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Stein’s method: If F is a square
integrable real-valued random variable
such that E[F ] = 0 and if N ∼ N(0, 1),
then

dTV (F,N) ≤ sup
φ
|E[φ′(F )]− E[Fφ(F )]|,

where the supremum runs over all C1

functions φ : R→ R with ‖φ′‖∞ ≤ 2.



Steiner formula: if K ⊂ Rd is a convex body, then

Vol(x ∈ Rd : dist2(x,K) ≤ λ) =
d∑

k=0

λd−k Vol(Bd−j)Vk(K).



- Let x0 ∈ Rd be unknown, where d is meant to be large (d = 100,
d = 1000, d = 106, etc.)

Problem: We want to acquire x0 with the smallest possible
number of linear measurements.



- Let x0 ∈ Rd be unknown, where d is meant to be large (d = 100,
d = 1000, d = 106, etc.)

Problem: We want to acquire x0 with the smallest possible
number of linear measurements.

- One makes m linear measurements of x0: 〈a1, x0〉, . . . , 〈am, x0〉.

That is, one observes Ax0 ∈ Rm, where A =

 a1
...
am

 ∈ Rm×d.

Notations that will be used throughout the talk:

- d is the ambient dimension

- m is the number of measurements

- A ∈ Rm×d is the measurement matrix



Problem: “I give you A and y = Ax0. From this, are you able to
recover x0?”.
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Problem: “I give you A and y = Ax0. From this, are you able to
recover x0?”.

If m ≥ d, it is a determined system, and it is easy.

If m < d, it is an undetermined system, so there is no hope to
provide a positive answer.



Extra assumption: x0 is s-sparse, that is, at most s of its entries
are nonzero. (But, of course, we don’t know which ones!)

Questions:

- is such an assumption realistic in practice?

- what is the gain of doing such an assumption?



Example 1: pictures taken with smartphones

- Assume x0 encodes a picture of size n × m, e.g. n = 2592,
m = 1944 ⇒ d = 5 038 848

- Each entry of x0 has a value between
0 (black) and 15 (white), depending
on the luminosity at the corresponding
pixel

- x0 itself is not sparse. But the vec-
tor of differences between adjacent el-
ements of x0 is 416 686-sparse (≈ 8%).



Example 2: Medical Resonance Imagery

Example 3: Seismology

Example 4: High-resolution radar

Example 5: Analog-to-digital converters
.......
....
..



Extra assumption: x0 is s-sparse, that is, at most s of its entries
are nonzero. (But, of course, we don’t know which ones!)

Questions:

- is such an assumption realistic in practice? YES

- what is the gain of doing such an assumption?



What is the gain of assuming sparsity?

- E. Candès, J. Romberg, and T. Tao. “Robust Uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information.” IEEE Trans. Information Theory, 2006

- D. Donoho. “Compressed sensing.” IEEE Trans. Information
Theory, 2006



To recover x0 ∈ Rd from A ∈ Rm×d and Ax0 ∈ Rm, let us consider
a minimization problem. The following one is, at first glance,
the most natural to consider:

(P0) : min
x
‖x‖0 subject to Ax = Ax0,

where ‖x‖0 is the cardinality of the support of x.

Question: Is x0 the unique solution to (P0)?

Answer: Yes, provided that m ≥ 2s (and that easy-to-check
conditions on A are satisfied)



So, is the problem (already) over?

- In order to solve (P0), we have to consider all the possible
supports for x0 and then to solve the corresponding systems.

- For instance, suppose that d = 1000 and s = 10. We have
to solve

(
1000

10

)
≥ 1020 linear systems of size 10 × 10. Each such

system can be solved in 10−10 seconds. Then, the time required
to solve (P0) is around 1010 seconds, i.e., more than...



So, is the problem (already) over?

- In order to solve (P0), we have to consider all the possible
supports for x0 and then to solve the corresponding systems.

- For instance, suppose that d = 1000 and s = 10. We have
to solve

(
1000

10

)
≥ 1020 linear systems of size 10 × 10. Each such

system can be solved in 10−10 seconds. Then, the time required
to solve (P0) is around 1010 seconds, i.e., more than... 300 years!



- What is easy and quick, contrary to (P0), is to solve

(P2) : min
x
‖x‖2 subject to Ax = Ax0.

- Indeed (least square method): one can check that the solution
of (P2) is explicitely given by x = AT (AAT )−1Ax0.



Unfortunately, especially in high dimension, the solution x of (P2)
is likely to be very far away from the expected solution x0.

So, despite being easy to implement, this approach is of no help
to solve our problem.



As we will see in a minute, it turns out that a much better idea
is to use the `1 norm, that is, to consider

(P1) : min
x
‖x‖1 subject to Ax = Ax0.

Nota: the simplex algorithm, which is quick and efficient, allows
to solve (P1) in practice.



Why does `1-norm sound like a more reasonable candidate?



A famous and representative result in the theory of compressed
sensing is the following theorem (or “how to solve a deterministic
problem by introducing randomness”)

Theorem (à la Candès, Romberg and Tao). Assume that the
number of measurements m satisfies m ≥ 2βs log d + s, where
β > 1 is fixed. Assume that A ∈ Rm×d is Gaussian. Finally, let x0

be an s-sparse vector of Rd. Then, with probability at least

1−
2

df(β,s)
,

one has that x0 is the unique minimizer to the program

(P1) : min
x
‖x‖1 subject to Ax = Ax0.

The fonction f is given by f(β, s) =
[√

β
2s + β −

√
β
2s

]2
. It is increasing

in s (for fixed β) and in β (for fixed s).



A classical experiment (following Donoho and Tanner)

- Fix a large d, say d = 100.

- Consider a pair (s,m) ∈ {1, . . . , d}2 (the values for s and m will
then vary).

- Pick a s-sparse vector x0 ∈ Rd at random.

- Compute Ax0 with A ∈ Rm×d a random Gaussian matrix. Apply
the simplex algorithm. If you (don’t) get x0, then consider it is
a success (failure).

- For each possible value of s and m, repeat this experiment 10
times, and color the point of coordinates (s,m) with the rule:

10 successes → • . . . 5 successes → • . . . no success → •



One observes a strong phase transition. The equation for the
boundary is very close to m = s log(d/s) + s.



In order to understand this threshold phenomenon, we will ana-
lyze it in a more general framework, following the two references:

- D. Amelunxen, M. Lotz, M.B. McCoy, and J.A. Tropp. ”Living on the
edge: phase transitions in convex programs with random data.” Inform.
Inference, to appear.

- M.B. McCoy and J.A. Tropp. “From Steiner formulas for cones to
concentration of intrinsic volumes” . Discrete Comput. Geom., 2014.



Let x0 ∈ Rd, let f : Rd → R ∪ {+∞} be a convex function, let A ∈
Rm×d be a Gaussian matrix, and let us consider the minimization
problem:

(P ) : min
x
f(x) subject to Ax = Ax0.

Goal: We want to compute P (x0 is the unique solution of (P)).



Definition. The descent cone of f at x0 is the cone generated
by the perturbations of f at x0 that do not increase f :

D(f, x0) = {y ∈ Rd : ∃τ > 0 s.t. f(x0 + τy) ≤ f(x0)}.



Fact 1. One has that x0 is the unique solution to (P ) if and
only if D(f, x0) ∩ null(A) = {0}. (nullA = kerA)

Fact 2. Since A is Gaussian, its law is invariant by any orthogo-
nal transformation. As a result, null(A) is distributed as QLd−m,
where Q is chosen at random in O(d) and Ld−m ⊂ Rd stands for
any (fixed) subspace of dimension d−m.



As a consequence of these two facts, we have that

P (x0 is the unique solution of (P)) = P (C ∩QLd−m = {0}) .

where C is the descent cone of f at x0, Ld−m ⊂ Rd is a (fixed)
subspace of dimension d−m, and Q is chosen at random in O(d)



The conic version of the Steiner formula reads as follows. If
C ⊂ Rd is a closed convex cone, then

Vol(x ∈ Sd−1 : dist2(x,C) ≤ λ) =
d∑

k=0

βk,d(λ) vk(C),

where βk,d(λ) is an (explicit) quantity only depending on λ (but
not on C).

The quantities {vk(C)}k=0,...,d are called the intrinsic volumes of
the cone C. They are positive and sum to 1.

Crofton’s formula. Provided C is not a subspace, one has

P (C ∩QLd−m 6= {0}) = 2
d∑

j=m+1
j−m−1 even

vj(C)

= 2vm+1(C) + 2vm+3(C) + . . . .



By playing a little bit with the Crofton’s formula, one can show
the ‘interlacing property’:

P (VC ≤ m− 1) ≤ P (C ∩QLd−m = {0}) ≤ P (VC ≤ m),

where the (abstract) random variable VC defined as

P (VC = k) = vk(C), k = 0, 1, . . . , d.

Thus: P (x0 is the unique solution of (P)) ≈ P (VC ≤ m) .



We are now left to study P (VC ≤ m). To do so, we shall rely on
a last and final ingredient, the Master Steiner Formula.

Master Steiner Formula (McCoy,
Tropp, 2013) Let ΠC : Rd → C be the
projection onto the closed convex cone
C. One has

‖ΠC(g)‖2 (law)
= χ2

VC
.

Corollary 1/Definition: The statistical dimension δC of a closed
convex cone C is defined as E[‖ΠC(g)‖2] = E[VC].

Corollary 2: E[eηVC ] = E[eξ‖ΠC(g)‖2
], with ξ = 1

2(1− e−2η).



An important consequence of Corollary 2 is the following.

If Cd is a sequence of closed convex cone of Rd such that E(VCd) =

δCd →∞ and lim inf Var(VCd)/δCd > 0 as d→∞, then

VCd − δCd√
Var(VCd)

→ N(0, 1) iff
‖ΠCd(g)‖2 − δCd√

Var(‖ΠCd(g)‖2)
→ N(0, 1).



Theorem (Goldstein, Nourdin, Peccati). Let x0 ∈ Rd, let f :

Rd → R be a convex function and let C = {y ∈ Rd : ∃τ >

0 such that f(x0 + τy) ≤ f(x0)} be the descent cone of f at x0.

Consider the minimization problem

(P ) : min
x
f(x) subject to Ax = Ax0,

where A ∈ Rm×d is Gaussian (all its entries are independent

N(0, 1) random variables) and where m = bδC + t
√

Var(VC)c, t ∈ R .

Suppose that E(VC) = δC →∞ and that lim inf Var(VC)/δC > 0 as
d→∞. Then, as d→∞,

P (x0 is the unique solution of (P))→
1√
2π

∫ t
−∞

e−
u2

2 du.



Reading the phase transition.

For instance, selecting m ≥ δC + 1.6
√

Var(VC),
one has

P (x0 is the unique solution of (P)) ≥ 0.95.

In contrast, for m ≤ δC − 1.6
√

Var(VC),

P (x0 is the unique solution of (P)) ≤ 0.05

(Remark: A crude bound is Var(VC) ≤ 2δC.)



Theorem (G.-N.-P., 2014): Let C be any closed convex cone
and let ΠC denote the projection onto C. One then has, with
N ∼ N(0, 1) and g ∼ N(0, Id),

dTV

 ‖ΠC(g)‖2 − δC√
Var(‖ΠC(g)‖2)

, N

 ≤ 8
√
δC
.


