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POINT PROCESSES

X locally compact metric space (serving as the state space of the
points), B(X ) Borel σ-field on X .

ΓX set of locally finite point configurations of X :

ΓX :={x ⊆ X : ♯(xK ) < ∞ ∀ relatively compact K ∈ B(X )}

where xK := x ∩ K . Here for any subset x ⊆ X , ♯(x) is the cardinality of
x, setting ♯(x) := ∞ if x is not finite. We endow ΓX with the vague
topology and denote by B(ΓX ) the Borel σ-field on ΓX .

A point process is a probability measure on (ΓX ,B(ΓX )).
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POINT PROCESSES WITH CONDITIONAL INTENSITY:
DEFINITION

We assume that the probability measure µ on (ΓX ,B(ΓX )) has
conditional (or Papangelou) intensity π, i.e. π : X × ΓX → [0,+∞] is a
measurable function such that∫

ΓX

∑
x∈x

φ(x ,x \ {x})µ(dx) =
∫
ΓX

∫
X
φ(x ,x)π(x ,x)σ(dx)µ(dx)

for functions φ(x ,x) which are non-negative, Papangelou (1974),
Georgii (1976), Nguyen and Zessin (1979). Here σ is a diffuse and
locally finite measure on (X ,B(X )).

µ is a Poisson process with intensity measure σ if and only if π ≡ 1.
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POINT PROCESSES WITH CONDITIONAL INTENSITY:
INTERPRETATION

The Papangelou intensity πx(x) has the following interpretation:
πx(x)σ(dx) is the infinitesimal probability of finding a point of the
process in the region dx around x , given that the point process agrees
with the configuration x outside dx .
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MAIN EXAMPLE: GIBBS POINT PROCESSES WITH PAIR

POTENTIAL

A pair potential is a function ϕ : Rd → R ∪ {+∞} such that
ϕ(x) = ϕ(−x). We define the relative energy of interaction between a
particle at x ∈ Rd \ x and the configuration x ∈ ΓRd by

E(x ,x) :=
{ ∑

y∈x ϕ(x − y) if
∑

y∈x |ϕ(x − y)| < ∞
+∞ otherwise.

µ on ΓRd is called Gibbs point process with activity z > 0 and pair
potential ϕ if it has Papangelou intensity of the form

πx(x) := z exp(−E(x ,x)) with reference measure dx .

Gs(z, ϕ) ̸= ∅ if ϕ is superstable, lower-regular and 1 − e−ϕ ∈ L1(Rd , dx),
Ruelle (1970). µ is called inhibitory if ϕ ≥ 0 and finite range if 1 − e−ϕ

has compact support.
Giovanni Luca Torrisi (CNR) Approximation of point processes May 2015 5 / 33



INNOVATION

We define the (raw) innovation as

δx(φ) :=
∑
x∈x

φ(x)−
∫

X
φ(x)πx(x)σ(dx)

for any measurable function φ : X → R for which |δx(φ)| < ∞ µ-a.s..
The innovation δ(φ) is well-defined for all φ ∈ L1(X ,E[πx ]σ(dx)). Here
E denotes the mean with respect to µ.

The innovation is used in spatial statistics e.g. to check the validity of a
point process model fitted to data, Baddeley, Møller and Pakes (2008).
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FINITE DIFFERENCE OPERATOR

We define the finite difference operator by

DxF (x) := F (x ∪ {x})− F (x), x ∈ X , x ∈ ΓX .

Here F : ΓX → R is a measurable function.
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WASSERSTEIN DISTANCE

Let F ∈ L1(ΓX , µ) and Z a standard normal random variable defined on
(Ω,F ,P). We denote by EP the mean with respect to P. The
Wasserstein distance between F and Z is

dW (F ,Z ) := sup
h∈Lip(1)

|E[h(F )]− EP [h(Z )]|,

where Lip(1) is the class of real-valued Lipschitz functions with
Lipschitz constant less than or equal to 1.
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GAUSSIAN APPROXIMATION: GENERAL BOUND

If µ has conditional intensity π and

φ ∈ L1,2(X ,E[πx ]σ(dx)),

then

dW (δ(φ),Z )

≤
√

2/π

√
1 − 2

∫
X
|φ(x)|2E[πx ]σ(dx) +

∫
X 2

|φ(x)φ(y)|2E[πxπy ]σ2(dxdy)

+ ∥φ∥3
L3(X ,E[πx ]σ(dx)) +

√
2/π

∫
X 2

|φ(x)φ(y)|E[|Dxπy |πx ]σ2(dxdy)

+ 2
∫

X 2
|φ(x)|2|φ(y)|E[|Dxπy |πx ]σ2(dxdy)

+

∫
X 3

|φ(x)φ(y)φ(w)|E[|Dxπy ||Dxπw |πx ]σ3(dxdydw).
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POISSON CASE

If µ is a Poisson process with mean measure σ and φ ∈ L1,2(X , σ),
then

dW (δ(φ),Z ) ≤ |1 − ∥φ∥2
L2(X ,σ)|+ ∥φ∥3

L3(X ,σ),

Peccati, Sole’, Taqqu and Utzet (2010).
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GIBBS CASE

If µ is a Gibbs point process with activity z > 0 and pair potential ϕ,
and φ ∈ L1,2(Rd ,E[πx ] dx), then

dW (δ(φ),Z )

≤
√

2/π

√
1 − 2

∫
Rd

|φ(x)|2E[πx ] dx +

∫
R2d

|φ(x)φ(y)|2E[πxπy ] dxdy

+ ∥φ∥3
L3(Rd ,E[πx ] dx) +

√
2/π

∫
R2d

|φ(x)φ(y)||1 − e−ϕ(y−x)|E[πxπy ] dxdy

+ 2
∫
R2d

|φ(x)|2|φ(y)||1 − e−ϕ(y−x)|E[πxπy ] dydx

+

∫
R3d

|φ(x)φ(y)φ(w)||1 − e−ϕ(y−x)||1 − e−ϕ(w−x)|E[πxπyπw ] dxdydw .
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AN EXPLICIT BOUND FOR S.I.F.R. GIBBS POINT

PROCESSES

Suppose µ stationary Gibbs point process with z > 0 and ϕ ≥ 0 with
compact support and φ ∈ L1,2(Rd , dx). Then, for any p′,q′,p′′,q′′ > 1
such that p′−1 + q′−1 = p′′−1 + q′′−1 = 1,

dW (δ(φ),Z ) ≤
√

2/π
√

1 − 2c1∥φ∥2
L2(Rd ,dx) + zc2∥φ∥4

L2(Rd ,dx) + c2A,

where

A :=∥φ∥3
L3(Rd ,dx) + z

√
2/π∥φ∥2

L2(Rd ,dx)∥1 − e−ϕ∥L1(Rd ,dx)

+ 2z∥φ2∥Lp′ (Rd ,dx)∥φ∥Lq′ (Rd ,dx)∥1 − e−ϕ∥L1(Rd ,dx)

+ z2∥φ∥Lp′p′′ (Rd ,dx)∥φ∥Lp′q′′ (Rd ,dx)∥φ∥Lq′ (Rd ,dx)∥1 − e−ϕ∥2
L1(Rd ,dx)

and

c1 :=
z

1 + z∥1 − e−ϕ∥L1(Rd ,dx)
, c2 :=

z
2 − exp(−z∥1 − e−ϕ∥L1(Rd ,dx))

.
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EXAMPLE

Define

ϕ(x) := − log(1 − rd e′ρr (x)), r > 0, e′ < e, x ∈ Rd

where ρr (x) := r−dρ(x/r) is the classical mollifier, i.e.

ρ(x) := 1{∥x∥ ≤ 1}e(∥x∥2−1)−1
.

Then
∥1 − e−ϕ∥L1(Rd ,dx) = e′rd .
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EXAMPLE

Let µ be the Strauss process, i.e. take

ϕ(x) := (− log ν)1{∥x∥ ≤ r}, ν ∈ (0,1), r > 0, x ∈ Rd .

Then
∥1 − e−ϕ∥L1(Rd ,dx) = (1 − ν)αd rd ,

where αd denotes the volume of the unit ball of Rd .
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A QUANTITATIVE CLT FOR S.I.F.R. GIBBS POINT

PROCESSES

Assume µn, n ≥ 1, stationary Gibbs point process with zn > 0 and
ϕn ≥ 0 with compact support, zn → z > 0 and ∥1 − e−ϕn∥L1(Rd ,dx) → 0.
In addition, assume that {φn}n≥1 is a sequence of integrable and
square integrable functions such that, for some p′,q′,p′′,q′′ > 1 with
p′−1 + q′−1 = p′′−1 + q′′−1 = 1,

∥φn∥2
L2(Rd ,dx) → z−1, ∥φn∥L3(Rd ,dx) → 0

∥φ2
n∥Lp′ (Rd ,dx)∥φn∥Lq′ (Rd ,dx)∥1 − e−ϕn∥L1(Rd ,dx) → 0

∥φn∥Lp′p′′ (Rd ,dx)∥φn∥Lp′q′′ (Rd ,dx)∥φn∥Lq′ (Rd ,dx)∥1 − e−ϕn∥2
L1(Rd ,dx) → 0.

Then

dW (δ(n)(φn),Z ) ≤
√

2/π
√

1 − 2c(n)
1 ∥φn∥2

L2(Rd ,dx) + znc(n)
2 ∥φn∥4

L2(Rd ,dx)

+ c(n)
2 An → 0.
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EXAMPLE

{zn}n≥1 sequence of positive numbers converging to z > 0, ϕn, n ≥ 1,
mollifiers or Strauss with r = n−1, and

φn(x) := 1Kn(x)(zℓ(Kn))
−1/2, n ≥ 1, x ∈ Rd

ℓ Lebesgue measure, Kn ⊂ Rd with ℓ(Kn) → ∞. We have the
quantitative CLT

dW (δ(n)(φn),Z ) ≤
√

2/π
√

1 − 2z−1c(n)
1 + z−2znc(n)

2 + c(n)
2 An → 0

where

c(n)
1 = zn(1 + αznn−d)−1, c(n)

2 = zn(2 − e−αznn−d
)−1

and

An =z−3/2 ℓ(Kn)
− 1

2 + α(
√

2/πz−1 + 2z−3/2 ℓ(Kn)
− 1

2 )znn−d

+ α2z−3/2z2
n ℓ(Kn)

− 1
2 n−2d .
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EXAMPLE (CONTINUED)

If e.g. zn = z and ℓ(Kn) ∼ nd , elementary computations show that the
bound is asymptotically equivalent to(

1√
z
+

√
2αz
π

)
n−d/2
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PROOF OF THE EXPLICIT BOUND FOR S.I.F.R. GIBBS

POINT PROCESSES

By the general bound for Gibbs point processes we have

dW (δ(φ),Z )

≤
√

2/π
√

1 − 2E[π0]∥φ∥2
L2(Rd ,dx) + zE[π0]∥φ∥4

L2(Rd ,dx)

+ E[π0]∥φ∥3
L3(Rd ,dx) + z

√
2/πE[π0]∥|φ|(|φ| ∗ |1 − e−ϕ|)∥L1(Rd ,dx)

+ 2zE[π0]∥|φ|2(|φ| ∗ |1 − e−ϕ|)∥L1(Rd ,dx)

+ z2E[π0]∥|φ|(|φ| ∗ |1 − e−ϕ|)2∥L1(Rd ,dx).
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PROOF OF THE EXPLICIT BOUND FOR S.I.F.R. GIBBS

POINT PROCESSES (CONTINUED)

We conclude the proof using Hölder’s inequality,

∥f ∗ g∥Lp(Rd ,dx) ≤ ∥f∥L1(Rd ,dx)∥g∥Lp(Rd ,dx)

and that for s.i.f.r. Gibbs point processes one has the crucial estimates

c1 ≤ E[π0] ≤ c2,

Stucki and Schuhmacher (2014).
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INTEGRATION BY PARTS FORMULAS FOR POINT

PROCESSES

Peccati et al. (2010) used the IBP formula of the Malliavin calculus on
the Poisson space due to Nualart and Vives (1990).

In Privault and T. (2013), for the purpose of probability approximation
of Poisson functionals, we proposed an IBP formula based on the
Clark-Ocone covariance representation.

I cite also the IBP formula on the Poisson space due to Albeverio,
Kondratiev and Röckner (1998) (construction of diffusion) and the one
in Privault and T. (2011), which holds for general finite point processes
(density estimation). These latter two formulas involve "gradients" and
"divergences" (very) different from those in Nualart and Vives (1990)
and are difficult to use for probability approximation.
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PROOF OF THE GENERAL BOUND: THE INTEGRATION BY

PARTS FORMULA

For all F : ΓX → R and φ : X → R such that∫
X
|φ(x)|E[πx ]σ(dx) < ∞

and∫
X
|φ(x)|E[|DxFπx |]σ(dx) < ∞,

∫
X
|φ(x)|E[|F |πx ]σ(dx) < ∞,

we have

E
[∫

X
φ(x)DxFπx σ(dx)

]
= E[Fδ(φ)].
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PROOF OF THE GENERAL BOUND: THE INTEGRATION BY

PARTS FORMULA (CONTINUED)

The following "sample path" identity holds

δx(φDF ) = F (x)δx(φ)− δx(φF )−
∫

X
φ(x)DxF (x)πx(x)σ(dx),

where

δx(φDF ) :=
∑
x∈x

φ(x)DxF (x \ {x})−
∫

X
φ(x)DxF (x)πx(x)σ(dx)

and the term δx(φF ) is defined similarly. The claim follows taking the
mean.
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PROOF OF THE GENERAL BOUND: THE STEIN METHOD

It is known that by the Stein equation, for any F ∈ L1(ΓX , µ), one has

dW (F ,Z ) ≤ sup
f∈FW

|E[f ′(F )− Ff (F )]|,

where FW denotes the class of twice differentiable functions f such
that

∥f∥∞ ≤ 2, ∥f ′∥∞ ≤
√

2/π, ∥f ′′∥∞ ≤ 2.
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PROOF OF THE GENERAL BOUND: MALLIAVIN MEETS

STEIN

Take F = δ(φ), f ∈ FW . Following Peccati et al. (2010), we deduce

|E[f ′(δ(φ))− δ(φ)f (δ(φ))]|

=
∣∣∣E [f ′(δ(φ))− ∫

X
φxDx f (δ(φ))πx σ(dx)

] ∣∣∣
=
∣∣∣E [f ′(δ(φ))− ∫

X
φ(x)

(
f ′(δ(φ))Dxδ(φ) + R(Dxδ(φ))

)
πx σ(dx)

] ∣∣∣
≤
√

2/πE
[∣∣∣1 −

∫
X
φ(x)Dxδ(φ)πx σ(dx)

∣∣∣]
+ E

[∫
X
|φ(x)||Dxδ(φ)|2πx σ(dx)

]
.
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CONCLUSION OF THE PROOF OF THE GENERAL BOUND

Taking the supremum over f , we have

dW (δ(φ),Z ) ≤
√

2/πE
[∣∣∣1 −

∫
X
φ(x)Dxδ(φ)πx σ(dx)

∣∣∣]
+ E

[∫
X
|φ(x)||Dxδ(φ)|2πx σ(dx)

]
.
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TOTAL VARIATION DISTANCE

Take F : ΓX → N and let Po(λ) be a Poisson random variable with
mean λ > 0 defined on the probability space (Ω,F ,P). The total
variation distance between F and Po(λ) is defined by

dTV (F ,Po(λ)) := sup
A⊆N

|µ(F ∈ A)− P(Po(λ) ∈ A)|.
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POISSON APPROXIMATION: GENERAL BOUND

Assume φ : X → N such that∫
X
φ(x)E[πx ]σ(dx) < ∞

and set Nx(φ) :=
∑

x∈x φ(x). Then

dTV (N(φ),Po(λ)) ≤ 1 − e−λ

λ

∫
X
φ(x)(φ(x)− 1)E[πx ]σ(dx)

+
1 − e−λ

λ2

∫
X
(φ(x))2(φ(x)− 1)E[πx ]σ(dx)

+ min

(
1,

√
2
λe

)√∫
X 2

φ(x)φ(y)(E[πxπy ]− E[πx ]E[πy ])σ(dx)σ(dy)

where
λ := E[N(φ)] =

∫
X
φ(x)E[πx ]σ(dx).

Giovanni Luca Torrisi (CNR) Approximation of point processes May 2015 27 / 33



POISSON CASE

If µ is a Poisson process with mean measure σ and φ ∈ L1(X , σ) and
N-valued, then

dTV (N(φ),Po(λ)) ≤ 1 − e−λ

λ

∫
X
φ(x)(φ(x)− 1)σ(dx)

+
1 − e−λ

λ2

∫
X
(φ(x))2(φ(x)− 1)σ(dx),

where
λ :=

∫
X
φ(x)σ(dx),

Peccati (2011).
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AN EXPLICIT BOUND FOR S.I.F.R. GIBBS POINT

PROCESSES

µ stationary Gibbs point process with z > 0 and ϕ ≥ 0 with compact
support. Suppose φ ∈ L1(Rd , dx) and N-valued. Then, for any
c ∈ [c1, c2],

dTV (N(φ),Po(c∥φ∥1)) ≤ B(1 − e−∥φ∥1c2) + C

(
1 − e−∥φ∥1c2

c1

)

+ ∥φ∥1 min

(
1,

√
2

∥φ∥1c1e

)√
zc2 − (c1)2 + ∥φ∥1(c2 − c1),

where B := ∥φ∥−1
1 ∥φ(φ− 1)∥1, C := ∥φ∥−2

1 ∥φ2(φ− 1)∥1 and c1, c2 are
as above.
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A QUANTITATIVE POISSON LIMIT THEOREM FOR S.I.F.R.
GIBBS POINT PROCESSES

Assume µn, n ≥ 1, stationary Gibbs with zn > 0 and ϕn ≥ 0 with
compact support, zn → z > 0, ∥1 − e−ϕn∥L1(Rd ,dx) → 0. Assume
{φn}n≥1 N-valued and integrable functions such that

max{∥φn∥1, ∥φn∥2
2, ∥φn∥3

3} → γ ∈ (0,∞).

Then

dTV (N(n)(φn),Po(zγ)) ≤ Bn(1 − e−∥φn∥1c(n)
2 ) + Cn

(
1 − e−∥φn∥1c(n)

2

c(n)
1

)

+ ∥φn∥1 min

(
1,

√
2

c(n)
1 ∥φn∥1e

)√
znc(n)

2 − (c(n)
1 )2 + ∥φn∥1(c

(n)
2 − c(n)

1 )

+ max
{
|zγ − c(n)

1 ∥φn∥1|, |zγ − c(n)
2 ∥φn∥1|

}
→ 0.
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EXAMPLE

{zn}n≥1 sequence of positive numbers converging to z > 0, ϕn, n ≥ 1,
mollifiers or Strauss with r = n−1, and

φn(x) := 1Kn(x), n ≥ 1, x ∈ Rd

Kn ⊂ Rd with ℓ(Kn) → γ > 0, ℓ Lebesgue measure. We have the
quantitative Poisson Limit Theorem

dTV (N(n)(1Kn),Po(zγ)) ≤ ℓ(Kn)min

(
1,

√
2

c(n)
1 ℓ(Kn)e

)√
znc(n)

2 − (c(n)
1 )2

+ ℓ(Kn)(c
(n)
2 − c(n)

1 ) + max
{
|zγ − c(n)

1 ℓ(Kn)|, |zγ − c(n)
2 ℓ(Kn)|

}
→ 0.
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EXAMPLE (CONTINUED)

If e.g. zn = z and ℓ(Kn) ∼ γ + n−d , elementary computations show that
the bound is asymptotically equivalent to

γ
√
αz3 min

(
1,

√
2

γez

)
n−d/2.
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MANY, MANY THANKS!
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