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1. Fock space representation of Poisson functionals

Setting

η is a Poisson process on some measurable space (X,X ) with
intensity measure λ. This is a random element in the space N
of all integer-valued σ-finite measures on X, equipped with the
usual σ-field with the following two properties:

The random variables η(B1), . . . , η(Bm) are stochastically
independent whenever B1, . . . ,Bm are measurable and
pairwise disjoint.

P(η(B) = k) =
λ(B)k

k !
exp[−λ(B)], k ∈ N0,B ∈ X ,

where∞ke−∞ := 0 for all k ∈ N0.
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Definition (Difference operator)

For a measurable function f : N→ R and x ∈ X we define a
function Dx f : N→ R by

Dx f (µ) := f (µ+ δx )− f (µ).

For x1, . . . , xn ∈ X we define Dn
x1,...,xn f : N→ R inductively by

Dn
x1,...,xn f := D1

x1
Dn−1

x2,...,xn f ,

where D1 := D and D0f = f .
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Definition

Let L2
η denote the space of all random variables F ∈ L2(P) such

that F = f (η) P-almost surely, for some measurable function
(representative) f : N→ R. In this case we define

Dn
x1,...,xnF := (Dn

x1,...,xn f )(η), x1, . . . , xn ∈ X.

Theorem (Ito, Y. ’88, L. and Penrose ’11)

For any F ,G ∈ L2
η,

Cov(F ,G) =
∞∑

n=1

1
n!

∫
(EDn

x1,...,xnF )(EDn
x1,...,xnG)λn(d(x1, . . . , xn)).
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2. The Poincaré inequality

Theorem (Chen ’85; Wu ’00; L. and Penrose ’11)

For any F ∈ L2
η,

Var[F ] ≤ E
∫

(DxF )2 λ(dx).

Equality holds iff F is a linear function of η.

Theorem

For any F ∈ L2
η,

Var[F ] ≥
∫

(EDxF )2 λ(dx).
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3. A perturbation formula

Theorem (Molchanov and Zuyev ’00, L. ’14)

Let λ be a σ-finite measure and ν be a finite signed measure
such that λ+ ν is a measure. Let ηλ and ηλ+ν be Poisson
processes with intensity measure λ and λ+ ν, respectively.
Suppose that f : N→ R is measurable and satisfies a suitable
integrability assumption. Then

Ef (ηλ+ν) = Ef (ηλ) +
∞∑

n=1

1
n!

∫
EDn

x1,...,xn f (ηλ) νn(d(x1, . . . , xn)).
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4. A covariance identity

Definition

For F ∈ L2
η with representative f we define,

PsF :=

∫
E[f (η(s) + χ) | η]Π(1−s)(dχ), s ∈ [0,1],

where η(s) is a s-thinning of η and Π(1−s) is the distribution of a
Poisson process with intensity measure (1− s)λ.

Theorem

For any F ,G ∈ L2
η such that DF ,DG ∈ L2(P⊗ λ),

Cov(F ,G) = E
∫∫ 1

0
(DxF )(PtDxG) dt λ(dx).
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5. The Stein-Malliavin method

Definition

The Wasserstein distance between the laws of two random
variables X ,Y is defined as

d1(X ,Y ) = sup
h∈Lip(1)

|Eh(X )− Eh(Y )|.

Theorem (Peccati, Solé, Taqqu and Utzet ’10)

Suppose that F ∈ L2
η satisfies EF = 0 and DF ∈ L2(P⊗ λ). Let

N be standard normal. Then

d1(F ,N) ≤ E
∣∣∣1− ∫∫ 1

0
(PtDxF )(DxF ) dt λ(dx)

∣∣∣
+ E

∫∫ 1

0
|PtDxF |(DxF )2 dt λ(dx).
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Idea of the proof:

Use Stein’s method:

d1(F ,N) ≤ sup
g∈AC1,2

|E[g′(F )− Fg(F )]|.

Use the covariance identity

EFg(F ) = E
∫∫ 1

0
(PtDxF )(Dxg(F )) dt λ(dx).

Use

Dxg(F ) = g(F + DxF )− g(F )

and the properties of g.

Günter Last A second order Poincaré inequality for Poisson processes



Remark

Schulte ’12 and Eichelsbacher and Thäle ’13 derived a similar
(but more complicated bound) for the Kolmogorov distance

dK (F ,N) = sup
x∈R
|P(F ≤ x)− P(N ≤ x)|

between the laws of F and N.
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6. The second order Poincaré inequality

Theorem (L., Peccati and Schulte ’14)

Let F ∈ L2
η be such DF ∈ L2(P⊗ λ), EF = 0 and Var F = 1,

and let N be standard normal. Then,

d1(F ,N) ≤ γ1 + γ2 + γ3,

where

γ2
1 := 4

∫ [
E(Dx1F )2(Dx2F )2]1/2[E(D2

x1,x3
F )2(D2

x2,x3
F )2]1/2 dλ3,

γ2
2 :=

∫
E(D2

x1,x3
F )2(D2

x2,x3
F )2 dλ3,

γ3 :=

∫
E|DxF |3 λ(dx).
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Theorem (L., Peccati and Schulte ’14)

Let F ∈ L2
η be such that DF ∈ L2(P⊗ λ), EF = 0 and

Var F = 1, and let N be standard normal. Then,

dK (F ,N) ≤ γ1 + γ2 + γ3 + γ4 + γ5 + γ6,

where

γ4 :=
1
2
[
EF 4]1/4

∫ [
E(DxF )4]3/4

λ(dx),

γ2
5 :=

∫
E(DxF )4λ(dx),

γ2
6 :=

∫
6
[
E(Dx1F )4]1/2[E(D2

x1,x2
F )4]1/2

λ2(d(x1, x2))

+

∫
3E(D2

x1,x2
F )4λ2(d(x1, x2)).
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Theorem (L., Peccati and Schulte ’14)

For F ,G ∈ dom D with EF = EG = 0, we have

E
(
Cov(F ,G)−

∫∫ 1

0
(DxF )(PtDxG) dt λ(dx)

)2

≤ 3
∫ [

E(D2
x1,x3

F )2(D2
x2,x3

F )2]1/2[E(Dx1G)2(Dx2G)2]1/2 dλ3

+

∫ [
E(Dx1F )2(Dx2F )2]1/2[E(D2

x1,x3
G)2(D2

x2,x3
G)2]1/2 dλ3

+

∫ [
E(D2

x1,x3
F )2(D2

x2,x3
F )2]1/2[E(D2

x1,x3
G)2(D2

x2,x3
G)2]1/2 dλ3.
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7. Additive functionals of the Boolean model

Setting

ξ is an independent marking of a stationary Poisson process η
with intensity γ > 0. The marks come from the space of all
non-empty convex bodies in Rd and have distribution Q. The
Boolean model is the random closed set given by

Z :=
⋃

(x ,K )∈ξ

(K + x).

We consider a measurable, additive and locally bounded
functional ϕ on the convex ring.
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Assumption

We assume that ∫
V̄ (K )3 Q(dK ) <∞

where V̄ := V0 + · · ·+ Vd is the sum of intrinsic volumes (Wills
functional).

Theorem (Hug, L. and Schulte ’15+)

Let W ⊂ Rd be a convex body and assume that
σ2

W := Var[FW ] > 0, where FW := ϕ(Z ∩W ). Let
F̂W := σ−1

W (FW − E[FW ]). Then

d1(F̂W ,N) ≤ c1σ
−2
W V̄ (W )1/2 + c2σ

−3
W V̄ (W ),

where c1, c2 do not depend on W.
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Example

In the case ϕ := Vd we have

d1(F̂W ,N) ≤
[
3(γγ2)3/2cW + γγ

1/2
3 (cW )3/2]Vd (W )−1/2,

where γi :=
∫

Vd (K )i Q(dK ) and

cW := Vd (W )(1− p)−2
[ ∫

Vd (W ∩ (W + x))
(
eγβd (x) − 1

)
dx
]−1

.

Here p = 1− exp[−γγ1] is the volume fraction of Z and
βd (x) :=

∫
λd (K ∩ (K + x))Q(dK ).
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8. Clusters of the Gilbert graph

Setting

ξ is an independent marking of a stationary Poisson process η
with intensity γ > 0. The marks are non-negative random
variables (radii). The Gilbert graph has vertex set η and an
edge between two different points x , y ∈ η if the balls centred at
x and y overlap. A k -cluster is a connected component with k
points.
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Theorem

Let k ≥ 1 and FW be the number of k-clusters within a compact
observation window W. Let F̂W := Var[FW ]−1(FW − E[FW ]).
Then, under a suitable (polynomial) moment assumption on the
radius distribution,

max{dK (F̂W ,N),d1(F̂W ,N)} ≤ cλd (W )−1/2,

where c > 0 does not depend on W.

Remark

Penrose ’03 proved the (multivariate) CLT for the Gilbert graph
with deterministic radii.
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9. Cluster counting in the random connection model
(Work in progress)

Setting

Let η be a stationary Poisson process with intensity γ > 0 and
let ϕ : Rd → [0,1] be a measurable and symmetric connection
function. Given η, connect any two points x , y ∈ η with
probability ϕ(x − y) independently of all other pairs. This gives
the random connection model (η, χ), where χ is the point
process of edges.

Günter Last A second order Poincaré inequality for Poisson processes



Theorem (van de Brug and Meester ’04)

Suppose that ϕ(x) = ϕ̃(|x |) for a decreasing function ϕ̃
satisfying

∫
rd−1ϕ̃(r)dr <∞. Let FW be the number of isolated

points within a compact observation window W. Let
F̂W := Var[FW ]−1/2(FW − E[FW ]). Then F̂W

d→ N as W ↑ Rd . If
ϕ has bounded support, then the same holds for the number of
k-clusters.
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Goal

The number FW of k -clusters within a compact observation
window W satisfies

max{d1(F̂W ,N),dK (F̂W ,N)} ≤ cλd (W )−1/2.

This should hold under minimal assumptions on ϕ and also for
other suitable localizing (stabilizing) functionals FW .
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Chen, L. (1985). Poincaré-type inequalities via stochastic
integrals. Z. Wahrscheinlichkeitstheorie verw. Gebiete 69,
251-277.
Eichelsbacher, P. and Thäle, Ch. (2013). New
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