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Goals for this talk

1. Describe bounds on distributional distance to multivariate normal
distribution for

(θ̂1, θ̂2, . . . , θ̂K )

where θ̂k = MLE of θ ∈ Rp at k th group sequential analysis, in
regression setting

2. Advertise problems in sequential analysis that could (potentially)
use Stein’s method

Warnings:
1. Work in progress
2. Not hard, but useful
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Group sequential analysis
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Group sequential analysis
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But there are other books on this subject. . .
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Setup

Response Yi ∈ R of i th patient depends on
known covariate vector xi

unknown parameter vector θ ∈ Rp

Primary goal: To test a null hypothesis about θ, e.g.,

H0 : θ = 0
H ′0 : θj ≤ 0

H ′′0 : aT θ = b, some vector a, scalar b

Secondary goals: Compute p-values or confidence regions for θ at the
end of study
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Setup: Group sequential analysis
For efficiency, ethical, practical, financial reasons, the standard in trials
has become group sequential analysis

A group sequential trial with at most K groups

Group 1: Y1, . . . ,Yn1

Group 2: Yn1+1, . . . ,Yn2

...
Group K: YnK−1+1, . . . ,YnK

Group sequential dominant format for clinical trials since. . .

Beta-Blocker Heart Attack Trial (“BHAT”, JAMA 82)
Randomized trial of propranolol for heart attack survivors
3837 patients randomized
Started June 1978, planned as ≤ 4-year study, terminated 8
months early due to observed benefit of propranolol
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Setup: Group sequential analysis
Stopping rule related to H0

likelihood ratio, t-, F -, χ2- tests common
Of the form:

Stop and reject H0 at stage min{k ≤ K : T (Y1, . . . ,Ynk ) ≥ Ck}

for some statistic T (Y1, . . . ,Ynk ), often a function of the MLE

θ̂k = θ̂k (Y1, . . . ,Ynk )

The joint distribution of
θ̂1, θ̂2, . . . , θ̂K

needed to
choose critical values Ck

compute p-value at end of study
give confidence region for θ at end of study
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Background: Group sequential analysis
Jennison & Turnbull (JASA 97)
Asymptotic multivariate normal distribution of

(θ̂1, θ̂2, . . . , θ̂K )

in a regression setup Yi
ind∼ fi(Yi , θ), fi nice

Asymptotics: nk − nk−1 →∞ for all k , K fixed
E∞(θ̂k ) = θ

“Independent increments”

Cov∞(θ̂k1 , θ̂k2) = Var∞(θ̂k2) any k1 ≤ k2

“Folk Theorem”
Normal limit widely (over-)used (software packages, etc.) before
Jennison & Turnbull paper
Commonly heard: “Once n is 5 or so the normal limit kicks in!”
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Background: Group sequential analysis
Jennison & Turnbull (JASA 97)
Independent increments

Cov∞(θ̂k1 , θ̂k2) = Var∞(θ̂k2) any k1 ≤ k2

Suppose

H0 : aT θ = 0, Tk = Ik (aT θ̂k ) where Ik = [Var∞(aT θ̂k )]−1.

Then

Cov∞(Tk1 ,Tk2) = Ik1 Ik2aT Cov∞(θ̂k1 , θ̂k2)a

= Ik1 Ik2aT Var∞(θ̂k2)a
= Ik1 Ik2Var∞(Tk2)

= Ik1 = Var∞(Tk1)

⇒ Cov∞(Tk1 ,Tk2 − Tk1) = 0
⇒ T1,T2 − T1, . . . ,TK − TK−1 asymptotically independent normals
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What I’m Doing

1. Berry-Esseen bound for multivariate normal limit for smooth
functions

I Anastasiou & Reinert 15: Bounds w/ explicit constants for bounded
Wasserstein distance for scalar MLE (K = 1 analysis)

2. Relax independence assumption: Assume log-likelihood of
Yk := (Ynk−1+1, . . . ,Ynk ) is of the form∑

i∈Gk

log fi(Yi , θ) + gk (Yk , θ)

for well-behaved functions fi , gk

I gk = 0 gives Jennison & Turnbull’s independent setting
I Some generalized linear mixed models (GLMMs) with random

stage effect Uk take this form
F Uk = effect due to lab, monitoring board, cohort, etc.

I Penalized quasi-likelihood (Breslow & Clayton, JASA 93)
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GLMM Example: Poisson regression

Letting fµ = Po(µ) density,

For Yi in k th stage, Yi |Uk
ind∼ fµi where µi = exp(βT xi + Uk )

{Uk}
iid∼ hλ

θ = (β, λ).

Then log-likelihood is

log

 K∏
k=1

∫ ∏
i∈Gk

fµi (Yi)hλ(Uk )dUk

 =
K∑

k=1

∑
i∈Gk

log fµ̃i (Yi) + gk (Yk , θ)


where µ̃i = exp(βT xi).
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Stein’s Method for MVN Approximation

Generator approach: Barbour 90, Goetze 91
Size biasing: Goldstein & Rinott 96, Rinott & Rotar 96
Zero biasing: Goldstein & Reinert 05
Exchangeable pair: Chatterjee & Meckes 08, Reinert & Röllin 09
Stein couplings: Fang & Röllin 15

Theorem (Reinert & Röllin 09)

If W ,W ′ ∈ Rq exchangeable pair with EW = 0, EWW T = Σ PD, and
E(W ′ −W |W ) = ΛW + R with Λ invertible, then for any 3-times
differentiable h : Rq → R,

|Eh(W )− Eh(Σ1/2Z )| ≤ a|h|2
4

+
b|h|3
12

+ c
(
|h|1 +

q
2
||Σ||1/2|h|2

)
for certain a,b, c.
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Why Stein?

Dependent Case: No characteristic function based results (that I know
of)

Independent Case: There are characteristic function based methods to
handle sums of independent but non-identically distributed vectors

Ulyanov 79, 87, 86
Fujikoshi et al. 10

but no explicit constants (that I know of)
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Bounds to normal for θ̂K := (θ̂1, θ̂2, . . . , θ̂K )
Approach: Apply Reinert & Röllin 09 result with W = score function
increments to get smooth function bounds to normal.

Result
In the group sequential setup above, if the Yi are independent or follow
GLMMs with the log-likelihood of the k th group data
Yk = (Ynk−1+1, . . . ,Ynk ) of the form∑

i∈Gk

log fi(Yi , θ) + gk (Yk , θ),

then under regularity conditions on the fi and gk there are a,b, c,d s.t.

|Eh(J−1/2(θ̂K −θK ))−Eh(Z )| ≤ aK 2||J−1/2||2|h|2
4

+
bK 3||J−1/2||3|h|3

12

+ cK ||J−1/2||
(
|h|1 +

pK 2

2
||Σ||1/2||J−1/2|||h|2

)
+ d .

Jay Bartroff (USC) Group sequential statistics 22.May.15 15 / 23



Bounds to normal for θ̂K := (θ̂1, θ̂2, . . . , θ̂K )
Approach: Apply Reinert & Röllin 09 result with W = score function
increments to get smooth function bounds to normal.

Result
In the group sequential setup above, if the Yi are independent or follow
GLMMs with the log-likelihood of the k th group data
Yk = (Ynk−1+1, . . . ,Ynk ) of the form∑

i∈Gk

log fi(Yi , θ) + gk (Yk , θ),

then under regularity conditions on the fi and gk there are a,b, c,d s.t.

|Eh(J−1/2(θ̂K −θK ))−Eh(Z )| ≤ aK 2||J−1/2||2|h|2
4

+
bK 3||J−1/2||3|h|3

12

+ cK ||J−1/2||
(
|h|1 +

pK 2

2
||Σ||1/2||J−1/2|||h|2

)
+ d .

Jay Bartroff (USC) Group sequential statistics 22.May.15 15 / 23



Comments on result

a,b, c terms directly from Reinert & Röllin 09 bound
c term ∝ Var(R) in

E(W ′ −W |W ) = ΛW + R,

vanishes in independent case
d term is from Taylor Series remainders
Rate O(1/

√
nK ) under regularity conditions and

nk − nk−1

nK
→ γk ∈ (0,1)
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Sketch of argument
Independent Case
Score statistic

Si(θ) =
∂

∂θ
log fi(Yi , θ) ∈ Rp, W =

∑
i∈G1

Si(θ), . . . ,
∑
i∈GK

Si(θ)

 ∈ Rq,

where q = pK .

Fisher Information

Ji(θ) = −E
(
∂

∂θ
Si(θ)T

)
∈ Rp×p

J(θ1, . . . , θK ) = diag

( n1∑
i=1

Ji(θ1), . . . ,

nK∑
i=1

Ji(θK )

)
∈ Rq×q

Σ := Var(W ) = diag

∑
i∈G1

Ji(θ), . . . ,
∑
i∈GK

Ji(θ)

 ∈ Rq×q
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∑
i∈G1

Si(θ), . . . ,
∑
i∈GK

Si(θ)

 ∈ Rq,

where q = pK .

Fisher Information

Ji(θ) = −E
(
∂

∂θ
Si(θ)T

)
∈ Rp×p

J(θ1, . . . , θK ) = diag
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Sketch of argument: Exchangeable pair
Independent Case

1. Choose i∗ ∈ {1, . . . ,nK} uniformly, independent of Y1, . . . ,YnK

2. Replace Yi∗ by independent copy Y ′i∗ (keeping xi∗), call result W ′

⇒W ,W ′ exchangeable

⇒W ,W ′ satisfy linearity condition

E(W ′ −W |W ) = −n−1
K W

which is easy to check on each sub-p-vector
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Sketch of argument: Relating θ̂K to W
Independent Case

By standard Taylor series,

θ̂K−θK = J(θ∗K )−1S, where S =

( n1∑
i=1

Si(θ1), . . . ,

nK∑
i=1

Si(θK )

)
∈ Rq

and θ∗K ∈ Rq on line segment connecting θ̂K , θK .

Then

|Eh(J1/2(θ̂K − θK ))− Eh(Z )| ≤
|Eh(J−1/2S)− Eh(Z )|+ |Eh(J1/2J(θ∗K )−1S)− Eh(J−1/2S)|
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Sketch of argument: Relating θ̂K to W
Independent Case

Using S = AW where

A =


1p 0p · · · 0p
1p 1p · · · 0p
...

...
. . .

...
1p 1p · · · 1p


,

1p,0p ∈ Rp×p identity and 0 matrices,

1st term is

|Eh(J−1/2S)− Eh(Z )| = |Eh̃(W )− Eh̃(Σ1/2Z )|

where h̃(w) = h(J−1/2Aw), then apply Reinert-Röllin and simplify.

2nd term is bounded by Taylor series arguments.
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Sketch of argument: Exchangeable pair
GLMM Case

1. Choose i∗ ∈ {1, . . . ,nK} uniformly, independent of Y1, . . . ,YnK

2. If i∗ in k th group, replace Yi∗ by independent copy Y ′i∗ with mean

ϕ(βT xi∗ + Uk ), ϕ−1 = link function

(same covariates xi∗ , group effect Uk ), call result W ′

⇒W ,W ′ exchangeable

⇒W ,W ′ satisfy linearity condition

E(W ′ −W |W ) = −n−1
K W + R

where R = R(g1, . . . ,gK )
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Other Sequential Problems

Dose finding problems
Distribution of stopped sequential test statistic
Overshoot over the boundary
Changepoint problems
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