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N
POINT PROCESSES

X locally compact metric space (serving as the state space of the
points), B(X) Borel o-field on X.

I'x set of locally finite point configurations of X:

Mx:={x C X:#(xx) < oo V relatively compact K € B(X)}
where Xk := XN K. Here for any subset x C X, #(x) is the cardinality of
X, setting f(x) := oo if x is not finite. We endow I x with the vague

topology and denote by B(I x) the Borel o-field on I'x.

A point process is a probability measure on (I'x, B(I'x)).
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POINT PROCESSES WITH CONDITIONAL INTENSITY:
DEFINITION

We assume that the probability measure 1 on (I'x, B(I'x)) has
conditional (or Papangelou) intensity 7, i.e. 7 : X x 'x — [0, +oc] is a
measurable function such that

/Z@XX\{X} (dx) // (x,X) w(x, X)or(dx)(dx)

F'x xex

for functions ¢(x, x) which are non-negative, Papangelou (1974),
Georgii (1976), Nguyen and Zessin (1979). Here ¢ is a diffuse and
locally finite measure on (X, B(X)).

w is a Poisson process with intensity measure ¢ if and only if 7 = 1.
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POINT PROCESSES WITH CONDITIONAL INTENSITY:
INTERPRETATION

The Papangelou intensity 7x(x) has the following interpretation:

7x(X) o(dx) is the infinitesimal probability of finding a point of the
process in the region dx around x, given that the point process agrees
with the configuration x outside dx.
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MAIN EXAMPLE: GIBBS POINT PROCESSES WITH PAIR
POTENTIAL

A pair potential is a function ¢ : RY — R U {+oc} such that
#(x) = ¢(—x). We define the relative energy of interaction between a
particle at x € R \ x and the configuration X € I'za by

E(X,X) = { —%oyoe)((b(x_y) if Zyex’¢(X_Y)’ < 00

otherwise.

won Iy is called Gibbs point process with activity z > 0 and pair
potential ¢ if it has Papangelou intensity of the form

x(X) ;= zexp(—E(x,x)) with reference measure dx.

Gs(z,4) # 0 if ¢ is superstable, lower-regular and 1 —e~? € L'(RY, dx),
Ruelle (1970). 1 is called inhibitory if ¢ > 0 and finite range if 1 —e~?
has compact support.
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|
INNOVATION

We define the (raw) innovation as
=Y w0) — [ om0 a(an
xXex

for any measurable function ¢ : X — R for which |dx(¢)| < oo p-a.s..
The innovation §(y) is well-defined for all » € L' (X, E[rx]o(dx)). Here
E denotes the mean with respect to .

The innovation is used in spatial statistics e.g. to check the validity of a
point process model fitted to data, Baddeley, Mgller and Pakes (2008).
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o
FINITE DIFFERENCE OPERATOR

We define the finite difference operator by
DyF(x) := F(xU{x})— F(x), xeX,xeTly.

Here F : 'y — R is a measurable function.
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N
WASSERSTEIN DISTANCE

Let F € L'(T'x, ) and Z a standard normal random variable defined on
(Q, F, P). We denote by Ep the mean with respect to P. The
Wasserstein distance between F and Z is

dw(F,2) = , SLlJF(>1) [E[h(F)] — Ep[A(Z)]I,
cLip

where Lip(1) is the class of real-valued Lipschitz functions with
Lipschitz constant less than or equal to 1.
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o
GAUSSIAN APPROXIMATION: GENERAL BOUND

If . has conditional intensity = and

¢ € L"2(X,E[ry] 0(dx)),

then

dw(5(), 2)

<\/2/7r¢ p / [p(X) 2E[m] o (dx) + / P(X)e(y)2E[mny] oa(dxdy)
10l eimgotoo + V2T [ [0 EDsmy me oa(axay)

12 / (X)) [E[| Dy ] o2(dxdy)
/ 2(X)2(y) o (W) [E[| Dyry || Dl ma] o3(dxdydw).
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|
POISSON CASE

If 1. is a Poisson process with mean measure o and ¢ € L'?(X, o),
then

dw(5(¢), Z) < 11 = 1@l Z2(x oy + 1911330 x 0
Peccati, Sole’, Tagqu and Utzet (2010).
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N
GIBBS CASE

If 1 is a Gibbs point process with activity z > 0 and pair potential ¢,
and ¢ € L'2(RY E[ry] dx), then

dw(4(#), Z)
< \/2/77\/1 —2/ |o(X)[PE[m] dx+/ |o(X)(y)[PE[mxmy] dxdy
+ ||90HL3 RY,E[my] dx) + 4/ 2/7‘(’/ H‘] — e*(b(y X) ‘E[ﬂ' 7_[_y] dxdy

2 [ eGPl — = PlEfrem, dyox

+ / () (V) p(W)|[1 — e V9|1 — e~ *" N |E[memyma] dxdydw.
R3d
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AN EXPLICIT BOUND FOR S.I.F.R. GIBBS POINT
PROCESSES

Suppose 1 stationary Gibbs point process with z > 0 and ¢ > 0 with
compact support and ¢ € L"?(R9, dx). Then, forany p’, ¢, p", q" > 1
such that p,_1 + q’—1 — p//—1 + q//_1 —1,

dw(8(¢). 2) < 2/ [1 = 201 |0l g 40y + 202020 40) + C2A,
where
A =l 0|3aza 4y + 2V 2/ 0122 e gy 1T = €11
+ 22H4P2HLP’(Rd,dx) H‘P”Lq’(Rd,dx) 11 =21 (RY,dx)

2 —¢ 2
+Zz ”SOHLp’p”(Ridx)||90HLp’q”(Rd7dx)”S"HLq’(Rd,dx)”1 —¢€ ¢||L1(Rd,dx)

and
C z o, z
1 = — o 1= — .
T4+ 2|[1 —e 21 mroax) 2 —exp(—2z[1 — (|11 (o ax))
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N
EXAMPLE

Define
d(x) == —log(1 — r9'p,(x)), r>0,¢ <e, xR
where p,(x) := r—9p(x/r) is the classical mollifier, i.e.
p(x) = 1{||x|| < 130",

Then

- d
1—e ¢HL1(Rd,dx) =e'rf.
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N
EXAMPLE

Let i be the Strauss process, i.e. take
o(x) = (~logw)1{||x| < r}, ve€(0,1),r>0,x R

Then

11— e_(bHL‘(Rd,dx) =(1- V)Oédfd,

where a4 denotes the volume of the unit ball of RY.
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A QUANTITATIVE CLT FOR S.I.F.R. GIBBS POINT
PROCESSES

Assume up, n > 1, stationary Gibbs point process with z, > 0 and
#n > 0 with compact support, z, — z > 0 and |1 — e~ (9, ax) — 0

In addition, assume that {¢s},>1 iS @ sequence of integrable and
square integrable functions such that, for some p/, q’, p”, q” > 1 with
p/—1 4 q/—1 — p//—1 4 q//—1 =1

2 —1
lenllizgaaxy =25 llenlls@eay — 0
2 —&n
H%DnHLp/(Rd,dx)||80nHLq/(]Rd7dx)||1 —e HL‘(Rd,dx) —0

—én112
H@nHLp/p”(Rd@x)||80nHLp’q"(Rd7dx)”SOHHLq’(Rd,dx)H‘I —e? HU(Rd,dx) — 0.
Then

Al e0), 2) <V [1 - 267 ol gy + 2068 ol

n
+ cé )An — 0.
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N
EXAMPLE

{zn}n>1 sequence of positive numbers converging to z > 0, ¢p, n > 1,
mollifiers or Strauss with r = n~1, and
on(X) =1k, (X)(20(Kn)) "2, n>1,xeR?

¢ Lebesgue measure, K, ¢ R with ((Kp) — oco. We have the
quantitative CLT

dw (5 (pn), 2) < \/2/7r\/ 1-2216" 4 z-22,¢{" + " A, — 0

where

A = zy(1 +azan )1, G = zy(2 — ez )

and
An =232 0(Kp) "2 + a(\/2/nz " + 22732 0(Ky) " 2)zon™?

+a2z73/222 )(K,)"zn2¢.
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-
EXAMPLE (CONTINUED)

If e.9. z» = z and ¢(K,) ~ n°, elementary computations show that the
bound is asymptotically equivalent to

(G ) e
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PROOF OF THE EXPLICIT BOUND FOR S.I.F.R. GIBBS
POINT PROCESSES

By the general bound for Gibbs point processes we have

dw(6(¢),2)

< V2/m\ /1 2B[mo] 912, 50 gy + ZElmol ]2 g gy
+ Elmollle sz ax + 2v/2/7Elmo] |l [1 = s e axy
+ 22E[mo]lllpl* (o] * 1 = =)l 112
+ 22B[mo] i l(lel * 11 = €)1 o )
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PROOF OF THE EXPLICIT BOUND FOR S.I.F.R. GIBBS
POINT PROCESSES (CONTINUED)

We conclude the proof using Hélder’s inequality,

1% 9l ore,axy < 1]l 1 (re,ax) 19| Lo(re ax)
and that for s.i.f.r. Gibbs point processes one has the crucial estimates
¢y < E[m] < o,

Stucki and Schuhmacher (2014).
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INTEGRATION BY PARTS FORMULAS FOR POINT
PROCESSES

Peccati et al. (2010) used the IBP formula of the Malliavin calculus on
the Poisson space due to Nualart and Vives (1990).

In Privault and T. (2013), for the purpose of probability approximation
of Poisson functionals, we proposed an IBP formula based on the
Clark-Ocone covariance representation.

| cite also the IBP formula on the Poisson space due to Albeverio,
Kondratiev and Réckner (1998) (construction of diffusion) and the one
in Privault and T. (2011), which holds for general finite point processes
(density estimation). These latter two formulas involve "gradients" and
"divergences" (very) different from those in Nualart and Vives (1990)
and are difficult to use for probability approximation.
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PROOF OF THE GENERAL BOUND: THE INTEGRATION BY
PARTS FORMULA

Forall F:Tx — Rand ¢ : X — R such that
[ Ie0fEm o(@0) < o0
and

/ P(X)[E[| Dy Fry] o(dx) < oo, / (X)ElIF|me] o (dX) < o,
X X

we have

E| [ o(x)DyFryo(dx)| = E[Fé(p)].
J |
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PROOF OF THE GENERAL BOUND: THE INTEGRATION BY
PARTS FORMULA (CONTINUED)

The following "sample path" identity holds

5e(2DF) = F(X)3x(9) — ox(F) — /X () Dy F (X (X) o (dx).

where

5x(9DF) = 3" p(X)DF(x\ {x}) - / () Dy F(X) (%) ()

xex

and the term dx(¢F) is defined similarly. The claim follows taking the
mean.
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o
PROOF OF THE GENERAL BOUND: THE STEIN METHOD

It is known that by the Stein equation, for any F € L'(I'x, 1), one has

dw(F,Z) < sup [E[f'(F) — FI(F)]|,
feFw

where F denotes the class of twice differentiable functions f such
that
Ifllo <2, f'llec < v2/7, [[f']le <2.
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PROOF OF THE GENERAL BOUND: MALLIAVIN MEETS
STEIN

Take F = (y), f € Fw. Following Peccati et al. (2010), we deduce
E[f'(3()) — o()F(3())]|
~ [ 1160 - [ oxDuttate)mea(an)]|

= [E |#(56eD) = [ ) (F6() D) + A1) a(dx>M
< \/2/rE U /X X)Dy(p )TrXa(dX)”
+ 2| [ 101D Prco(an)]
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o
CONCLUSION OF THE PROOF OF THE GENERAL BOUND

Taking the supremum over f, we have
w(3(¢).2) < V2/E |1~ [ o(DestImatan)|

+E| [ 101D Prco(n)
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TOTAL VARIATION DISTANCE

Take F : Tx — N and let Po()\) be a Poisson random variable with
mean A\ > 0 defined on the probability space (€2, F, P). The total
variation distance between F and Po(\) is defined by

dry(F, Po(\)) = Sp |u(F € A) — P(Po() € A)!
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o
POISSON APPROXIMATION: GENERAL BOUND

Assume ¢ : X — N such that

/X H(X)E[ry] o(dX) < 00
and set Ny(¢) := >, cx ©(x). Then

1—e?

drv(N(y), Po(})) < — /w(X)(w(X)—UE[Wx]U(dX)
X

1—e A

A2 /( (x) )2( (x) — 1)E[mx] o(dx)

+mm< >\/ | R Elmm] ~ ElrdElmy)) o(@x)(dy)

where

A= E[N(p)] = /X (X)Elm] o(dx).
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POISSON CASE

If .. is a Poisson process with mean measure o and ¢ € L'(X, o) and

N-valued, then

—e A
(NG, Po(V) < 5 [ ) (o(x) 1) o(ax)
X
1—e?
o [ (PL0P00 — 1))

where

= [ etatan),
X

Peccati (2011).
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AN EXPLICIT BOUND FOR S.I.F.R. GIBBS POINT
PROCESSES

1 stationary Gibbs point process with z > 0 and ¢ > 0 with compact

support. Suppose ¢ € L'(RY, dx) and N-valued. Then, for any
c € [cq,c),

C1

. 2
+ [l¢ll+ min (1, |<p||1c1e> \/ 462 — (€1)?+ llell1(c2 — ),

where B := |[oll; ' [le(e = 1)lli, C = llellyll¥?(» — 1)l and ¢y, ¢, are
as above.

drv(N(), Po(c|¢]1)) < B(1 — e llelhey 4 ¢ <HW>
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A QUANTITATIVE POISSON LIMIT THEOREM FOR S.I.F.R.
GIBBS POINT PROCESSES

Assume up, n > 1, stationary Gibbs with z, > 0 and ¢, > 0 with
compact support, z, — z > 0, |1 — e~ %"|| ;1(gd 45) — 0. Assume
{¢n}n>1 N-valued and integrable functions such that

max{||nll1, [l¢nll3, [l¢nl3} = v € (0,00).
Then

¢ — e lleallicd”
Iy (N (), Pol23) < By(1 — e Ienlhel”) 4 G, (16()>
G

. 2
ci llenllie

+max{|zy - & |gnllil, 127 = & palls] } = 0.
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N
EXAMPLE

{zn}n>1 sequence of positive numbers converging to z > 0, ¢p, n > 1,
mollifiers or Strauss with r = n~', and

on(X) =1k (x), n>1,xeR?

K, ¢ RY with ¢(Kp,) — v > 0, ¢ Lebesgue measure. We have the
quantitative Poisson Limit Theorem

2
drv(NM (1), Po(z7)) < ((Kp)min [ 1, | ————— | \/zacl” — (c{™)2
P IN® (1), Po(27) < Ky ) V@

+0(Kn)(cS™ = &™) + max {|ny — MKy, |2y — cg”)e(K,,n} 0.
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-
EXAMPLE (CONTINUED)

If e.9. zn = zand ((Kp) ~ v+ n~9, elementary computations show that
the bound is asymptotically equivalent to

vV az® min (1, 2) n—9/2,
\/ ez
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MANY, MANY THANKS!

Giovanni Luca Torrisi (CNR) Approximation of point prc May 2015 33/33




