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Introduction

convex hull of random points

extreme points = vertices

We assume points are i.i.d. uniform on a convex body K.
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Statistics of random polytopes

Kn = convex hull of n i.i.d. points hosted by the convex set K.

f0(Kn) = number of vertices of Kn

f1(Kn) = number of edges of Kn

f`(Kn) = number of `-faces of Kn, ` ∈ {0, ..., d− 1}.

Vol(Kn) = volume of Kn.
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Expectation asymptotics

Difficult to derive explicit formulae for statistics of convex hulls on a finite
number of i.i.d. points.

Investigation has focussed on behavior of fl(Kn), ` ∈ {0, ..., d− 1}, as
input size n→∞.

Behavior of fl(Kn) is sensitive to geometry of the boundary of K.
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Expectation asymptotics (d ≥ 2, ` ∈ {0, 1, ..., d− 1} )
Kn is convex hull of n i.i.d. uniform r.v. on K.

· Reitzner (2005) ∂K of class C2, κ:= Gaussian curvature

lim
n→∞

n−
d−1
d+1E f`(Kn) = cd,`

∫
∂K

κ(x)
1
d+1dx;

· Reitzner (2005) K is a convex polytope, ` ∈ {0, 1, ..., d− 1}:

lim
n→∞

(log n)−(d−1)E f`(Kn) = ed,` · number of flags of K.

(flag is a maximal chain of faces, each a sub-face of the next in the chain)

· Kn is convex hull of n i.i.d. standard normal r.v. on Rd:

lim
n→∞

(log n)−
d−1
2 E f`(Kn) = gd,`.

Auffentranger + Schneider (’92), Baryshnikov + Vitale (’94).
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Central limit theorems via Stein’s method

` ∈ {0, ..., d− 1}, d ≥ 2, then

sup
t∈R

∣∣∣∣∣P
[
f`(Kn)− E f`(Kn)√

Varf`(Kn)
≤ t

]
− Φ(t)

∣∣∣∣∣ ≤ c(K)ε(n) = o(1).

· ∂K of class C2: Reitzner (2005)

· Gaussian input: Bárány and Vu (2007)

· K convex: Bárány and Reitzner (2008)

· CLT for Vol(Kn).
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Normal approximation under local dependence

Chen and Shao (2004): use concentration inequalities in Stein’s method to
give (uniform and non-uniform) rates of normal convergence for sums of
locally dependent r.v.

Their results applicable to sums
∑
x∈Pλ

ξ(x,Pλ) whenever ξ is exponentially

stabilizing and satisfies moment condition; cf. Penrose and Y. (2005,
Stein’s Method and Applications) and Barbour and Xia (2006).

This yields nearly optimal rates of normal convergence for
∑
x∈Pλ

ξ(x,Pλ).

In some cases local dependence gives optimal rates: Last, Pecatti, and
Schulte (2014).

Joe Yukich (Lehigh University ) Stein’s Method and Convex Hulls
New Directions in Stein’s Method, Singapore, May 2015 7

/ 17



Normal approximation under local dependence

Chen and Shao (2004): use concentration inequalities in Stein’s method to
give (uniform and non-uniform) rates of normal convergence for sums of
locally dependent r.v.

Their results applicable to sums
∑
x∈Pλ

ξ(x,Pλ) whenever ξ is exponentially

stabilizing and satisfies moment condition; cf. Penrose and Y. (2005,
Stein’s Method and Applications) and Barbour and Xia (2006).

This yields nearly optimal rates of normal convergence for
∑
x∈Pλ

ξ(x,Pλ).

In some cases local dependence gives optimal rates: Last, Pecatti, and
Schulte (2014).

Joe Yukich (Lehigh University ) Stein’s Method and Convex Hulls
New Directions in Stein’s Method, Singapore, May 2015 7

/ 17



Normal approximation under local dependence

Chen and Shao (2004): use concentration inequalities in Stein’s method to
give (uniform and non-uniform) rates of normal convergence for sums of
locally dependent r.v.

Their results applicable to sums
∑
x∈Pλ

ξ(x,Pλ) whenever ξ is exponentially

stabilizing and satisfies moment condition; cf. Penrose and Y. (2005,
Stein’s Method and Applications) and Barbour and Xia (2006).

This yields nearly optimal rates of normal convergence for
∑
x∈Pλ

ξ(x,Pλ).

In some cases local dependence gives optimal rates: Last, Pecatti, and
Schulte (2014).

Joe Yukich (Lehigh University ) Stein’s Method and Convex Hulls
New Directions in Stein’s Method, Singapore, May 2015 7

/ 17



Questions

Pλ intensity λ PPP; let Kλ be convex hull of Pλ ∩K.

Can one write f`(Kλ) as a sum
∑
x∈Pλ

ξ(x,Pλ) of stabilizing scores yielding

a CLT via Chen-Shao methods and also yielding:

· lim
n→∞

Varf`(Kn), ` ∈ {0, ..., d− 1},

· scaling limit of the boundary of convex hull, and

· functional CLT for defect volume?

We answer these questions positively when:

(i) the input is uniform on K, where either ∂K is of class C2, or K is
convex polytope, or

(ii) input consists of i.i.d. standard normal r.v. on Rd, d ≥ 2.
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Normal approximation in the re-scaled picture

X : locally finite set in upper half-space Rd−1 × R+.

ξPar(x,X ) :=

{
1 if x is extreme in X wrt parabolas

0 otherwise.

Put P(λ) := T (λ)(Pλ). The total number of extreme points in the convex
hull of Pλ is ∑

x∈P(λ)

ξPar(x,P(λ)).

· ξPar(x,P(λ)) is locally defined: its value is determined by input on a
cylinder centered at x with radius having an exponentially decaying tail
(non-trivial).
· Thus by the results of either (i) Penrose and Y. (’05) or (ii) Barbour and
Xia (’06), one deduces rates of normal convergence for the total number
of extreme points ... and the total number of ` faces in Kλ.
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Main results (w. Pierre Calka): K = unit ball in Rd

Thm (CLT) Let K be the unit ball, ` ∈ {0, ..., d− 1}, then

sup
t∈R

∣∣∣∣P [f`(Kλ)− E f`(Kλ)

λ(d−1)/2(d+1)
≤ t
]
− P [N(0, σ2` ) ≤ t]

∣∣∣∣ ≤ ε(λ) = o(1),

where σ2` = lim
λ→∞

λ−
d−1
d+1 Varf`(Kλ).

Thm (scaling limit for boundary) For all L ∈ (0,∞), the interface
T (λ)(∂Kλ) converges in law as λ→∞ to parabolic festoon on H in
C([−L,L]) equipped with the sup norm.
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Main results: K = unit ball in Rd

H: rate one PPP in upper half-space.

ξ(x,H) := ξPar(x,H) :=

{
1 if x is extreme in H wrt parabolas

0 otherwise.

For all w1, w2 ∈ Rd put
cξ(w1, w2) :=

E ξ(w1,H ∪ {w2})ξ(w2,H ∪ {w1})− E ξ(w1,H)E ξ(w2,H)

and

V0,d :=

∫ ∞
−∞

E ξ((0, h),H)dh

+

∫ ∞
−∞

∫
Rd−1

∫ ∞
−∞

cξ((0, h), (v, h′))dh′dvdh.

Thm (variance asymptotics when K is unit ball) We have

lim
λ→∞

λ−
d−1
d+1 Varf0(Kλ) = c(d)V0,d.
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Main results: K = unit ball in Rd

Thm (functional CLT, d = 2) Define integrated defect volume

Wλ(ρ) :=

∫ ρ

0
(1− ∂Kλ(θ))dθ, ρ ∈ [0, 2π].

Then after centering and scaling, as λ→∞, Wλ(ρ) converges in law to a
Brownian motion in the space C([0, 2π]).
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Main results: K a simple polytope

Thm (scaling limit for boundary) Put

dP = edhdvdh.

For all L ∈ (0,∞) the interface T (λ)(∂Kλ) converges in law as λ→∞ to
hyperbolic festoon on P in C([−L,L]) equipped with the sup norm.

Thm (CLT) Let K be a simple polytope, ` ∈ {0, ..., d− 1}. Then

sup
t∈R

∣∣∣∣P [f`(Kλ)− E f`(Kλ)

(log λ)(d−1)/2
≤ t
]
− P [N(0, σ2` ) ≤ t]

∣∣∣∣ ≤ ε(λ) = o(1),

where σ2` = lim
λ→∞

(log λ)−(d−1)Varf`(Kλ).
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Main results: K a simple polytope

P: PPP with intensity density edh.

ξ(x,P) := ξHyp(x,P) :=

{
1 if x is extreme in P wrt hyperboloids

0 otherwise.

For all w1, w2 ∈ Rd put
cξ(w1, w2) :=

E ξ(w1,P ∪ {w2})ξ(w2,P ∪ {w1})− E ξ(w1,P)E ξ(w2,P)

and

V0,d :=

∫ ∞
−∞

E ξ((0, h),P)edhdh

+

∫ ∞
−∞

∫
Rd−1

∫ ∞
−∞

cξ((0, h), (v, h′))edhedh
′
dh′dvdh.

Thm (variance asymptotics when K is simple polytope) We have

lim
λ→∞

(log λ)−(d−1)Varf0(Kλ) = c(d) (number of vertices of K) V0,d,

where c(d) is explicit constant depending on d.
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Advantages to studying re-scaled picture

(i) spatial dependencies are easy to localize in re-scaled picture

(ii) geometry of paraboloids and hyperboloids is actually easier to work
with. Whether a point (v, h) ∈ Rd−1 ×R+ is extreme depends only on the
paraboloid (resp. hyperboloid) geometry inside a space-time cylinder (with
axis through v) having a random radius R, where R has exponentially
decaying tails.

(iii) the space correlations decay exponentially fast wrt spatial distance.
This leads to asymptotic independence and CLTs for e.g. the number of
extreme points.

(iv) re-scaled picture yields variance asymptotics and scaling limits.
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Scaling limits for Gaussian polytopes

Rn :=
√

2 log n− log(2 · (2π)d · log n).

Define scaling transform T (n) : Rd → Rd−1 × R

T (n)(x) :=

(
Rn exp−1

x

|x|
, R2

n(1− |x|
Rn

)

)
, x ∈ Rd.

Kn : convex hull of n i.i.d. Gaussian points in Rd

P: Poisson pt process on Rd−1 × R with intensity dP((v, h)) = ehdhdv.

Thm (scaling limit for boundary of Kn) For all L ∈ (0,∞), the interface
T (n)(∂Kn) converges in law as n→∞ to parabolic festoon on P in
C(Bd−1(−L,L)) equipped with the sup norm.
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THANK YOU
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