Beating Log-Sobolev:
 One Stein’s Kernel at a Time

Giovanni Peccati
(Luxembourg University)

Singapore: May 21, 2015

Credits

Based on two joint works: (1) Nourdin, Peccati and Swan (JFA, 2014), and (2) Ledoux, Nourdin and Peccati (GAFA, 2015).

A General Question

I shall use the notation $(\Omega, \mathscr{F}, \mathbf{P})$ for a generic probability space, with \mathbf{E} indicating expectation with respect to \mathbf{P}.

* $G=\left(G_{1}, \ldots, G_{k}\right)$ is a k-dimensional vector of i.i.d. standard Gaussian random variables (the "underlying Gaussian field")
* $F=\left(f_{1}(G), \ldots, f_{d}(G)\right)$ is a d-dimensional vector of smooth (nonlinear) transformations of G (the "unknown distribution") with identity covariance matrix. We assume that F has a density.
 Gaussian random variables (the "target distribution").

Question: Can we (meaningfully!) bound the quantity

A General Question

I shall use the notation $(\Omega, \mathscr{F}, \mathbf{P})$ for a generic probability space, with \mathbf{E} indicating expectation with respect to \mathbf{P}. Fix two integers $k, d \geq 1$.

Question: Can we (meaningfully!) bound the quantity

A General Question

I shall use the notation $(\Omega, \mathscr{F}, \mathbf{P})$ for a generic probability space, with \mathbf{E} indicating expectation with respect to \mathbf{P}. Fix two integers $k, d \geq 1$.
$\star G=\left(G_{1}, \ldots, G_{k}\right)$ is a k-dimensional vector of i.i.d. standard Gaussian random variables (the "underlying Gaussian field")

Gaussian random variables (the "target distribution").
Question: Can we (meaningfully!') bound the quantity

A General Question

I shall use the notation $(\Omega, \mathscr{F}, \mathbf{P})$ for a generic probability space, with \mathbf{E} indicating expectation with respect to \mathbf{P}. Fix two integers $k, d \geq 1$.
$\star G=\left(G_{1}, \ldots, G_{k}\right)$ is a k-dimensional vector of i.i.d. standard Gaussian random variables (the "underlying Gaussian field")
$\star F=\left(f_{1}(G), \ldots, f_{d}(G)\right)$ is a d-dimensional vector of smooth (nonlinear) transformations of G (the "unknown distribution") with identity covariance matrix. We assume that F has a density.

Gaussian random variables (the "target distribution").
Question: Can we (meaningfully!) bound the quantity

A General Question

I shall use the notation $(\Omega, \mathscr{F}, \mathbf{P})$ for a generic probability space, with \mathbf{E} indicating expectation with respect to \mathbf{P}. Fix two integers $k, d \geq 1$.
$\star G=\left(G_{1}, \ldots, G_{k}\right)$ is a k-dimensional vector of i.i.d. standard Gaussian random variables (the "underlying Gaussian field")
$\star F=\left(f_{1}(G), \ldots, f_{d}(G)\right)$ is a d-dimensional vector of smooth (nonlinear) transformations of G (the "unknown distribution") with identity covariance matrix. We assume that F has a density.
$\star N=\left(N_{1}, \ldots, N_{d}\right)$ is a d-dimensional vector of i.i.d. standard Gaussian random variables (the "target distribution").

Question: Can we (meaningfully!) bound the quantity

A General Question

I shall use the notation $(\Omega, \mathscr{F}, \mathbf{P})$ for a generic probability space, with \mathbf{E} indicating expectation with respect to \mathbf{P}. Fix two integers $k, d \geq 1$.
$\star G=\left(G_{1}, \ldots, G_{k}\right)$ is a k-dimensional vector of i.i.d. standard Gaussian random variables (the "underlying Gaussian field")
$\star F=\left(f_{1}(G), \ldots, f_{d}(G)\right)$ is a d-dimensional vector of smooth (nonlinear) transformations of G (the "unknown distribution") with identity covariance matrix. We assume that F has a density.
$\star N=\left(N_{1}, \ldots, N_{d}\right)$ is a d-dimensional vector of i.i.d. standard Gaussian random variables (the "target distribution").

Question: Can we (meaningfully!) bound the quantity

$$
\mathbf{T V}(F, N)=\sup _{A \in \mathscr{B}\left(\mathbb{R}^{d}\right)}|\mathbf{P}(F \in A)-\mathbf{P}(N \in A)| ?
$$

Notation

The law of N is denoted by γ_{d}, that is

$$
\begin{aligned}
\gamma_{d}\left(\mathrm{~d} x_{1}, \ldots, \mathrm{~d} x_{d}\right) & =\frac{1}{(2 \pi)^{d / 2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{d} x_{i}^{2}\right\} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{d} \\
& :=\phi(x) \mathrm{d} x
\end{aligned}
$$

We shall assume that the law of F has a smooth density h with respect to γ_{d}, that is:

$$
\mathbf{P}[F \in A]=\int_{A} h(x) \gamma_{d}(\mathrm{~d} x), \quad A \subseteq \mathbb{R}^{d} .
$$

This implies, in particular, that

$$
\operatorname{TV}(F, N)=\frac{1}{2} \int_{\mathbb{R}^{d}}|h(x)-1| \gamma_{d}(\mathrm{~d} x)
$$

Notation

The law of N is denoted by γ_{d}, that is

$$
\begin{aligned}
\gamma_{d}\left(\mathrm{~d} x_{1}, \ldots, \mathrm{~d} x_{d}\right) & =\frac{1}{(2 \pi)^{d / 2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{d} x_{i}^{2}\right\} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{d} \\
& :=\phi(x) \mathrm{d} x
\end{aligned}
$$

We shall assume that the law of F has a smooth density h with respect to γ_{d}, that is:

$$
\mathbf{P}[F \in A]=\int_{A} h(x) \gamma_{d}(\mathrm{~d} x), \quad A \subseteq \mathbb{R}^{d}
$$

This implies, in particular, that

Notation

The law of N is denoted by γ_{d}, that is

$$
\begin{aligned}
\gamma_{d}\left(\mathrm{~d} x_{1}, \ldots, \mathrm{~d} x_{d}\right) & =\frac{1}{(2 \pi)^{d / 2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{d} x_{i}^{2}\right\} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{d} \\
& :=\phi(x) \mathrm{d} x
\end{aligned}
$$

We shall assume that the law of F has a smooth density h with respect to γ_{d}, that is:

$$
\mathbf{P}[F \in A]=\int_{A} h(x) \gamma_{d}(\mathrm{~d} x), \quad A \subseteq \mathbb{R}^{d}
$$

This implies, in particular, that

$$
\mathbf{T V}(F, N)=\frac{1}{2} \int_{\mathbb{R}^{d}}|h(x)-1| \gamma_{d}(\mathrm{~d} x)
$$

The Ornstein-Uhlenbeck semigroup

It will be useful to consider the standard interpolation:

$$
F_{t}:=e^{-t} F+\sqrt{1-e^{-2 t}} N, \quad t \geq 0
$$

so that $F_{0}=F$ and $F_{\infty}=N$.
It is easy to prove that the density of F_{t} is given by $P_{t} h$, where, for a given test function g,

$$
P_{t} g(x)=\mathbb{E}\left[g\left(e^{-t} x+\sqrt{1-e^{-2 t} N}\right)\right], \quad t \geq 0
$$

defines the Ornstein-Uhlenbeck semigroup (Mehler's form).
We denote by L the generator of $\left\{p_{t}\right\}$. It is well known that L (as an operator on $\left.L^{2}\left(\gamma_{k}\right)\right)$ has eigenvalues $0,-1,-2, \ldots$; the corresponding eigenspaces $\left\{C_{n}: n \geq 0\right\}$ are the so-called Wiener chaoses associated with γ_{k}.

The Ornstein-Uhlenbeck semigroup

It will be useful to consider the standard interpolation:

$$
F_{t}:=e^{-t} F+\sqrt{1-e^{-2 t}} N, \quad t \geq 0
$$

so that $F_{0}=F$ and $F_{\infty}=N$.
It is easy to prove that the density of F_{t} is given by $P_{t} h$, where, for a given test function g,

$$
P_{t} g(x)=\mathbf{E}\left[g\left(e^{-t} x+\sqrt{1-e^{-2 t}} N\right)\right], \quad t \geq 0
$$

defines the Ornstein-Uhlenbeck semigroup (Mehler's form).
We denote by L the generator of $\left\{P_{t}\right\}$. It is well known that L (as an
operator on $\left.L^{2}\left(\gamma_{k}\right)\right)$ has eigenvalues $0,-1,-2, \ldots$, the corresponding
eigenspaces $\left\{C_{n}: n \geq 0\right\}$ are the so-called Wiener chaoses associated

The Ornstein-Uhlenbeck semigroup

It will be useful to consider the standard interpolation:

$$
F_{t}:=e^{-t} F+\sqrt{1-e^{-2 t}} N, \quad t \geq 0
$$

so that $F_{0}=F$ and $F_{\infty}=N$.
It is easy to prove that the density of F_{t} is given by $P_{t} h$, where, for a given test function g,

$$
P_{t} g(x)=\mathbf{E}\left[g\left(e^{-t} x+\sqrt{1-e^{-2 t}} N\right)\right], \quad t \geq 0
$$

defines the Ornstein-Uhlenbeck semigroup (Mehler's form).
We denote by L the generator of $\left\{P_{t}\right\}$. It is well known that L (as an operator on $\left.L^{2}\left(\gamma_{k}\right)\right)$ has eigenvalues $0,-1,-2, \ldots$; the corresponding eigenspaces $\left\{C_{n}: n \geq 0\right\}$ are the so-called Wiener chaoses associated with γ_{k}.

The Stein Kernel

An application of integration by parts shows that, for every smooth mapping $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\mathbf{E}[F g(F)]=\mathbf{E}\left[\tau_{h} \cdot \nabla g(F)\right] \text { (as vectors) }
$$

where τ_{h} is the $d \times d$ matrix given by

(L^{-1} is the (pseudo)inverse of the OU semigroup on $L^{2}\left(\gamma_{k}\right)$). We call τ_{n} the Stain kernel associated with F. Note that, if $h=1$ (and therefore $F \stackrel{L A W}{=} N$), then necessarily $\tau_{h}=$ identity.

The Stein Kernel

An application of integration by parts shows that, for every smooth mapping $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\mathbf{E}[F g(F)]=\mathbf{E}\left[\tau_{h} \cdot \nabla g(F)\right] \quad \text { (as vectors) }
$$

where τ_{h} is the $d \times d$ matrix given by

$$
\tau_{h}^{i, j}=\tau_{h}^{i, j}(F)=\mathbf{E}\left[\left\langle\nabla f_{j}(G),-\nabla L^{-1} f_{i}(G)\right\rangle_{\mathbb{R}^{k}} \mid F\right] .
$$

(L^{-1} is the (pseudo)inverse of the OU semigroup on $L^{2}\left(\gamma_{k}\right)$).

$$
\begin{aligned}
& \text { We call } \tau_{h} \text { the Stein kernel associated with } F \text {. Note that, if } h=1 \text { (and } \\
& \text { therefore } F \stackrel{L A W}{=} N \text {), then necessarily } \tau_{h}=\text { identity. }
\end{aligned}
$$

The Stein Kernel

An application of integration by parts shows that, for every smooth mapping $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\mathbf{E}[F g(F)]=\mathbf{E}\left[\tau_{h} \cdot \nabla g(F)\right] \quad \text { (as vectors) }
$$

where τ_{h} is the $d \times d$ matrix given by

$$
\tau_{h}^{i, j}=\tau_{h}^{i, j}(F)=\mathbf{E}\left[\left\langle\nabla f_{j}(G),-\nabla L^{-1} f_{i}(G)\right\rangle_{\mathbb{R}^{k}} \mid F\right] .
$$

(L^{-1} is the (pseudo)inverse of the OU semigroup on $L^{2}\left(\gamma_{k}\right)$).
We call τ_{h} the Stein kernel associated with F. Note that, if $h=1$ (and therefore $F \stackrel{L A W}{=} N$), then necessarily $\tau_{h}=$ identity.

DISCREPANCY

Definition

The Stein discrepancy S between F and N is defined as follows:

$$
S=S(F \| N):=\sqrt{\sum_{i, j=1}^{d} \mathbf{E}\left[\left(\tau_{h}^{i, j}-\delta_{j}^{i}\right)^{2}\right]}
$$

A direct computation shows that

DISCREPANCY

Definition

The Stein discrepancy S between F and N is defined as follows:

$$
S=S(F \| N):=\sqrt{\sum_{i, j=1}^{d} \mathbf{E}\left[\left(\tau_{h}^{i, j}-\delta_{j}^{i}\right)^{2}\right]}
$$

A direct computation shows that

$$
S\left(F_{t} \| N\right) \leq e^{-2 t} S(F \| N), \quad t \geq 0
$$

Some estimates

Can one use S to rigorously measure the distance between F and N ?
Stein's method (Stein '72, '86) allows one to obtain the following bounds (see Nourdin and Peccati, '09, '12; Nourdin and Rosinski, '12).

* w/hen $d=1$.

$$
\mathbf{T V}(F, N) \leq 2 S(F \| N)
$$

* When $d=1$ and F belongs to the q th Wiener chaos of $\gamma_{k}(q \geq 2)$, then

(note that $3=\mathbf{E}\left[N^{4}\right]$). See Nualart and Peccati (2005).

Some estimates

Can one use S to rigorously measure the distance between F and N ?
Stein's method (Stein '72, '86) allows one to obtain the following bounds (see Nourdin and Peccati, '09, '12; Nourdin and Rosinski, '12).
\star When $d=1$,

\star When $d=1$ and F belongs to the q th Wiener chaos of $\gamma_{k}(q \geq 2)$, then

(note that $3=\mathbf{E}\left[N^{4}\right]$). See Nualart and Peccati (2005).

Some estimates

Can one use S to rigorously measure the distance between F and N ?
Stein's method (Stein '72, '86) allows one to obtain the following bounds (see Nourdin and Peccati, '09, '12; Nourdin and Rosinski, '12).
\star When $d=1$,

$$
\mathbf{T V}(F, N) \leq 2 S(F \| N)
$$

\star When $d=1$ and F belongs to the q th Wiener chaos of $\gamma_{k}(q \geq 2)$, then

(note that $3=\mathbf{E}\left[N^{4}\right]$). See Nualart and Peccati (2005).

Some estimates

Can one use S to rigorously measure the distance between F and N ?
Stein's method (Stein '72, '86) allows one to obtain the following bounds (see Nourdin and Peccati, '09, '12; Nourdin and Rosinski, '12).
\star When $d=1$,

$$
\mathbf{T V}(F, N) \leq 2 S(F \| N)
$$

\star When $d=1$ and F belongs to the q th Wiener chaos of $\gamma_{k}(q \geq 2)$, then

$$
\mathbf{T V}(F, N) \leq 2 S(F \| N) \leq 2 \sqrt{\frac{q-1}{3 q}} \sqrt{E\left[F^{4}\right]-3}
$$

(note that $3=\mathbf{E}\left[N^{4}\right]$). See Nualart and Peccati (2005).

Some estimates

\star In general, for any $d \geq 1$,

$$
\boldsymbol{W a s s}_{1}(F, N):=\sup _{g \in \operatorname{Lip}(1)}|\mathbf{E}(g(F))-\mathbf{E}(g(N))| \leq S(F \| N)
$$

\star Finally, for any $d \geq 1$ and when each F_{i} is chaotic, $\left.\operatorname{Wass}_{1}(F, N) \leq S(F \| N) \leq \sqrt{\mathbb{E}\left[\|F\|_{\left.\mathbb{R}^{d}\right]}^{4}\right]-\mathbb{E}[\| N} \|_{\mathbb{R}^{d}}^{4}\right]$.

* Very large scope of applications, e.g.: (1) variations of Gaussiansubordinated processes, (2) local times of fractional processes, (3) zeros of random polynomials, (4) statistical analysis of spherical fields, (5) excursion sets of random fields on homogeneous spaces, (6) random matrices, (7) universality principles.

Some estimates

\star In general, for any $d \geq 1$,

$$
\boldsymbol{W a s s}_{1}(F, N):=\sup _{g \in \operatorname{Lip}(1)}|\mathbf{E}(g(F))-\mathbf{E}(g(N))| \leq S(F \| N)
$$

\star Finally, for any $d \geq 1$ and when each F_{i} is chaotic,

$$
\operatorname{Wass}_{1}(F, N) \leq S(F \| N) \leq \sqrt{\mathbf{E}\left[\|F\|_{\mathbb{R}^{d}}^{4}\right]-\mathbf{E}\left[\|N\|_{\mathbb{R}^{d}}^{4}\right]} .
$$

* Very large scope of applications, e.g.: (1) variations of Gaussiansubordinated processes, (2) local times of fractional processes, (3) zeros of random polynomials, (4) statistical analysis of spherical fields, (5) excursion sets of random fields on homogeneous spaces, (6) random matrices, (7) universality principles.

Some estimates

\star In general, for any $d \geq 1$,

$$
\boldsymbol{W a s s}_{1}(F, N):=\sup _{g \in \operatorname{Lip}(1)}|\mathbf{E}(g(F))-\mathbf{E}(g(N))| \leq S(F \| N)
$$

\star Finally, for any $d \geq 1$ and when each F_{i} is chaotic,

$$
\operatorname{Wass}_{1}(F, N) \leq S(F \| N) \leq \sqrt{\mathbf{E}\left[\|F\|_{\mathbb{R}^{d}}^{4}\right]-\mathbf{E}\left[\|N\|_{\mathbb{R}^{d}}^{4}\right]} .
$$

* Very large scope of applications, e.g.: (1) variations of Gaussiansubordinated processes, (2) local times of fractional processes, (3) zeros of random polynomials, (4) statistical analysis of spherical fields, (5) excursion sets of random fields on homogeneous spaces, (6) random matrices, (7) universality principles.

From Wasserstein to Total Variation

\star For a general dimension d, going from Wass 1 to TV is a remarkably difficult task.

* For instance, Nourdin, Nualart and Polly (2013), have proved that, if $F_{n} \xrightarrow{\text { LAW }} N$, and F_{n} lives in the sum of the first q chaoses

for every

* We will address this task by using the notions of entropy (H), Fisher information (I), and 2-Wasserstein distance (W).

From Wasserstein to Total Variation

\star For a general dimension d, going from Wass \boldsymbol{W}_{1} to TV is a remarkably difficult task.

* For instance, Nourdin, Nualart and Polly (2013), have proved that, if $F_{n} \xrightarrow{\text { LAW }} N$, and F_{n} lives in the sum of the first q chaoses

$$
\mathbf{T V}\left(F_{n}, N\right)=O(1)\left(\mathbf{E}\left[\left\|F_{n}\right\|_{\mathbb{R}^{d}}^{4}\right]-\mathbf{E}\left[\|N\|_{\mathbb{R}^{d}}^{4}\right]\right)^{\alpha}
$$

for every

* We will address this task by using the notions of entropy (H), Fisher information (I), and 2-Wasserstein distance (W)

From Wasserstein to Total Variation

\star For a general dimension d, going from Wass \boldsymbol{W}_{1} to TV is a remarkably difficult task.
^ For instance, Nourdin, Nualart and Polly (2013), have proved that, if $F_{n} \xrightarrow{\text { LAW }} N$, and F_{n} lives in the sum of the first q chaoses

$$
\mathbf{T V}\left(F_{n}, N\right)=O(1)\left(\mathbf{E}\left[\left\|F_{n}\right\|_{\mathbb{R}^{d}}^{4}\right]-\mathbf{E}\left[\|N\|_{\mathbb{R}^{d}}^{4}\right]\right)^{\alpha}
$$

for every

$$
\alpha<\frac{1}{1+(d+1)(3+4 d(q+1))} .
$$

* We will address this task by using the notions of entropy (H), Fisher information (I), and 2-Wasserstein distance (W)

From Wasserstein to Total Variation

\star For a general dimension d, going from Wass \boldsymbol{W}_{1} to TV is a remarkably difficult task.

* For instance, Nourdin, Nualart and Polly (2013), have proved that, if $F_{n} \xrightarrow{\text { LAW }} N$, and F_{n} lives in the sum of the first q chaoses

$$
\mathbf{T V}\left(F_{n}, N\right)=O(1)\left(\mathbf{E}\left[\left\|F_{n}\right\|_{\mathbb{R}^{d}}^{4}\right]-\mathbf{E}\left[\|N\|_{\mathbb{R}^{d}}^{4}\right]\right)^{\alpha}
$$

for every

$$
\alpha<\frac{1}{1+(d+1)(3+4 d(q+1))} .
$$

* We will address this task by using the notions of entropy (H), Fisher information (I), and 2-Wasserstein distance (W).

Entropy

Definition

The relative entropy of F with respect to N is given by

$$
\begin{aligned}
& H(F \| N):=\int_{\mathbb{R}^{d}} h(x) \log h(x) \gamma_{d}(\mathrm{~d} x) \\
& =\mathbf{E}[-\log \phi(N)]-\mathbf{E}[-\log p(F)]=\mathbf{E n t}(N)-\mathbf{E n t}(F)
\end{aligned}
$$

($\phi=$ density of $N ; p=h \phi=$ density of $F)$

Recall Pinsker's inequality:

Entropy

Definition

The relative entropy of F with respect to N is given by

$$
\begin{aligned}
& H(F \| N):=\int_{\mathbb{R}^{d}} h(x) \log h(x) \gamma_{d}(\mathrm{~d} x) \\
& =\mathbf{E}[-\log \phi(N)]-\mathbf{E}[-\log p(F)]=\mathbf{E n t}(N)-\mathbf{E n t}(F) .
\end{aligned}
$$

($\phi=$ density of $N ; p=h \phi=$ density of $F)$

Recall Pinsker's inequality:

$$
\mathbf{T V}(F, N)^{2} \leq \frac{1}{2} H(F \| N)
$$

Fisher Information

Definition

The relative Fisher information of F with respect to N is given by

$$
\begin{aligned}
I(F \| N) & :=\int_{\mathbb{R}^{d}} \frac{|\nabla h(x)|^{2}}{h(x)} \gamma_{d}(\mathrm{~d} x)=\mathbf{E}|\nabla \log h(F)|^{2} \\
& =\mathbf{E}\left[|\nabla \log p(F)-\nabla \log \phi(F)|^{2}\right]
\end{aligned}
$$

($\phi=$ density of $N ; p=h \phi=$ density of $F)$

It is well-known that:

$$
I\left(F_{t} \| N\right) \leq e^{-2 t} I(F \| N), t \geq 0 \text { (exponential decay). }
$$

FISHER InFORMATION

Definition

The relative Fisher information of F with respect to N is given by

$$
\begin{aligned}
I(F \| N) & :=\int_{\mathbb{R}^{d}} \frac{|\nabla h(x)|^{2}}{h(x)} \gamma_{d}(\mathrm{~d} x)=\mathbf{E}|\nabla \log h(F)|^{2} \\
& =\mathbf{E}\left[|\nabla \log p(F)-\nabla \log \phi(F)|^{2}\right]
\end{aligned}
$$

($\phi=$ density of $N ; p=h \phi=$ density of $F)$
It is well-known that:

$$
I\left(F_{t} \| N\right) \leq e^{-2 t} I(F \| N), t \geq 0 \text { (exponential decay). }
$$

IMPORTANT RELATIONS

\star A famous formula, due to de Bruijn, states that

$$
H(F \| N)=\int_{0}^{\infty} I\left(F_{t} \| N\right) \mathrm{d} t
$$

(the proof is based on the use of the heat equation).
\star Using the exponential decay of $t \mapsto I\left(F_{t} \mid N\right)$, we deduce immediately the log-Sobolev inequality (Gross, 1972)

IMPORTANT RELATIONS

\star A famous formula, due to de Bruijn, states that

$$
H(F \| N)=\int_{0}^{\infty} I\left(F_{t} \| N\right) \mathrm{d} t
$$

(the proof is based on the use of the heat equation).
\star Using the exponential decay of $t \mapsto I\left(F_{t} \| N\right)$, we deduce immediately the log-Sobolev inequality (Gross, 1972)

$$
H(F \| N) \leq I(F \| N) \int_{0}^{\infty} e^{-2 t} \mathrm{~d} t=\frac{1}{2} I(F \| N)
$$

2-WASSERSTEIN DISTANCE

Definition

The 2-Wasserstein distance between the laws of F and N is given by

$$
W(F, N)=\inf \sqrt{\mathbf{E}\|X-Y\|_{\mathbb{R}^{d}}^{2}}
$$

where the infimum runs over all pairs (X, Y) such that $X \stackrel{L A W}{=} F$ and $Y \stackrel{L A W}{=} N$.

SOME CLASSIC RELATIONS

* The famous Talagrand's transportation inequality (Talagrand, 1996) states that

$$
W(F, N) \leq \sqrt{2 H(F \| N)}
$$

* In Otto-Villani (2001), it is proved that

* Finally, in Otto-Villani (2001) one can find the well-known HWI inequality

SOME CLASSIC RELATIONS

* The famous Talagrand's transportation inequality (Talagrand, 1996) states that

$$
W(F, N) \leq \sqrt{2 H(F \| N)}
$$

* In Otto-Villani (2001), it is proved that

$$
W(F, N) \leq \int_{0}^{\infty} \sqrt{I\left(F_{t} \| N\right)} \mathrm{d} t
$$

^ Finally, in Otto-Villani (2001) one can find the well-known HWI inequality

SOME CLASSIC RELATIONS

* The famous Talagrand's transportation inequality (Talagrand, 1996) states that

$$
W(F, N) \leq \sqrt{2 H(F \| N)}
$$

\star In Otto-Villani (2001), it is proved that

$$
W(F, N) \leq \int_{0}^{\infty} \sqrt{I\left(F_{t} \| N\right)} \mathrm{d} t
$$

\star Finally, in Otto-Villani (2001) one can find the well-known HWI inequality

$$
H(F \| N) \leq W(F, N) \sqrt{I(F \| N)}-\frac{1}{2} W^{2}(F, N)
$$

The role of Stein discrepancy

Proposition (Ledoux, Nourdin, Peccati (2015))

Assume F admits a Stein's kernel τ_{h} :

$$
\mathbf{E}[F g(F)]=\mathbf{E}\left[\tau_{h} \cdot \nabla g(F)\right] \quad(g \text { smooth }) .
$$

Then,

Proof: Writing p_{t} for the density of F_{t}, the estimate follows from the relation

The role of Stein discrepancy

Proposition (Ledoux, Nourdin, Peccati (2015))

Assume F admits a Stein's kernel τ_{h} :

$$
\mathbf{E}[F g(F)]=\mathbf{E}\left[\tau_{h} \cdot \nabla g(F)\right] \quad(g \text { smooth }) .
$$

Then,

$$
I\left(F_{t} \| N\right) \leq \frac{e^{-4 t}}{1-e^{-2 t}} S^{2}(F \| N), \quad t>0
$$

Proof: Writing p_{t} for the density of F_{t}, the estimate follows from the relation

The role of Stein discrepancy

Proposition (Ledoux, Nourdin, Peccati (2015))

Assume F admits a Stein's kernel τ_{h} :

$$
\mathbf{E}[F g(F)]=\mathbf{E}\left[\tau_{h} \cdot \nabla g(F)\right] \quad(g \text { smooth }) .
$$

Then,

$$
I\left(F_{t} \| N\right) \leq \frac{e^{-4 t}}{1-e^{-2 t}} S^{2}(F \| N), \quad t>0
$$

Proof: Writing p_{t} for the density of F_{t}, the estimate follows from the relation

$$
\nabla \log p_{t}\left(F_{t}\right)-\nabla \log \phi\left(F_{t}\right)=-\frac{e^{-2 t}}{\sqrt{1-e^{-2 t}}} \mathbf{E}\left[\left(\mathbf{I d}-\tau_{h}(F)\right) N \mid F_{t}\right]
$$

that can be easily verified by a direct computation.

THE HSI INEQUALITY

The following result is proved in Ledoux, Nourdin and Peccati (2015)

Theorem (HSI inequality)

One has that:

$$
H(F \| N) \leq \frac{S^{2}(F \| N)}{2} \log \left(1+\frac{I(F \| N)}{S^{2}(F \| N)}\right)
$$

Remark: since (for $x, y>0$)
this estimate (strictly) improves the Log-Sobolev inequality $2 H \leq I$

THE HSI INEQUALITY

The following result is proved in Ledoux, Nourdin and Peccati (2015)

Theorem (HSI inequality)

One has that:

$$
H(F \| N) \leq \frac{S^{2}(F \| N)}{2} \log \left(1+\frac{I(F \| N)}{S^{2}(F \| N)}\right)
$$

Remark: since (for $x, y>0$)

$$
x \log (1+y / x) \leq y
$$

this estimate (strictly) improves the Log-Sobolev inequality $2 H \leq I$.

REMARKS

\star The proof follows from the estimate

$$
\begin{aligned}
H(F \| N) & =\int_{0}^{\infty} I\left(F_{t} \| N\right) \mathrm{d} t \\
& =\int_{0}^{x} I\left(F_{t} \| N\right) \mathrm{d} t+\int_{x}^{\infty} I\left(F_{t} \| N\right) \mathrm{d} t \\
& \leq I(F \| N) \int_{0}^{x} e^{-2 t} \mathrm{~d} t+S^{2}(F \| N) \int_{x}^{\infty} \frac{e^{-4 t}}{1-e^{-2 t}} \mathrm{~d} t
\end{aligned}
$$

and then by optimising in x.

* It is easy to cook up examples where the RHS of HSI converges to zero, while the RHS of HWI (and therefore of log-Sobolev) "explodes" to infinity. We were not able to construct examples going in the other direction.

REMARKS

\star The proof follows from the estimate

$$
\begin{aligned}
H(F \| N) & =\int_{0}^{\infty} I\left(F_{t} \| N\right) \mathrm{d} t \\
& =\int_{0}^{x} I\left(F_{t} \| N\right) \mathrm{d} t+\int_{x}^{\infty} I\left(F_{t} \| N\right) \mathrm{d} t \\
& \leq I(F \| N) \int_{0}^{x} e^{-2 t} \mathrm{~d} t+S^{2}(F \| N) \int_{x}^{\infty} \frac{e^{-4 t}}{1-e^{-2 t}} \mathrm{~d} t
\end{aligned}
$$

and then by optimising in x.
\star It is easy to cook up examples where the RHS of HSI converges to zero, while the RHS of HWI (and therefore of log-Sobolev) "explodes" to infinity.

REMARKS

* The proof follows from the estimate

$$
\begin{aligned}
H(F \| N) & =\int_{0}^{\infty} I\left(F_{t} \| N\right) \mathrm{d} t \\
& =\int_{0}^{x} I\left(F_{t} \| N\right) \mathrm{d} t+\int_{x}^{\infty} I\left(F_{t} \| N\right) \mathrm{d} t \\
& \leq I(F \| N) \int_{0}^{x} e^{-2 t} \mathrm{~d} t+S^{2}(F \| N) \int_{x}^{\infty} \frac{e^{-4 t}}{1-e^{-2 t}} \mathrm{~d} t
\end{aligned}
$$

and then by optimising in x.
\star It is easy to cook up examples where the RHS of HSI converges to zero, while the RHS of HWI (and therefore of log-Sobolev) "explodes" to infinity. We were not able to construct examples going in the other direction.

The HWS inequality

A suitable modification of the above approach gives the following bound (Ledoux, Nourdin, Peccati, 2015)

Theorem (HWS inequality)

Under the above notation,

$$
W(F, N) \leq S(F \| N) \arccos \left(e^{-\frac{H(F \| N)}{S^{2}(F \| N)}}\right) .
$$

Remark: this estimate improves Talagrand's transportation inequality $W \leq \sqrt{ } 2 H$. The reason is that

The HWS InEQUALITY

A suitable modification of the above approach gives the following bound (Ledoux, Nourdin, Peccati, 2015)

Theorem (HWS inequality)

Under the above notation,

$$
W(F, N) \leq S(F \| N) \arccos \left(e^{-\frac{H(F \| N)}{S^{2}(F \| N)}}\right) .
$$

Remark: this estimate improves Talagrand's transportation inequality $W \leq \sqrt{2 H}$.

The HWS inequality

A suitable modification of the above approach gives the following bound (Ledoux, Nourdin, Peccati, 2015)

Theorem (HWS inequality)

Under the above notation,

$$
W(F, N) \leq S(F \| N) \arccos \left(e^{-\frac{H(F \| N)}{S^{2}(F \| N)}}\right) .
$$

Remark: this estimate improves Talagrand's transportation inequality $W \leq \sqrt{2 H}$. The reason is that

$$
\arccos e^{-x} \leq \sqrt{2 x}
$$

for every $x \geq 0$.

REMARKS

\star Although we have the hierarchy

$$
\text { HSI, HWI } \Rightarrow \text { Log-Sobolev } \Rightarrow \text { Talagrand, }
$$

the relations between HSI and HWI are far from being clear.

* More to the point, when trying to deduce a 'HWSI' inequality by a similar optimisation procedure, one finds that the minimum is either HWI or HSI. This phenomenon is difficult to interpret at the moment.

REMARKS

\star Although we have the hierarchy

$$
\text { HSI, HWI } \Rightarrow \text { Log-Sobolev } \Rightarrow \text { Talagrand, }
$$

the relations between HSI and HWI are far from being clear.

* More to the point, when trying to deduce a 'HWSI' inequality by a similar optimisation procedure, one finds that the minimum is either HWI or HSI. This phenomenon is difficult to interpret at the moment.

Some Applications \& Extensions

\star Reinforced convergence to equilibrium:

$$
H\left(F_{t} \| N\right) \leq \frac{e^{-4 t}}{1-e^{-2 t}} S^{2}(F \| N)
$$

(compare with the estimate: $H\left(F_{t} \| N\right) \leq e^{-2 t} H(F \| N)$).

* Concentration via L^{p} norms of Lipschitz functions:

where

$$
S_{p}:=\left(\mathbf{E}\left\|\mathbf{I} \mathbf{d}-\tau_{h}\right\|_{H S}^{p}\right)
$$

* Also,

Some Applications \& Extensions

\star Reinforced convergence to equilibrium:

$$
H\left(F_{t} \| N\right) \leq \frac{e^{-4 t}}{1-e^{-2 t}} S^{2}(F \| N)
$$

(compare with the estimate: $H\left(F_{t} \| N\right) \leq e^{-2 t} H(F \| N)$).
\star Concentration via L^{p} norms of Lipschitz functions:

$$
\mathbf{E}\left[|u(F)|^{p}\right]^{1 / p} \leq C\left[S_{p}+\sqrt{p}+\sqrt{p S_{p}}\right]
$$

where

$$
S_{p}:=\left(\mathbf{E}\left\|\mathbf{I d}-\tau_{h}\right\|_{H S}^{p}\right)^{1 / p}
$$

Some Applications \& Extensions

\star Reinforced convergence to equilibrium:

$$
H\left(F_{t} \| N\right) \leq \frac{e^{-4 t}}{1-e^{-2 t}} S^{2}(F \| N)
$$

(compare with the estimate: $H\left(F_{t} \| N\right) \leq e^{-2 t} H(F \| N)$).
^ Concentration via L^{p} norms of Lipschitz functions:

$$
\mathbf{E}\left[|u(F)|^{p}\right]^{1 / p} \leq C\left[S_{p}+\sqrt{p}+\sqrt{p S_{p}}\right]
$$

where

$$
S_{p}:=\left(\mathbf{E}\left\|\mathbf{I d}-\tau_{h}\right\|_{H S}^{p}\right)^{1 / p}
$$

* Also,

$$
W_{p}(F, N) \leq C_{p} S_{p} .
$$

EXTENSIONS

\star HSI can be suitably extended to the case where the target distribution μ is the invariant measure of a symmetric Markov semigroup $\left\{P_{t}\right\}$ with generator

$$
\mathcal{L} f=\langle a, \operatorname{Hess} f\rangle_{H S}+b \cdot \nabla f
$$

* In this case, we require the Stein kernel τ_{ν} to verify the relation

$$
\int b \cdot \nabla f \mathrm{~d} \nu+\int\left\langle\tau_{\nu}, \text { Hess } f\right\rangle_{H S} \mathrm{~d} \nu=0
$$

and therefore

\star The conditions for HSI to hold involve iterated gradients Γ_{n} of orders $n=1,2,3$.

EXTENSIONS

\star HSI can be suitably extended to the case where the target distribution μ is the invariant measure of a symmetric Markov semigroup $\left\{P_{t}\right\}$ with generator

$$
\mathcal{L} f=\langle a, \operatorname{Hess} f\rangle_{H S}+b \cdot \nabla f
$$

\star In this case, we require the Stein kernel τ_{ν} to verify the relation

$$
\int b \cdot \nabla f \mathrm{~d} \nu+\int\left\langle\tau_{\nu}, \operatorname{Hess} f\right\rangle_{H S} \mathrm{~d} \nu=0
$$

and therefore

$$
S^{2}(\nu \| \mu)=\int\left\|a^{-1 / 2} \tau_{\nu} a^{-1 / 2}-\mathbf{I} \mathbf{d}\right\|^{2} \mathrm{~d} \nu
$$

\star The conditions for HSI to hold involve iterated gradients Γ_{n} of orders $n=1,2,3$.

EXTENSIONS

\star HSI can be suitably extended to the case where the target distribution μ is the invariant measure of a symmetric Markov semigroup $\left\{P_{t}\right\}$ with generator

$$
\mathcal{L} f=\langle a, \operatorname{Hess} f\rangle_{H S}+b \cdot \nabla f
$$

\star In this case, we require the Stein kernel τ_{ν} to verify the relation

$$
\int b \cdot \nabla f \mathrm{~d} \nu+\int\left\langle\tau_{\nu}, \operatorname{Hess} f\right\rangle_{H S} \mathrm{~d} \nu=0
$$

and therefore

$$
S^{2}(\nu \| \mu)=\int\left\|a^{-1 / 2} \tau_{\nu} a^{-1 / 2}-\mathbf{I} \mathbf{d}\right\|^{2} \mathrm{~d} \nu
$$

\star The conditions for HSI to hold involve iterated gradients Γ_{n} of orders $n=1,2,3$.

The problem with Fisher information

\star Recall that we are interested in bounding $H(F \| N)$, when

$$
F=\left(f_{1}(G), \ldots, f_{d}(G)\right),
$$

and the f_{i} 's are non-linear transforms of the Gaussian field G.
problem is that, in such a general framework, there is actually no available technique for properly bounding the relative Fisher information $I(F \| N)$ without further heavy constraints on F.

* This means that one has to be much more careful in studying the term

by suitably bounding $I\left(F_{t} \| N\right)$ in terms of the total variation distance. This can be done by exploiting an important inequality (due to Carbery and Wright, 2001), yielding bounds on the small ball probabilities of polynomial random variables. See Nourdin and Poly (2012).

The problem with Fisher information

\star Recall that we are interested in bounding $H(F \| N)$, when

$$
F=\left(f_{1}(G), \ldots, f_{d}(G)\right),
$$

and the f_{i} 's are non-linear transforms of the Gaussian field G. The problem is that, in such a general framework, there is actually no available technique for properly bounding the relative Fisher information $I(F \| N)$ without further heavy constraints on F.
term

by suitably bounding $I\left(F_{t} \| N\right)$ in terms of the total variation dis-
tance. This can be done by exploiting an important ineauality (due to Carbery and Wright, 2001), yielding bounds on the small ball probabilities of polynomial random variables. See Nourdin and Poly (2012).

The problem with Fisher information

\star Recall that we are interested in bounding $H(F \| N)$, when

$$
F=\left(f_{1}(G), \ldots, f_{d}(G)\right)
$$

and the f_{i} 's are non-linear transforms of the Gaussian field G. The problem is that, in such a general framework, there is actually no available technique for properly bounding the relative Fisher information $I(F \| N)$ without further heavy constraints on F.
\star This means that one has to be much more careful in studying the term

$$
\int_{0}^{x} I\left(F_{t} \| N\right) \mathrm{d} t
$$

by suitably bounding $I\left(F_{t} \| N\right)$ in terms of the total variation distance.
ball probabilities of polynomial random variables. See Nourdin and Poly (2012).

The problem with Fisher information

\star Recall that we are interested in bounding $H(F \| N)$, when

$$
F=\left(f_{1}(G), \ldots, f_{d}(G)\right),
$$

and the f_{i} 's are non-linear transforms of the Gaussian field G. The problem is that, in such a general framework, there is actually no available technique for properly bounding the relative Fisher information $I(F \| N)$ without further heavy constraints on F.
\star This means that one has to be much more careful in studying the term

$$
\int_{0}^{x} I\left(F_{t} \| N\right) \mathrm{d} t
$$

by suitably bounding $I\left(F_{t} \| N\right)$ in terms of the total variation distance. This can be done by exploiting an important inequality (due to Carbery and Wright, 2001), yielding bounds on the small ball probabilities of polynomial random variables. See Nourdin and Poly (2012).

Entropic CLTs on Wiener space

Theorem (Entropic $4^{\text {th }}$ moment theorem - Nourdin, Peccati and Swan (2014))
Let

$$
F_{n}=\left(F_{1, n}, \ldots, F_{d, n}\right), \quad n \geq 1
$$

be a chaotic sequence such that F_{n} converges in distribution to $N=\left(N_{1}, \ldots, N_{d}\right) \sim \mathscr{N}(0, C)$, where $C>0$.

Then, as $n \rightarrow \infty$,
\square

Entropic CLTs on Wiener space

Theorem (Entropic $4^{\text {th }}$ moment theorem - Nourdin, Peccati and Swan (2014))
Let

$$
F_{n}=\left(F_{1, n}, \ldots, F_{d, n}\right), \quad n \geq 1
$$

be a chaotic sequence such that F_{n} converges in distribution to $N=\left(N_{1}, \ldots, N_{d}\right) \sim \mathscr{N}(0, C)$, where $C>0$. Set

$$
\Delta_{n}:=\mathbf{E}\left\|F_{n}\right\|_{\mathbb{R}^{d}}^{4}-\mathbf{E}\|N\|_{\mathbb{R}^{d}}^{4}>0, \quad n \geq 1
$$

Entropic CLTs on Wiener space

Theorem (Entropic $4^{\text {th }}$ moment theorem - Nourdin, Peccati and Swan (2014))
Let

$$
F_{n}=\left(F_{1, n}, \ldots, F_{d, n}\right), \quad n \geq 1
$$

be a chaotic sequence such that F_{n} converges in distribution to $N=\left(N_{1}, \ldots, N_{d}\right) \sim \mathscr{N}(0, C)$, where $C>0$. Set

$$
\Delta_{n}:=\mathbf{E}\left\|F_{n}\right\|_{\mathbb{R}^{d}}^{4}-\mathbf{E}\|N\|_{\mathbb{R}^{d}}^{4}>0, \quad n \geq 1
$$

Then, as $n \rightarrow \infty$,

$$
H\left(F_{n} \| N\right)=O(1) \Delta_{n} \log \Delta_{n}
$$

REMARKS

* Of course, by Pinsker inequality, the above statement translates into a bound on the total variation distance.
* In Ledoux, Nourdin and Peccati (2015): extensions to random vectors living in the eigenspaces of the generator \mathcal{L} of a Markov semigroup $\left\{P_{t}\right\}$ - whenever some form of the Carbery-Wright inequality is available (some log-concave case, for instance).

REMARKS

* Of course, by Pinsker inequality, the above statement translates into a bound on the total variation distance.
\star In Ledoux, Nourdin and Peccati (2015): extensions to random vectors living in the eigenspaces of the generator \mathcal{L} of a Markov semigroup $\left\{P_{t}\right\}$ - whenever some form of the Carbery-Wright inequality is available (some log-concave case, for instance).

An EXPLICIT EXAMPLE

Consider the sequence

$$
V_{n}:=\frac{1}{\sqrt{n}}\left(\sum_{k=1}^{n}\left(X_{k}^{2}-1\right), \sum_{k=1}^{n}\left(X_{k}^{3}-3 X_{k}\right)\right), \quad n \geq 1
$$

where the Gaussian sequence X_{k} has autocorrelation $\varrho(k) \sim|k|^{\alpha}$, for some $\alpha<-2 / 3$ (this corresponds to the increments of a fractional Brownian motion of Hurst index $H<2 / 3)$. Let $N \sim \mathcal{N}\left(0, \mathbb{I}_{2}\right)$.

Then, for a suitable constant $\sigma>0$,

An EXPLICIT EXAMPLE

Consider the sequence

$$
V_{n}:=\frac{1}{\sqrt{n}}\left(\sum_{k=1}^{n}\left(X_{k}^{2}-1\right), \sum_{k=1}^{n}\left(X_{k}^{3}-3 X_{k}\right)\right), \quad n \geq 1
$$

where the Gaussian sequence X_{k} has autocorrelation $\varrho(k) \sim|k|^{\alpha}$, for some $\alpha<-2 / 3$ (this corresponds to the increments of a fractional Brownian motion of Hurst index $H<2 / 3)$. Let $N \sim \mathcal{N}\left(0, \mathbb{I}_{2}\right)$.

Then, for a suitable constant $\sigma>0$,

$$
H\left(\sigma^{-1} V_{n} \| N\right), \mathbf{T V}\left(\sigma^{-1} V_{n}, N\right)^{2}=O(1) \frac{\log n}{n}
$$

Another Example

* Closed convex cone $C \subset \mathbb{R}^{d} ; g=d$-dimensional Gaussian vector; $\Pi_{C}(g)=$ metric projection of g onto C.

* Question (Amelunxen, Lotz, McCoy and Tropp, 2013; Compressed Sensing) : how far is the distribution of $\left\|\Pi_{C}(g)\right\|^{2}$ from that of a Gaussian random variable N?

Another Example

\star Closed convex cone $C \subset \mathbb{R}^{d} ; g=d$-dimensional Gaussian vector; $\Pi_{C}(g)=$ metric projection of g onto C.

^ Question (Amelunxen, Lotz, McCoy and Tropp, 2013; Compressed Sensing) : how far is the distribution of $\left\|\Pi_{C}(g)\right\|^{2}$ from that of a Gaussian random variable N?

Another Example

* The HSI inequality yields (under non-degeneracy): for large d,

$$
\operatorname{Ent}(N)-\operatorname{Ent}\left(\left\|\Pi_{C}(g)\right\|^{2}\right) \lesssim \frac{\log \delta}{\delta}
$$

where $\delta=\mathbb{E}\left(\left\|\Pi_{C}(g)\right\|^{2}\right)=$ 'statistical dimension' of the cone.

Another Example

* The HSI inequality yields (under non-degeneracy): for large d,

$$
\operatorname{Ent}(N)-\operatorname{Ent}\left(\left\|\Pi_{C}(g)\right\|^{2}\right) \lesssim \frac{\log \delta}{\delta}
$$

where $\delta=\mathbb{E}\left(\left\|\Pi_{C}(g)\right\|^{2}\right)=$ 'statistical dimension' of the cone.

THANK YOU FOR YOUR ATTENTION !

