Steining the Steiner formula
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Stein’'s method: If F is a square
integrable real-valued random variable
such that E[F] =0 and if N ~ N(0,1),
then

dry (F, N) < suP [E[¢'(F)] — E[F¢(F)]I,

where the supremum runs over all Ccl
functions ¢ : R — R with ||¢/||co < 2.



Steiner formula: if K ¢ R? is a convex body, then

d
Vol(z € RY : dist?(z, K) < A) = Y A*Vol(By_;) Vi(K).
k=0




- Let zg € R? be unknown, where d is meant to be large (d = 100,
d = 1000, d = 10°, etc.)

Problem: We want to acquire xg with the smallest possible
number of linear measurements.



- Let zg € R? be unknown, where d is meant to be large (d = 100,
d = 1000, d = 10°, etc.)

Problem: We want to acquire xg with the smallest possible
number of linear measurements.

- One makes m linear measurements of xq: (a1, zg),- - ., (am, xg)-
ai

That is, one observes Axg € R™, where A = : c RMmX*d,
am

Notations that will be used throughout the talk:

- d is the ambient dimension

- m is the number of measurements

- A e Rm™Xd is the measurement matrix




Problem: ‘T give you A and y = Axg. From this, are you able to
recover xg?".
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If m > d, it is a determined system, and it is easy.



Problem: ‘T give you A and y = Axg. From this, are you able to
recover xg?".

If m > d, it is a determined system, and it is easy.

If m < d, it is an undetermined system, so there is no hope to
provide a positive answer.



Extra assumption: zg is s-sparse, that is, at most s of its entries
are nonzero. (But, of course, we don't know which ones!)
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Questions:
- is such an assumption realistic in practice?

- what is the gain of doing such an assumption?



Example 1: pictures taken with smartphones

- Assume xzg encodes a picture of size n x m, e.g. n = 2592,

m = 1944 = d = 5038848

- Each entry of xg has a value between
0 (black) and 15 (white), depending
on the luminosity at the corresponding
pixel

- xqg itself is not sparse. But the vec-
tor of differences between adjacent el-
ements of xq is 416 686-sparse (=~ 8%).



Example 3: Seismology

Example 4: High-resolution radar

ny IN ADC our]|
Example 5: Analog-to-digital converters C




Extra assumption: zg is s-sparse, that is, at most s of its entries
are nonzero. (But, of course, we don't know which ones!)
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Questions:
- is such an assumption realistic in practice? YES

- what is the gain of doing such an assumption?



What is the gain of assuming sparsity?

- E. Candés, J. Romberg, and T. Tao. "Robust Uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information.” IEEE Trans. Information Theory, 2006

- D. Donoho. "“Compressed sensing.” IEEE Trans. Information
T heory, 2006



To recover zg € R? from A € R™%4 and Axzg € R™, let us consider
a minimization problem. The following one is, at first glance,
the most natural to consider:

(Pp) : min |z|lo subject to Ax = Axy,

where ||z||g is the cardinality of the support of =.

Question: Is zg the unique solution to (Fy)?

Answer: Yes, provided that m > 2s (and that easy-to-check
conditions on A are satisfied)




So, is the problem (already) over?

- In order to solve (FPj), we have to consider all the possible
supports for g and then to solve the corresponding systems.

- For instance, suppose that d = 1000 and s = 10. We have

to solve (1(1)80> > 1020 linear systems of size 10 x 10. Each such

system can be solved in 10710 seconds. Then, the time required
to solve (P,) is around 100 seconds, i.e., more than...



So, is the problem (already) over?

- In order to solve (FPj), we have to consider all the possible
supports for g and then to solve the corresponding systems.

- For instance, suppose that d = 1000 and s = 10. We have

to solve (1(1)80> > 1020 linear systems of size 10 x 10. Each such

system can be solved in 10710 seconds. Then, the time required
to solve (P,) is around 1019 seconds, i.e., more than... 300 years!



- What is easy and quick, contrary to (Fp), is to solve

(P) : min |z|[> subject to Az = Axy.

- Indeed (least square method): one can check that the solution
of (P,) is explicitely given by z = AT(AAT)~1 Ax,.




Unfortunately, especially in high dimension, the solution = of (P5)
is likely to be very far away from the expected solution zg.

So, despite being easy to implement, this approach is of no help
to solve our problem.




As we will see in a minute, it turns out that a much better idea
is to use the /1 norm, that is, to consider

(P1) : min |z||1 subject to Ax = Axy.

Nota: the simplex algorithm, which is quick and efficient, allows
to solve (Pp) in practice.



Why does /i-norm sound like a more reasonable candidate?

N



A famous and representative result in the theory of compressed
sensing is the following theorem (or “how to solve a deterministic
problem by introducing randomness")

Theorem (3 la Candés, Romberg and Tao). Assume that the
number of measurements m satisfies m > 28slogd + s, where
B> 1is fixed. Assume that A € R™*4 is Gaussian. Finally, let z
be an s-sparse vector of R%. Then, with probability at least

2
df(B,s)’
one has that xg is the unigue minimizer to the program

1

(P1) : min |z|[1 subject to Az = Axy.

2
The fonction f is given by f(3,s) = [\/2’% + B — \/zzé] . Itisincreasing

in s (for fixed B8) and in B (for fixed s).



A classical experiment (following Donoho and Tanner)
- Fix a large d, say d = 100.

- Consider a pair (s,m) € {1,...,d}* (the values for s and m will
then vary).

- Pick a s-sparse vector zg € R? at random.

- Compute Azg with A € R™*4 3 random Gaussian matrix. Apply
the simplex algorithm. If you (don’'t) get zg, then consider it is
a success (failure).

- For each possible value of s and m, repeat this experiment 10
times, and color the point of coordinates (s, m) with the rule:

10 successes — ... bsuccesses — e ... nNO sSUCCeSS — o



number of Gaussian measurements

m=
8

s = number of nonzeros in X

One observes a strong phase transition. The equation for the
boundary is very close to m = slog(d/s) + s.



In order to understand this threshold phenomenon, we will ana-
lyze it in @ more general framework, following the two references:

- D. Amelunxen, M. Lotz, M.B. McCoy, and J.A. Tropp. "Living on the
edge: phase transitions in convex programs with random data.” Inform.
Inference, to appear.

- M.B. McCoy and J.A. Tropp. “From Steiner formulas for cones to
concentration of intrinsic volumes’’. Discrete Comput. Geom., 2014.



Let g € R?, let f:R? - RU {400} be a convex function, let A €
R™*Xd he a Gaussian matrix, and let us consider the minimization

problem:

(P) : min f(x) subject to Ax = Axy.

Goal: We want to compute P(zq is the unique solution of (P)).



Definition. The descent cone of f at xzg is the cone generated
by the perturbations of f at xg that do not increase f:

D(f,z0) ={y €RY: Ir >0 s.t. f(zo+7y) < f(=0)}-

X0

{x: f(x) = f(x0)}

x0+@(f;x0)



Fact 1. One has that zqg is the unique solution to (P) if and
only if D(f,xzg) Nnull(A) ={0}. (nullA = kerA)

xo +null(A) Xxo +null(A)

{x: f(x) = f(x)}

xo+2(f,x0) X0+ 2(f,x0)

Fact 2. Since A is Gaussian, its law is invariant by any orthogo-
nal transformation. As a result, null(A) is distributed as QL4_,,,,
where Q is chosen at random in O(d) and L,_,, C R stands for
any (fixed) subspace of dimension d — m.



As a consequence of these two facts, we have that

P(xq is the unique solution of (P)) = P(CNQL4_,, ={0})|

where C is the descent cone of f at zg, Ly_,, C R? is a (fixed)
subspace of dimension d —m, and @ is chosen at random in O(d)



The conic version of the Steiner formula reads as follows. If
C C R% is a closed convex cone, then

d
Vol(z € S™ 1 : dist?(z,C) < A\) = Y Br.a(N) vi(C),
k=0

where Bk,d(A) is an (explicit) quantity only depending on X\ (but
not on O).

The quantities {vi(C)}r—o,.. . 4 are called the intrinsic volumes of
the cone C. They are positive and sum to 1.

Crofton’s formula. Provided C is not a subspace, one has

d
P(CNQLLm#{0}) =2 Y 4(C)

Jg=m+1
j—m—1 even

= 20,41(C) + 20743(C) + ...



By playing a little bit with the Crofton’s formula, one can show
the ‘interlacing property’:

P(Vo <m—1) < P(CNQLg_, ={0}) < P(Vo < m),
where the (abstract) random variable V- defined as

P(Vo=k)=v,(C), k=0,1,...,d.

Thus: | P(xq is the unique solution of (P)) =~ P(Vgo < m)|




We are now left to study P(Vo <m). To do so, we shall rely on
a last and final ingredient, the Master Steiner Formula.

Master Steiner Formula (McCoy,
Tropp, 2013) Let Mg : R — C be the
projection onto the closed convex cone
C. One has

law
INc@)? 253, .

Corollary 1/Definition: The statistical dimension - of a closed
convex cone C is defined as E[||Na(g)|°] = E[Vo].

Corollary 2: E[e"Vc] = E[£INc(@)I%], with ¢ = 3(1 — e=27).



An important consequence of Corollary 2 is the following.

If Cy is a sequence of closed convex cone of R such that E(Ve,) =
6c, — oo and liminf Var(V¢)/d¢, > 0 as d — oo, then

|| nCd(g)||2 o 5Cd
VVar(INe,(2)]12)

Ve, — 5Cd
\/Var(VC’d)

» N(0,1) iff

— N(0,1).




Theorem (Goldstein, Nourdin, Peccati). Let zy € RY, let f :
R? — R be a convex function and let ¢ = {y € R¢ : 3Ir >
0 such that f(zg+ 7y) < f(xg)} be the descent cone of f at xy.

Consider the minimization problem
(P) : min f(x) subject to Ax = Axg,

where A € R™Xd js Gaussian (all its entries are independent

N(0,1) random variables) and where|m = |5~ + ty/Var(V) |, t € R\
C C

Suppose that E(Vy) = §¢ — oo and that liminf Var(V) /6o > 0 as
d— oco. Then, as d — oo,

1 t u?
P(xq is the unique solution of (P)) — —/ e 2du.
(zo (P)) Nz




Reading the phase transition.

For instance, selecting m > 6o + 1.6\/Var(VC),
one has
P(xq is the unique solution of (P)) > 0.95.

In contrast, for m < o — 1.6\/Var(VC),

P(xq is the unique solution of (P)) < 0.05

(Remark: A crude bound is Var(Vo) < 26¢.)



Theorem (G.-N.-P., 2014): Let C be any closed convex cone
and let o denote the projection onto C. One then has, with
N ~ N(0,1) and g ~ N(0, 1),

I 2 —
A IMe(g)ll“ — dc N 8

JVar(INee)12) ) ~ Ve




