

Günter Last Institut für Stochastik Karlsruher Institut für Technologie DFG FORSCHERGRUPPE Geometry & Physics of Spatial Random Systems

<ロト <団ト < 国ト < 国ト

A second order Poincaré inequality for functionals of general Poisson processes

Günter Last (Karlsruhe) joint work with Giovanni Peccati and Matthias Schulte

presented at the

Workshop on New Directions in Stein's Method

Singapore, Institute for Mathematical Sciences, 18-29 May, 2015

1. Fock space representation of Poisson functionals

Setting

 η is a Poisson process on some measurable space (X, X) with intensity measure λ . This is a random element in the space **N** of all integer-valued σ -finite measures on X, equipped with the usual σ -field with the following two properties:

The random variables η(B₁),..., η(B_m) are stochastically independent whenever B₁,..., B_m are measurable and pairwise disjoint.

$$\mathbb{P}(\eta(B) = k) = \frac{\lambda(B)^k}{k!} \exp[-\lambda(B)], \quad k \in \mathbb{N}_0, B \in \mathcal{X},$$

where $\infty^{k} e^{-\infty} := 0$ for all $k \in \mathbb{N}_{0}$.

Definition (Difference operator)

For a measurable function $f : \mathbf{N} \to \mathbb{R}$ and $x \in \mathbb{X}$ we define a function $D_x f : \mathbf{N} \to \mathbb{R}$ by

$$D_{\mathbf{X}}f(\mu) := f(\mu + \delta_{\mathbf{X}}) - f(\mu).$$

For $x_1, \ldots, x_n \in \mathbb{X}$ we define $D^n_{x_1, \ldots, x_n} f : \mathbf{N} \to \mathbb{R}$ inductively by

$$D_{x_1,\ldots,x_n}^n f := D_{x_1}^1 D_{x_2,\ldots,x_n}^{n-1} f,$$

where $D^1 := D$ and $D^0 f = f$.

A second order Poincaré inequality for Poisson processes

Definition

Let L^2_{η} denote the space of all random variables $F \in L^2(\mathbb{P})$ such that $F = f(\eta) \mathbb{P}$ -almost surely, for some measurable function (representative) $f : \mathbb{N} \to \mathbb{R}$. In this case we define

$$D^n_{x_1,\ldots,x_n}F := (D^n_{x_1,\ldots,x_n}f)(\eta), \quad x_1,\ldots,x_n \in \mathbb{X}.$$

Theorem (Ito, Y. '88, L. and Penrose '11)

For any $F, G \in L^2_{\eta}$,

$$\mathbb{C}\operatorname{ov}(F,G) = \sum_{n=1}^{\infty} \frac{1}{n!} \int (\mathbb{E}D_{x_1,\ldots,x_n}^n F)(\mathbb{E}D_{x_1,\ldots,x_n}^n G)\lambda^n(d(x_1,\ldots,x_n)).$$

A second order Poincaré inequality for Poisson processes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. The Poincaré inequality

Theorem (Chen '85; Wu '00; L. and Penrose '11)

For any $F \in L^2_n$,

$$\operatorname{Var}[F] \leq \mathbb{E} \int (D_x F)^2 \lambda(dx).$$

Equality holds iff F is a linear function of η .

Theorem

For any $F \in L_n^2$,

$$\operatorname{Var}[F] \geq \int (\mathbb{E}D_x F)^2 \lambda(dx).$$

A second order Poincaré inequality for Poisson processes

э.

3. A perturbation formula

Theorem (Molchanov and Zuyev '00, L. '14)

Let λ be a σ -finite measure and ν be a finite signed measure such that $\lambda + \nu$ is a measure. Let η_{λ} and $\eta_{\lambda+\nu}$ be Poisson processes with intensity measure λ and $\lambda + \nu$, respectively. Suppose that $f : \mathbf{N} \to \mathbb{R}$ is measurable and satisfies a suitable integrability assumption. Then

$$\mathbb{E}f(\eta_{\lambda+\nu})=\mathbb{E}f(\eta_{\lambda})+\sum_{n=1}^{\infty}\frac{1}{n!}\int\mathbb{E}D_{x_{1},\ldots,x_{n}}^{n}f(\eta_{\lambda})\nu^{n}(d(x_{1},\ldots,x_{n})).$$

A second order Poincaré inequality for Poisson processes

< ┌── ▶ < 三 ▶ <

4. A covariance identity

Definition

For $F \in L^2_\eta$ with representative *f* we define,

$$\boldsymbol{P}_{\boldsymbol{s}}\boldsymbol{F} := \int \mathbb{E}[f(\eta^{(\boldsymbol{s})} + \chi) \mid \eta] \Pi_{(1-\boldsymbol{s})}(\boldsymbol{d}\chi), \quad \boldsymbol{s} \in [0, 1],$$

where $\eta^{(s)}$ is a *s*-thinning of η and $\Pi_{(1-s)}$ is the distribution of a Poisson process with intensity measure $(1 - s)\lambda$.

Theorem

For any $F, G \in L^2_\eta$ such that $DF, DG \in L^2(\mathbb{P} \otimes \lambda)$,

$$\mathbb{C}\mathrm{ov}(F,G) = \mathbb{E} \iint_0^1 (D_x F)(P_t D_x G) dt \lambda(dx).$$

< 回 > < 三 > < 三 >

5. The Stein-Malliavin method

Definition

The Wasserstein distance between the laws of two random variables X, Y is defined as

$$d_1(X, Y) = \sup_{h \in \text{Lip}(1)} |\mathbb{E}h(X) - \mathbb{E}h(Y)|.$$

Theorem (Peccati, Solé, Taqqu and Utzet '10)

Suppose that $F \in L^2_{\eta}$ satisfies $\mathbb{E}F = 0$ and $DF \in L^2(\mathbb{P} \otimes \lambda)$. Let N be standard normal. Then

$$egin{aligned} &d_1(F,N) \leq \mathbb{E} \Big| 1 - \iint_0^1 (P_t D_x F) (D_x F) \, dt \, \lambda(dx) \ &+ \mathbb{E} \iint_0^1 |P_t D_x F| (D_x F)^2 \, dt \, \lambda(dx). \end{aligned}$$

Idea of the proof:

Use Stein's method:

$$d_1(F,N) \leq \sup_{g \in \mathbf{AC}_{1,2}} |\mathbb{E}[g'(F) - Fg(F)]|.$$

Use the covariance identity

$$\mathbb{E} Fg(F) = \mathbb{E} \iint_0^1 (P_t D_x F)(D_x g(F)) dt \,\lambda(dx).$$

Use

$$D_x g(F) = g(F + D_x F) - g(F)$$

and the properties of g.

A (10) > A (10) > A (10)

Remark

Schulte '12 and Eichelsbacher and Thäle '13 derived a similar (but more complicated bound) for the Kolmogorov distance

$$d_{\mathcal{K}}(\mathcal{F},\mathcal{N}) = \sup_{x\in\mathbb{R}} |\mathbb{P}(\mathcal{F}\leq x) - \mathbb{P}(\mathcal{N}\leq x)|$$

between the laws of F and N.

< 回 > < 回 > < 回 >

э.

6. The second order Poincaré inequality

Theorem (L., Peccati and Schulte '14)

Let $F \in L^2_{\eta}$ be such $DF \in L^2(\mathbb{P} \otimes \lambda)$, $\mathbb{E}F = 0$ and \mathbb{V} ar F = 1, and let N be standard normal. Then,

$$d_1(F,N) \leq \gamma_1 + \gamma_2 + \gamma_3,$$

where

$$\begin{split} \gamma_1^2 &:= 4 \int \left[\mathbb{E}(D_{x_1}F)^2 (D_{x_2}F)^2 \right]^{1/2} \left[\mathbb{E}(D_{x_1,x_3}^2F)^2 (D_{x_2,x_3}^2F)^2 \right]^{1/2} d\lambda^3, \\ \gamma_2^2 &:= \int \mathbb{E}(D_{x_1,x_3}^2F)^2 (D_{x_2,x_3}^2F)^2 d\lambda^3, \\ \gamma_3 &:= \int \mathbb{E}|D_xF|^3 \lambda(dx). \end{split}$$

Theorem (L., Peccati and Schulte '14)

Let $F \in L^2_{\eta}$ be such that $DF \in L^2(\mathbb{P} \otimes \lambda)$, $\mathbb{E}F = 0$ and \mathbb{V} ar F = 1, and let N be standard normal. Then,

$$d_{\mathcal{K}}(\mathcal{F},\mathcal{N}) \leq \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 + \gamma_5 + \gamma_6,$$

where

$$\begin{split} \gamma_4 &:= \frac{1}{2} \big[\mathbb{E} F^4 \big]^{1/4} \int \big[\mathbb{E} (D_x F)^4 \big]^{3/4} \lambda(dx), \\ \gamma_5^2 &:= \int \mathbb{E} (D_x F)^4 \lambda(dx), \\ \gamma_6^2 &:= \int 6 \big[\mathbb{E} (D_{x_1} F)^4 \big]^{1/2} \big[\mathbb{E} (D_{x_1, x_2}^2 F)^4 \big]^{1/2} \lambda^2 (d(x_1, x_2)) \\ &+ \int 3 \mathbb{E} (D_{x_1, x_2}^2 F)^4 \lambda^2 (d(x_1, x_2)). \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э.

Theorem (L., Peccati and Schulte '14)

For $F, G \in \text{dom } D$ with $\mathbb{E}F = \mathbb{E}G = 0$, we have

$$\begin{split} & \mathbb{E} \bigg(\mathbb{C} \mathsf{ov}(F,G) - \iint_{0}^{1} (D_{x}F) (P_{t}D_{x}G) \, dt \, \lambda(dx) \bigg)^{2} \\ & \leq 3 \int \big[\mathbb{E} (D_{x_{1},x_{3}}^{2}F)^{2} (D_{x_{2},x_{3}}^{2}F)^{2} \big]^{1/2} \big[\mathbb{E} (D_{x_{1}}G)^{2} (D_{x_{2}}G)^{2} \big]^{1/2} \, d\lambda^{3} \\ & + \int \big[\mathbb{E} (D_{x_{1}}F)^{2} (D_{x_{2}}F)^{2} \big]^{1/2} \big[\mathbb{E} (D_{x_{1},x_{3}}^{2}G)^{2} (D_{x_{2},x_{3}}^{2}G)^{2} \big]^{1/2} \, d\lambda^{3} \\ & + \int \big[\mathbb{E} (D_{x_{1},x_{3}}^{2}F)^{2} (D_{x_{2},x_{3}}^{2}F)^{2} \big]^{1/2} \big[\mathbb{E} (D_{x_{1},x_{3}}^{2}G)^{2} (D_{x_{2},x_{3}}^{2}G)^{2} \big]^{1/2} \, d\lambda^{3}. \end{split}$$

・ロ・・ (日・・ ヨ・・

7. Additive functionals of the Boolean model

Setting

 ξ is an independent marking of a stationary Poisson process η with intensity $\gamma > 0$. The marks come from the space of all non-empty convex bodies in \mathbb{R}^d and have distribution \mathbb{Q} . The Boolean model is the random closed set given by

$$Z := \bigcup_{(x,K)\in\xi} (K+x).$$

We consider a measurable, additive and locally bounded functional φ on the convex ring.

Assumption

We assume that

$$\int ar{V}(K)^3 \, \mathbb{Q}(dK) < \infty$$

where $\bar{V} := V_0 + \cdots + V_d$ is the sum of intrinsic volumes (Wills functional).

Theorem (Hug, L. and Schulte '15+)

Let $W \subset \mathbb{R}^d$ be a convex body and assume that $\sigma_W^2 := \mathbb{V}ar[F_W] > 0$, where $F_W := \varphi(Z \cap W)$. Let $\hat{F}_W := \sigma_W^{-1}(F_W - \mathbb{E}[F_W])$. Then

$$d_1(\hat{F}_W, N) \leq c_1 \sigma_W^{-2} \bar{V}(W)^{1/2} + c_2 \sigma_W^{-3} \bar{V}(W),$$

where c_1, c_2 do not depend on W.

I NOR

Example

In the case $\varphi := V_d$ we have

$$d_1(\hat{F}_W, N) \leq \left[3(\gamma \gamma_2)^{3/2} c_W + \gamma \gamma_3^{1/2} (c_W)^{3/2} \right] V_d(W)^{-1/2}$$

where $\gamma_i := \int V_d(K)^i \mathbb{Q}(dK)$ and

$$c_W := V_d(W)(1-p)^{-2} \bigg[\int V_d(W \cap (W+x)) (e^{\gamma \beta_d(x)} - 1) dx \bigg]^{-1}$$

Here $p = 1 - \exp[-\gamma \gamma_1]$ is the volume fraction of *Z* and $\beta_d(x) := \int \lambda_d(K \cap (K + x)) \mathbb{Q}(dK)$.

8. Clusters of the Gilbert graph

Setting

 ξ is an independent marking of a stationary Poisson process η with intensity $\gamma > 0$. The marks are non-negative random variables (radii). The Gilbert graph has vertex set η and an edge between two different points $x, y \in \eta$ if the balls centred at x and y overlap. A *k*-cluster is a connected component with *k* points.

Theorem

Let $k \ge 1$ and F_W be the number of k-clusters within a compact observation window W. Let $\hat{F}_W := \mathbb{V}ar[F_W]^{-1}(F_W - \mathbb{E}[F_W])$. Then, under a suitable (polynomial) moment assumption on the radius distribution,

$$\max\{d_{\mathcal{K}}(\hat{\mathcal{F}}_{\mathcal{W}},\mathcal{N}),d_1(\hat{\mathcal{F}}_{\mathcal{W}},\mathcal{N})\}\leq c\lambda_d(\mathcal{W})^{-1/2},$$

where c > 0 does not depend on W.

Remark

Penrose '03 proved the (multivariate) CLT for the Gilbert graph with deterministic radii.

9. Cluster counting in the random connection model (Work in progress)

Setting

Let η be a stationary Poisson process with intensity $\gamma > 0$ and let $\varphi : \mathbb{R}^d \to [0, 1]$ be a measurable and symmetric connection function. Given η , connect any two points $x, y \in \eta$ with probability $\varphi(x - y)$ independently of all other pairs. This gives the random connection model (η, χ) , where χ is the point process of edges.

< 🗇 > < 🖻 > <

Theorem (van de Brug and Meester '04)

Suppose that $\varphi(x) = \tilde{\varphi}(|x|)$ for a decreasing function $\tilde{\varphi}$ satisfying $\int r^{d-1} \tilde{\varphi}(r) dr < \infty$. Let F_W be the number of isolated points within a compact observation window W. Let $\hat{F}_W := \mathbb{V} \operatorname{ar}[F_W]^{-1/2}(F_W - \mathbb{E}[F_W])$. Then $\hat{F}_W \xrightarrow{d} N$ as $W \uparrow \mathbb{R}^d$. If φ has bounded support, then the same holds for the number of *k*-clusters.

Goal

The number F_W of *k*-clusters within a compact observation window *W* satisfies

$$\max\{d_1(\hat{F}_W, N), d_{\mathcal{K}}(\hat{F}_W, N)\} \le c\lambda_d(W)^{-1/2}$$

This should hold under minimal assumptions on φ and also for other suitable localizing (stabilizing) functionals F_W .

< 同 > < 三 > < 三 >

10. References

- van de Brug, T. and Meester, R. (2004). On central limit theorems in the random connection model. *Physica A* 332, 263-278.
- Chatterjee, S. (2009). Fluctuations of eigenvalues and second order Poincaré inequalities. *Probab. Theory Related Fields* 143, 1-40.
- Chen, L. (1985). Poincaré-type inequalities via stochastic integrals. *Z. Wahrscheinlichkeitstheorie verw. Gebiete* 69, 251-277.
- Eichelsbacher, P. and Thäle, Ch. (2013). New Berry-Esseen bounds for non-linear functionals of Poisson random measures. arXiv: 1310.1595.

< 同 > < 三 > < 三 >

- Hug, D., Last, G. and Schulte, M. (2015+). Second order properties and central limit theorems for Boolean models. To appear in *Ann. Appl. Probab.*
- Ito, Y. (1988). Generalized Poisson functionals. Probab. Th. Rel. Fields 77, 1-28.
- Last, G. (2014). Perturbation analysis of Poisson processes. *Bernoulli* 20, 486-513.
- Last, G., Peccati, G. and Schulte, M. (2014). Normal approximation on Poisson spaces: Mehler's formula, second order Poincaré inequalities and stabilization. arXiv:1401.7568
- Last, G. and Penrose, M.D. (2011). Fock space representation, chaos expansion and covariance inequalities for general Poisson processes. *Probab. Th. Rel. Fields* 150, 663-690.

Last, G. and Penrose, M.D. (2015+). Lectures on the Poisson Process. To be published by Oxford University Press.

- Molchanov, I. and Zuyev, S (2000). Variational analysis of functionals of Poisson processes. *Math. Operat. Res.* 25, 485-508.
- Peccati, G., Solé, J.L., Taqqu, M.S. and Utzet, F. (2010). Stein's method and normal approximation of Poisson functionals. *Ann. Probab.* **38**, 443-478.
- Penrose, M. (2003). Random Geometric Graphs. Oxford University Press, Oxford.
- Penrose, M.D. and Yukich, J.E. (2005). Normal approximation in geometric probability. Barbour, A. and L. Chen (eds.). Stein's method and applications. Singapore University Press.
- Schulte, M. (2015+). Normal approximation of Poisson functionals in Kolmogorov distance. to appear in *J. Theoret. Probab.*

< ロ > < 同 > < 三 > < 三 > -

э.

Announcement of the Conference

Geometry and Physics of Spatial Random Systems

September 6–11, 2015 Bad Herrenalb (Germany)

< 回 > < 回 > < 回 >