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Outline

Diffusion approximations

Many-server queues:
multi-dimensional piecewise Ornstein–Uhlenbeck (OU) processes.

Networks of single server queues:
multi-dimensional semimartingale reflecting Brownian motions (SRBMs).

Current status:

There is a huge literature on stochastic process convergence.

However, there is little work on rate of convergence for steady-state
approximations.

Barbour, A.D., Stein’s method for diffusion approximations, 1990.
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Many-server queues
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An M/Ph/n + M System

We consider a sequence of M/Ph/n + M queues indexed by the number of servers
n.

Arrival rate λn.

Phase-type service times with mean service time 1/µ.

A waiting customer abandons the queue when his waiting time exceeds his
patience, which is exponentially distributed with rate α.
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Phase-Type Random Variables

Definition (Neuts 1981)

A phase-type random variable corresponds to the hitting time of a continuous
time Markov chain (CTMC) to an absorbing state. Inputs: (p,P, ν).

For example, an H2 (hyper-exponential) random variable S has the following
representation:

S =

{
S1 with probability p1,

S2 with probability p2,
and

p1 + p2 = 1,
Si ∼ Exponential(νi ),

mean service time =
1

µ
= p1

1

ν1
+ p2

1

ν2
,

p =

(
p1

p2

)
, P =

(
0 0
0 0

)
, ν =

(
ν1

ν2

)
.
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A Markov Chain Representation

The system can be modeled as a continuous time Markov chain (CTMC)

Un =
{

Un(t) ∈
(
{1, 2, . . . , d}

)∞
, t ≥ 0

}
.

An example of the state u is given by

u = (1, 2, 1, 2, 2, 2, | , 2, 1, 2, 2, 1, 1, 2, 2)

Because of customer abandonment, the CTMC Un is positive recurrent.
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An M/Ph/n + M System (cont.)

Let X n
1 (t) be the number of type 1 customers in system at time t.

Let X n
2 (t) be the number of type 2 customers in system at time t.

Denote
X n(∞) =

(
X n

1 (∞),X n
2 (∞)

)
to be the random vector having the stationary distribution.

The computation of the distribution of X n(∞) can be expensive or
unrealistic.
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Fig. 1 of Dai-He (2013): an M/H2/500 + M System
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Figure : λ = 522, p = (0.9351, 0.0649), 1/ν = (0.1069, 13.89), mean patience time = 2.
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Fig. 2 of Dai-He (2013): an M/H2/20 + M System
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Figure : λ = 22.2, p = (0.9351, 0.0649), 1/ν = (0.1069, 13.89), mean patience time = 2.
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Main Results

Let β ∈ R be fixed.

Assume the number of server n follows the square-root safety staffing rule:

nµ = λn + β
√
λn, (1)

where λn is the arrival rate.

The sequence of systems is in the Quality- and Efficiency-Driven (QED)
regime, also known as the Halfin-Whitt (1981) regime.

Theorem 1

There exists a constant C = C (α, β, p,P, ν) such that

sup
h∈Lip(1)

∣∣∣Eh(X̃ n(∞))− Eh(Y (∞))
∣∣∣ ≤ Cλ−1/4

n , ∀n ≥ 1, (2)

where

X̃ n(t) =
1√
λn

(
X n(t)− γn

)
, γi =

pi/νi
p1/ν1 + p2/ν2

.
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Main Results (cont.)

Theorem 2
For each integer m > 0, there exists a constant Cm > 0 such that if
h(x) : Rd −→ R satisfies

|h(x)| ≤ |x |m , for x ∈ Rd ,

then ∣∣∣Eh(X̃ n(∞))− Eh(Y (∞))
∣∣∣ ≤ Cmλ

−1/4
n , ∀n ≥ 1.
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Piece-Wise Ornstein-Uhlenbeck (OU) Process

A piece-wise OU process in R is a diffusion process satisfying

Y (t) = Y (0) + σB(t) + θt + α1

∫ t

0

Y (s)−ds − α2

∫ t

0

Y (s)+ds.

B = {B(t), t ≥ 0} is the one-dimensional standard Brownian motion.

When α1 = α2 = α, Y becomes a (σ2, θ, α)-OU process whose stationary
distribution is normal

N
(
θ/α, σ2/(2α)

)
.

The generator is

Gf (x) =
1

2
σ2f ′′(x) + θf ′(x)− αxf ′(x) for f ∈ C 2(R).
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Piece-Wise Ornstein-Uhlenbeck (OU) Process (cont.)

Let Y = {Y (t) ∈ Rd , t ≥ 0} be the piece-wise OU process satisfying

Y (t) = Y (0)− pβt − R

∫ t

0

(
Y (s)− p(e′Y (s))+

)
ds

−αp

∫ t

0

(e′Y (s))+ds +
√

ΣB(t).

B(t) is the standard d-dimensional Brownian motion,

Σ = diag(p) +
d∑

k=1

γkνkHk + (I − PT )diag(ν)diag(γ)(I − P),

Hk
ii = Pki (1− Pki ), Hk

ij = −PkiPkj for j 6= i .

e′ = (1, . . . , 1) and R = (I − P ′)diag(ν).

The drift vector

b(x) = −βp − R(x − p(e′x))− αp(e′x)+ x ∈ Rd .
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Gurvich, Huang and Mandelbaum (2014, MOR)

In an M/M/n + M system (exponentially distributed service times), known
as the Erlang-A model,

sup
x∈R

∣∣∣P{X̃ (∞) ≤ x
}
− P

{
Y (∞) ≤ x

}∣∣∣ ≤ C (α, µ)
1√
λ

for λ ≥ 1. (3)

Universal for any n ≥ 1 without assuming (1), but require a new centering at
x(∞), where x(∞) satisfies

λ = nµ+ α(x(∞)− n)+.

Using an excursion-based approach.
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Gurvich (2014, AAP)

Establishes a framework, “reinventing” Stein’s method in the context of
steady-state diffusion approximations.

Introduces generator coupling.

Relies on the existence of a Lyapunov function V (x) to establish uniform
geometric ergodicity for the diffusion processes {Y n, n ≥ 1}.
The CTMCs {X n} and the diffusion processes {Y n} have the same
dimension; as a consequence, state space collapse (SSC) is not explored.
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Standard method: Limit Interchange

Prove process convergence X n(·)⇒ Y (·); D-He-Tezcan (2010).

Process convergence does not imply X n(∞)⇒ Y (∞).

Justify the limit interchange; D-Dieker-Gao (2014)

lim
n→∞

lim
t→∞

X n(t) = lim
t→∞

lim
n→∞

X n(t).
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Limit Interchange Justifications

Networks of single-server queues
I Gamarnik & Zeevi (2006)
I Budhiraja & Lee (2009)
I Zhang & Zwart (2008)
I Katsuda (2010, 2011)
I Yao & Ye (2012)
I Gurvich (MOR, 2014)

Many-server systems
I Tezcan (2008)
I Gamarnik & Stolyar (2012)
I D., Dieker & Gao (2014)

No convergence rates
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An outline of the proof for Theorem 1
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Poisson equation

Let

GY f (x) =
1

2

d∑
i,j=1

Σij∂ij f (x) +
d∑

i=1

∂i f (x)bi (x) for x ∈ Rd ,

be the generator of the piecewise OU process Y = {Y (t) ∈ Rd , t ≥ 0}.
For h : Rd → R, find a solution fh to the Poisson equation

GY fh(x) = h(x)− Eh(Y (∞)). (4)

Then, the following Stein equation holds

E
[
h(X̃ n(∞))

]
− E

[
h(Y (∞))] = E

[
GY fh(X̃ n(∞))

]
. (5)
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Basic Adjoint Relationship (BAR)

Lemma

Random vector Y (∞) ∈ Rd has the stationary distribution of the diffusion process
Y = {Y (t), t ≥ 0} if and only if the following basic adjoint relationship (BAR)
holds:

E
[
GY f (Y (∞)

]
= 0 for all ”good” f ∈ C 1(Rd). (6)

Echeverria (1982): Markov processes without boundary.

Weiss (1981): Markov processes with boundaries.

Harrison and Williams (1987), Dai and Kurtz (1994): semimartingale
reflecting Brownian motions (SRBMs).

Glynn and Zeevi (2008) provides conditions on f for (6) to hold for Markov
chains.
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Generator Coupling

From the Stein equation,

E
[
h(X̃ n(∞))

]
− E

[
h(Y (∞))] = E

[
GY fh(X̃ n(∞))

]
= E

[
GY fh(X̃ n(∞))

]
− E

[
GUn fh(X̃ n(∞))

]
= E

[
GY fh(X̃ n(∞))− GUn fh(X̃ n(∞))

]
.

Doing Taylor expansion on GUn fh(x) to bound

|GY fh(x)− GUn fh(x)| for x =
i − γn√
λn

with i ∈ Zd
+.
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Taylor Expansion: An Illustration for M/M/n + M

Set x = i−n√
λn

for i ∈ Z+. The generator of the birth-death process X̃ n is

GX̃ n f (x) = λn

(
f
(
x +

1√
λn

)
− f (x)

)
+
(
µ(i ∧ n) + α(i − n)+

)(
f
(
x − 1√

λn

)
− f (x)

)
.

The generator of Y is

GY f (x) =
λn − nµ√

λn
f ′(x) +

(
µx− − αx+

)
f ′(x) + f ′′(x).

Using Taylor expansion, we can write

G n
X fh(x)− GY fh(x) =

f ′′h (x)

2
√
λn

[
β + αx+ − µx−

]
+

1

6
f ′′′h (ξ)

1√
λn

− 1√
λn

(nµ

λn
+

1√
λn

(
−µx− + αx+

))1

6
f ′′′h (η).
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Proof

Therefore, for any Lipschitz continuous h, one has∣∣∣Eh(X̃ n(∞))− Eh(Y (∞))
∣∣∣ =

∣∣∣EGX fh(X̃ n(∞))− EGY fh(X̃ n(∞))
∣∣∣

≤ ||f
′′
h ||

2
√
λn

(
β + (α + µ)B

)
+
||f ′′′h ||
6
√
λn

(
1 +

nµ

λn
+

1√
λn

(α + µ)B
)
,

where ||g || = supx |g(x)| and B ≡ sup
n

E
∣∣∣X̃ n(∞)

∣∣∣ <∞.

Lemma (Gradient Bounds in One-Dimension)

There exists a constant C = C (α, β, µ) > 0 such that, for any h that is Lipschitz
continuous, the solution fh to Poisson equation

GY fh(x) = h(x)− E[h(Y (∞))]

satisfies
||f ′h || ≤ C ||h′||, ||f ′′h || ≤ C ||h′||, ||f ′′h || ≤ C ||h′||.
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Multi-dimensional Gradient Bounds

Lemma (Gurvich (2015))

Suppose |h(x)| ≤ |x |2m for some m > 0, then the solution to Poisson equation

GY fh(x) = h(x)− Eh(Y (∞))

satisfies

|f (x)| ≤ Cm(1 + |x |2)m,

|Df (x)| ≤ Cm(1 + |x |2)m(1 + |x |),

∣∣D2f (x)
∣∣ ≤ Cm(1 + |x |2)m(1 + |x |)2,

sup
|y−x|<1,y 6=x

∣∣D2f (x)− D2f (y)
∣∣

|x − y |
≤ Cm(1 + |x |2)m(1 + |x |)3.
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Generator Coupling

Recall that fh : R2 → R is a solution to the Poisson equation.

E
[
GUn fh(X̃ n(∞))

]
is not well defined.

With a general phase-type service distribution, system size process
{
(
X n

1 (t),X n
2 (t)

)
, t ≥ 0} is no longer a CTMC.

Un is a CTMC living on state space U = {1, 2}∞. Its generator GUn acts on
functions F : U → R.

BAR gives E
[
GUnAfh(Un(∞))

]
= 0.
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Applying Gradient Bounds

Recall δ = 1√
λn

.

For u = (1, 2, 1, 2, 2, 2, | , 2, 1, 2, 2, 1, 1, 2, 2), (z1, z2, q1, q2) = (2, 4, 3, 5) and

GUAfh(u) = λp1fh(x1 + δ, x2) + λp2fh(x1, x2 + δ)

+ αq1fh(x1 − δ, x2) + αq2fh(x1, x2 − δ)

+ z1ν1fh(x1, x2) + z1ν1fh(x1, x2 − δ)

− (λ+ αq + z1ν1 + z2ν2)fh(x1, x2).

Lemma

There exists a constant C (m) = C (m, β, α, p, ν,P) such that for any u ∈ U ,

|GUAfh(u)− GY fh(x)| ≤ C (m)(1 + |x |2)m(1 + |x |)
∣∣δq − p(eT x)+

∣∣
+ δ C (m)(1 + |x |2)m(1 + |x |)4.
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State Space Collapse in M/Ph/n + M Case

The total queue size
(
X n

1 (∞) + X n
2 (∞)− n

)+
= (e′X n(∞)− n)+.

Lemma (State-Space Collapse)

There exists C (m) > 0 such that ∀n ≥ 1,

E
∣∣δ(Qn

i (∞)− pi (e′X n(∞)− n)+
)∣∣2m ≤ C (m)δmE[(e′X̃ n(∞))+]m for i = 1, 2.
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Is the Convergence Rate in Theorem 1 Sharp?

λn E
[
X̃ n(∞)2

]
E
[
Y (∞)2

]
Diff. (δn) δn/δ2n

50 1.3811 1.4221 0.0410

100 1.3929 1.4221 0.0292 1.4045 =
√

1.9725

200 1.4013 1.4221 0.0208 1.4069 =
√

1.9793

Table : M/H2/n +M queue with parameters p = (67.41%, 32.59%),
ν = (0.6741, 0.3259) and β = 0.

If λ
−1/4
n is a sharp convergence rate, expect that as λn doubles, error

decreases by a factor of 21/4 = 1.1892.

If λ
−1/2
n is a sharp convergence rate, expect that as λn doubles, error

decreases by a factor of 21/2 = 1.4142.

Error appears to decrease at a rate of λ
−1/2
n .
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Networks of single-server queues and open problems
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A G/G/1 Queue

Consider a single-server queue operating under first-come-first-serve discipline.

A,A1,A2, ... i.i.d. inter-arrival times with mean 1/λ = 1.

S ,S1,S2, ... i.i.d. service times with mean m.

Traffic intensity ρ = λm = m.

Lindley recursion for waiting times:

Recursive formula for Wn – the nth customer’s waiting time in queue:

Wn+1 = (Wn + Sn − An+1)+, x+ := max(x , 0).

An,Sn – inter-arrival and service time of nth customer, respectively.
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Steady-State Behavior in Heavy Traffic

Steady-state customer waiting time W (∞).

As ρ = m ↑ 1, W (∞)→∞.

The scaled version W̃ = (1− ρ)W (∞) does not blow up.

W̃ ∗ d
= (W̃ + (1− ρ)X )+,

where

W̃ ∗ d
= W̃ , X ⊥ W̃ , X

d
= S − A, EX = m − 1

λ
= ρ− 1.

Define

G
W̃

f (w) := E
[
f
(
(w + (1− ρ)X )+

)]
− f (w), w ≥ 0.

Braverman and Dai Stein’s method for diffusion approximations May 25, 2015 31 / 42



Basic Adjoint Relationship (BAR)
For all ’nice’ functions f , we have BAR

E
[
G
W̃

f (W̃ )
]

= E
[
f
(

(W̃ + (1− ρ)X )+
)
− f (W̃ )

]
= 0,

where W̃ and X are independent.

Suppose f ∈ C 3(R), use Taylor expansion:

E
[
f
(

(W̃ + (1− ρ)X )+
)
− f (W̃ )

]
=E
[
f
(
W̃ + (1− ρ)X

)
− f (W̃ ) +

(
f (0)− f (W̃ + (1− ρ)X )

)
1{W̃+(1−ρ)X≤0}

]
=E
[
f ′(W̃ )(1− ρ)EX +

1

2
f ′′(W̃ )(1− ρ)2EX 2 − f ′(0)(1− ρ)EX

]
+ E

[1

6
(1− ρ)3f ′′′(ξ)EX 3 − 1

2
(W̃ + (1− ρ)X )2f ′′(η)1{W̃+(1−ρ)X≤0}

]
,

where we have used

E
[
(W̃ + (1− ρ)X )1{W̃+(1−ρ)X≤0}

]
= (1− ρ)EX .
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Poisson Equation and Gradient Bounds

Consider Poisson equation

GZ fh(w) :=
1

2
σ2f ′′h (w)− θf ′h(w) + θf ′h(0) = h(w)− Eh(Z ),

where

σ2 = (1− ρ)2EX 2, θ = −(1− ρ)EX > 0

and Z is an exponential random variable with mean σ2/2θ.

A solution satisfying f ′h(0) = 0 also satisfies

‖f ′′h ‖ ≤
‖h′‖
θ

and ‖f ′′′h ‖ ≤
4

σ2
‖h′‖.
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G/G/1 Waiting Time Approximation
Using Stein equation

Eh(W̃ )− Eh(Z ) = E
[
GZ fh(W̃ )

]
− E

[
GW fh(W̃ )

]
= (1− ρ)3E

[1

6
f ′′′(ξ)

]
EX 3

− E
[1

2
(W̃ + (1− ρ)X )2f ′′(η)1{W̃+(1−ρ)X≤0}

]
,

we obtain:

Lemma

Assume EX 3 <∞. Then,

dW
(

W̃ ,Z
)
≤ C

√
(1− ρ).

Furthermore, if EXm <∞ for all m ≥ 1, then for any ε > 0, there exists a
constant Cε such that

dW
(

W̃ ,Z
)
≤ Cε(1− ρ)1−ε.
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Multidimensional SRBMs

Consider the M/M/1→ ·/M/1 tandem system, we are interested in the queue
lengths.

Assume λ = 1. Heavy traffic: µi = µ
(n)
i and λ− µ(n)

i = −βi/
√

n < 0.

The approximating diffusion process is a two-dimensional semimartingale
reflecting Brownian motion (SRBM)

Z = {(Z1(t),Z2(t)) ∈ R2
+, t ≥ 0}.

See Williams (1995) for a review of SRBMs.
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PDE in an orthant with oblique boundary derivatives

Open Problem

Consider the operator

Anf (x) =
1

2

2∑
i,j=1

Σij
∂2f (x)

∂xi∂xj
+

2∑
i=1

νi
∂f (x)

∂xi
+

2∑
i=1

βi 〈R(i),∇f (x)|xi=0〉,

where

ν =
1

n

(
−β1

β1 − β2

)
, Σ =

1

n

(
2 −1
−1 2

)
, R =

1

n

(
1 0
−1 1

)
and R(i) is the ith column of R. If h : R2

+ → R is a Lipschitz-1 function, under

what conditions on 〈R(i),∇f (x)|xi=0〉, does the solution to the PDE

Anfh(x) = h(x)− Eh(Zn(∞))

satisfy

‖D2fh‖ ≤ C1n and ‖D3fh‖ ≤ C2n.
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Gradient Bounds for Elliptic PDEs

Based on Gurvich (2015).

Consider the elliptic differential operator

Lf (x) =
∑

1≤i,j≤d

aijDij f (x) +
∑

1≤i≤d

bi (x)Di f (x).

The matrix A defined by Aij = aij is positive definite.

b(x) = (b1(x), ..., bd(x)) satisfies the Lipschitz condition

|b(x)− b(y)| ≤ cb |x − y | .
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Schauder Interior Estimates

For x ∈ Rd , let Bx = {y ∈ Rd : |y − x | ≤ 1
1+|x|}.

Lemma (Gilbarg & Trudinger (2001))

Let f (x) be a solution to the PDE

Lf (x) = h(x).

There exists a constant C depending only on A and cb, such that

|Df (x)|+
∣∣D2f (x)

∣∣+ sup
y ,z∈Bx ,y 6=z

∣∣D2f (z)− D2f (y)
∣∣

|z − y |

≤ C

(
sup
y∈Bx

|f (y)|+ sup
y∈Bx

|h(y)|+ sup
y ,z∈Bx ,y 6=z

|h(z)− h(y)|
|z − y |

)
(1 + |x |)3.
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Lyapunov Functions

If the elliptic operator L is the generator of some diffusion process
Y = {Y (t), t ≥ 0}, then the solution to

GY f (x) = h(x)− Eh(Y (∞)) =: h̃(x)

satisfies

f (x) =

∫ ∞
0

Ex h̃(Y (t))dt.

Suppose we know that

|Exh(Y (t))− Eh(Y (∞))| ≤ V (x)e−ηt , η > 0.

Then

|f (x)| ≤
∫ ∞

0

∣∣∣Ex h̃(Y (t))
∣∣∣ dt ≤ CV (x).
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