeck semigroup (Mehler’s form).

We denote by L the generator of {Pt}. It is well known that L (as an
operator on L2(γk)) has eigenvalues 0,−1,−2, ...,; the corresponding
eigenspaces {Cn : n ≥ 0} are the so-called Wiener chaoses associated
with γk.
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THE STEIN KERNEL

An application of integration by parts shows that, for every smooth
mapping g : Rd → R,

E[Fg(F)] = E[τh · ∇g(F)] (as vectors)

where τh is the d × d matrix given by

τ i,j
h = τ i,j

h (F) = E
[
〈∇fj(G),−∇L−1fi(G)〉Rk |F

]
.

(L−1 is the (pseudo)inverse of the OU semigroup on L2(γk)).

We call τh the Stein kernel associated with F. Note that, if h = 1 (and
therefore F LAW= N), then necessarily τh = identity.
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DISCREPANCY

————————————————————————————

Definition
The Stein discrepancy S between F and N is defined as follows:

S = S(F‖N) :=

√√√√√ d∑
i,j=1

E[(τ i,j
h − δi

j)2]

————————————————————————————

A direct computation shows that

S(Ft‖N) ≤ e−2tS(F‖N), t ≥ 0.
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SOME ESTIMATES

Can one use S to rigorously measure the distance between F and N?

Stein’s method (Stein ’72, ’86) allows one to obtain the following
bounds (see Nourdin and Peccati, ’09, ’12; Nourdin and Rosinski, ’12).

? When d = 1,
TV(F,N) ≤ 2S(F‖N).

? When d = 1 and F belongs to the qth Wiener chaos of γk (q ≥ 2),
then

TV(F,N) ≤ 2S(F‖N) ≤ 2

√
q− 1

3q

√
E[F4]− 3

(note that 3 = E[N4]). See Nualart and Peccati (2005).
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SOME ESTIMATES

? In general, for any d ≥ 1,

Wass1(F,N) := sup
g∈Lip(1)

|E(g(F))− E(g(N))| ≤ S(F‖N).

? Finally, for any d ≥ 1 and when each Fi is chaotic,

Wass1(F,N) ≤ S(F‖N) ≤
√

E[‖F‖4
Rd ]− E[‖N‖4

Rd ].

? Very large scope of applications, e.g.: (1) variations of Gaussian-
subordinated processes, (2) local times of fractional processes, (3)
zeros of random polynomials, (4) statistical analysis of spherical
fields, (5) excursion sets of random fields on homogeneous spaces,
(6) random matrices, (7) universality principles.
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FROM WASSERSTEIN TO TOTAL VARIATION

? For a general dimension d, going from Wass1 to TV is a remark-
ably difficult task.

? For instance, Nourdin, Nualart and Polly (2013), have proved that,
if Fn

LAW→ N, and Fn lives in the sum of the first q chaoses

TV(Fn,N) = O(1)
(

E[‖Fn‖4
Rd ]− E[‖N‖4

Rd ]
)α
,

for every

α <
1

1 + (d + 1)(3 + 4d(q + 1)) .

? We will address this task by using the notions of entropy (H),
Fisher information (I), and 2-Wasserstein distance (W).
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ENTROPY

————————————————————————————

Definition
The relative entropy of F with respect to N is given by

H(F‖N) :=
∫
Rd

h(x) log h(x) γd(dx)

= E[− logφ(N)]− E[− log p(F)] = Ent(N)− Ent(F).

(φ = density of N; p = hφ = density of F)
————————————————————————————

Recall Pinsker’s inequality:

TV(F,N)2 ≤ 1
2

H(F‖N).
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FISHER INFORMATION

————————————————————————————

Definition
The relative Fisher information of F with respect to N is given by

I(F‖N) :=
∫
Rd

|∇h(x)|2

h(x) γd(dx) = E|∇ log h(F)|2

= E[|∇ log p(F)−∇ logφ(F)|2]

( φ = density of N; p = hφ = density of F)
————————————————————————————
It is well-known that:

I(Ft‖N) ≤ e−2tI(F‖N), t ≥ 0 (exponential decay).
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IMPORTANT RELATIONS

? A famous formula, due to de Bruijn, states that

H(F‖N) =
∫ ∞

0
I(Ft‖N) dt

(the proof is based on the use of the heat equation).

? Using the exponential decay of t 7→ I(Ft‖N), we deduce immedi-
ately the log-Sobolev inequality (Gross, 1972)

H(F‖N) ≤ I(F‖N)
∫ ∞

0
e−2t dt = 1

2
I(F‖N).
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2-WASSERSTEIN DISTANCE

————————————————————————————

Definition
The 2-Wasserstein distance between the laws of F and N is given by

W(F,N) = inf
√

E‖X − Y‖2
Rd

where the infimum runs over all pairs (X,Y) such that X LAW= F and
Y LAW= N.
————————————————————————————
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SOME CLASSIC RELATIONS

? The famous Talagrand’s transportation inequality (Talagrand,
1996) states that

W(F,N) ≤
√

2H(F‖N).

? In Otto-Villani (2001), it is proved that

W(F,N) ≤
∫ ∞

0

√
I(Ft‖N) dt.

? Finally, in Otto-Villani (2001) one can find the well-known HWI
inequality

H(F‖N) ≤ W(F,N)
√

I(F‖N)− 1
2

W2(F,N).
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THE ROLE OF STEIN DISCREPANCY

————————————————————————————

Proposition (Ledoux, Nourdin, Peccati (2015))
Assume F admits a Stein’s kernel τh:

E[Fg(F)] = E[τh · ∇g(F)] (g smooth).

Then,

I(Ft‖N) ≤ e−4t

1− e−2t S2(F‖N), t > 0.

————————————————————————————
Proof: Writing pt for the density of Ft, the estimate follows from the
relation

∇ log pt(Ft)−∇ logφ(Ft) = − e−2t
√

1− e−2t
E[(Id− τh(F))N |Ft],

that can be easily verified by a direct computation.
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THE HSI INEQUALITY

The following result is proved in Ledoux, Nourdin and Peccati (2015)
————————————————————————————

Theorem (HSI inequality)
One has that:

H(F‖N) ≤ S2(F‖N)
2

log
(

1 + I(F‖N)
S2(F‖N)

)
.

————————————————————————————

Remark: since (for x, y > 0)

x log(1 + y/x) ≤ y,

this estimate (strictly) improves the Log-Sobolev inequality 2H ≤ I .
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REMARKS

? The proof follows from the estimate

H(F‖N) =
∫ ∞

0
I(Ft‖N)dt

=
∫ x

0
I(Ft‖N)dt +

∫ ∞
x

I(Ft‖N)dt

≤ I(F‖N)
∫ x

0
e−2tdt + S2(F‖N)

∫ ∞
x

e−4t

1− e−2t dt,

and then by optimising in x.

? It is easy to cook up examples where the RHS of HSI converges
to zero, while the RHS of HWI (and therefore of log-Sobolev)
“explodes” to infinity. We were not able to construct examples
going in the other direction.
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THE HWS INEQUALITY

A suitable modification of the above approach gives the following
bound (Ledoux, Nourdin, Peccati, 2015)
————————————————————————————

Theorem (HWS inequality)
Under the above notation,

W(F,N) ≤ S(F‖N) arccos
(

e
− H(F‖N)

S2(F‖N)

)
.

————————————————————————————

Remark: this estimate improves Talagrand’s transportation inequality
W ≤

√
2H. The reason is that

arccos e−x ≤
√

2x,

for every x ≥ 0.
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REMARKS

? Although we have the hierarchy

HSI, HWI⇒ Log-Sobolev⇒ Talagrand,

the relations between HSI and HWI are far from being clear.

? More to the point, when trying to deduce a ‘HWSI’ inequality by
a similar optimisation procedure, one finds that the minimum is
either HWI or HSI. This phenomenon is difficult to interpret at the
moment.
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SOME APPLICATIONS & EXTENSIONS

? Reinforced convergence to equilibrium:

H(Ft ‖N) ≤ e−4t

1− e−2t S2(F‖N)

(compare with the estimate: H(Ft ‖N) ≤ e−2tH(F ‖N)).
? Concentration via Lp norms of Lipschitz functions:

E[|u(F)|p]1/p ≤ C
[
Sp +√p +

√
pSp

]
,

where

Sp :=
(

E‖Id− τh‖p
HS

)1/p
.

? Also,
Wp(F,N) ≤ Cp Sp.
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EXTENSIONS

? HSI can be suitably extended to the case where the target distribu-
tion µ is the invariant measure of a symmetric Markov semigroup
{Pt} with generator

L f = 〈a,Hess f 〉HS + b · ∇f .

? In this case, we require the Stein kernel τν to verify the relation∫
b · ∇f dν +

∫
〈τν ,Hess f 〉HS dν = 0

and therefore

S2(ν ‖µ) =
∫
‖a−1/2τνa−1/2 − Id‖2dν.

? The conditions for HSI to hold involve iterated gradients Γn of
orders n = 1, 2, 3.
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THE PROBLEM WITH FISHER INFORMATION

? Recall that we are interested in bounding H(F‖N), when

F = (f1(G), ..., fd(G)),
and the fi’s are non-linear transforms of the Gaussian field G. The
problem is that, in such a general framework, there is actually no
available technique for properly bounding the relative Fisher
information I(F‖N) without further heavy constraints on F.

? This means that one has to be much more careful in studying the
term ∫ x

0
I(Ft‖N)dt,

by suitably bounding I(Ft‖N) in terms of the total variation dis-
tance. This can be done by exploiting an important inequality (due
to Carbery and Wright, 2001), yielding bounds on the small
ball probabilities of polynomial random variables. See Nourdin
and Poly (2012).
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ENTROPIC CLTS ON WIENER SPACE

————————————————————————————

Theorem (Entropic 4th moment theorem – Nourdin, Peccati
and Swan (2014))
Let

Fn = (F1,n, ...,Fd,n), n ≥ 1,

be a chaotic sequence such that Fn converges in distribution to
N = (N1, ...,Nd) ∼ N (0,C), where C > 0. Set

∆n := E‖Fn‖4
Rd − E‖N‖4

Rd > 0, n ≥ 1.

Then, as n→∞,

H(Fn‖N) = O(1) ∆n log ∆n.

————————————————————————————
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REMARKS

? Of course, by Pinsker inequality, the above statement translates
into a bound on the total variation distance.

? In Ledoux, Nourdin and Peccati (2015): extensions to random
vectors living in the eigenspaces of the generator L of a Markov
semigroup {Pt} – whenever some form of the Carbery-Wright
inequality is available (some log-concave case, for instance).
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AN EXPLICIT EXAMPLE

Consider the sequence

Vn := 1√
n

( n∑
k=1

(X2
k − 1),

n∑
k=1

(X3
k − 3Xk)

)
, n ≥ 1,

where the Gaussian sequence Xk has autocorrelation %(k) ∼ |k|α, for
some α < −2/3 (this corresponds to the increments of a fractional
Brownian motion of Hurst index H < 2/3). Let N ∼ N (0, I2).

Then, for a suitable constant σ > 0,

H(σ−1Vn‖N), TV(σ−1Vn,N)2 = O(1) log n
n .
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ANOTHER EXAMPLE

? Closed convex cone C ⊂ Rd; g = d-dimensional Gaussian vector;
ΠC(g) = metric projection of g onto C.

? Question (Amelunxen, Lotz, McCoy and Tropp, 2013; Compressed
Sensing) : how far is the distribution of ‖ΠC(g)‖2 from that of a
Gaussian random variable N?
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ANOTHER EXAMPLE

? The HSI inequality yields (under non-degeneracy): for large d,

Ent (N)− Ent
(
‖ΠC(g)‖2) . log δ

δ

where δ = E
(
‖ΠC(g)‖2) = ‘statistical dimension’ of the cone.
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THANK YOU FOR YOUR ATTENTION !
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