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OBJECTIVE

W . . . a Rd -valued random vector to be approximated
Zd . . . a standard d-variate normal random vector
C . . . the family of all measurable convex sets in Rd

Consider the following type of the error in the
approximation of L (W ) with L (Zd ):

sup
C∈C

∣∣P(W ∈ C)− P(Zd ∈ C)
∣∣ .
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COMBINATORIAL CENTRAL LIMIT THEOREM (1)

N . . . set with n elements
a(i , j) ∈ Rd ; i , j ∈ N
π : N → N . . . uniformly distributed random permutation
W =

∑
i∈N a(i , π(i))

a(i , j) can be chosen so that EW = 0 and
var(W ) = EWW T = I.

Theorem
There exists a universal constant K , such that for all C ∈ C ,∣∣P(W ∈ C)− P(Zd ∈ C)

∣∣ ≤ K d1/4 1
n

∑
i∈N

∑
j∈N

|a(i , j)|3 ,

where | · | denotes the Euclidean norm.
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COMBINATORIAL CENTRAL LIMIT THEOREM (2)

Bolthausen (1984) proved the univariate version.
Bolthausen and Götze (1993) claimed to have proved even
an extension of the preceding theorem. However . . .
Chen and Shao (2007) found a counter-example: the
extended result is wrong and the proof does not work even
for the basic version.
Nevertheless, the basic version holds true and can be
extended to various other cases: vectors a(i , j) being
random, multiply-indexed permutation statistics, i. e.,∑

i1,...,ik∈N

a
(
i1, . . . , ik , π(i1), . . . , π(ik )

)
etc.
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COMBINATORIAL CENTRAL LIMIT THEOREM (3)

Theorem
There exists a universal constant K , such that for all C ∈ C ,∣∣P(W ∈ C)− P(Zd ∈ C)

∣∣ ≤ K d1/4 1
n

∑
i∈N

∑
j∈N

|a(i , j)|3 ,

where | · | denotes the Euclidean norm.
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LOCAL DEPENDENCE (1)

N . . . index set
G . . . undirected graph with vertex set N
(Xi)i∈N . . . a family of Rd -valued random vectors
For any disjoint I, J ⊆ N, such that there is no edge with
one endpoint in I and the other in J, the families (Xi)i∈I and
(Xj)j∈J are independent.
W =

∑
i∈N Xi ; EW = 0, var(W ) = I

Theorem
There exists a universal constant K , such that for all C ∈ C ,∣∣P(W ∈ C)− P(Zd ∈ C)

∣∣ ≤ K d1/4(D + 1)2
∑
i∈N

E |Xi |3 ,

where D denotes the maximum degree of a vertex of G.
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LOCAL DEPENDENCE (2)

Barbour, Karoński and Ruciński (1989) proved the result
for the univariate case and the Wasserstein metric.
Rinott and Rotar (1996) derived a result for the multivariate
case and indicators of measurable convex sets. However,
the summands need to be bounded, there is an additional
logarithmic factor and the factor arising from the
dependence graph is in general larger.
Chen and Shao (2004) proved a univariate Berry–Esséen
type bound, but again, the factor arising from the
dependence graph is in general larger.
Fang and Röllin (2012) proved a multivariate CLT, but the
summands essentially need to be bounded and the
dependence on dimension is suboptimal. However, their
result yields optimal bounds in many special cases.
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LOCAL DEPENDENCE (3)

Theorem
There exists a universal constant K , such that for all C ∈ C ,∣∣P(W ∈ C)− P(Zd ∈ C)

∣∣ ≤ K d1/4(D + 1)2
∑
i∈N

E |Xi |3 ,

where D denotes the maximum degree of a vertex of G.
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GENERAL APPROACH

W =

∫
Ψ(dξ), where Ψ is a random Rd -valued measure

ψ = EΨ . . . its mean measure, i. e., EW =

∫
ψ(dξ)

V . . . another random variable
A family (Vξ)ξ of random variables fits the conditioning of V
given Ψ if for any suitable function F ,

E
∫

F (ξ,V ) Ψ(dξ) =

∫
EF (ξ,Vξ)ψ(dξ) .

If the domain of Ψ is finite or countable and the conditional
distribution of V given Ψ({ξ}) = x is the same for all x 6= 0,
this can be taken to be the distribution of Vξ.
This concept is a generalization of Palm measures and
encompasses summation as well as conditioning. It could
potentially be used in stochastic geometry.
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THE STEIN EXPECTATION (1)

Suppose that EW = 0 and var(W ) = I and that (Wξ)ξ fits the
conditioning of W given Ψ. Then for any suitable function g,

E〈∇g(W ),W 〉 = E
∫
〈∇g(W ),Ψ(dξ)〉 =

∫
〈E∇g(Wξ), ψ(dξ)〉 .

Now as EW = 0, we also have:∫
〈E∇g(W ), ψ(dξ)〉 = 0 ,

so that:

E〈∇g(W ),W 〉 =

∫ 〈
E∇g(Wξ)−∇g(W ), ψ(dξ)

〉
=

=

∫
E
〈
∇2g(τWξ + (1− τ)W ), (Wξ −W )⊗ ψ(dξ)

〉
,

where τ ∼ U(0,1) is independent of all other variates.
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THE STEIN EXPECTATION (2)

Now let:

Wξ −W =

∫
Ψξ(dη);(

W (0)
ξη ,W

(1)
ξη

)
η

fit the conditioning of (Wξ,W ) given Ψξ.

ψξ . . . the mean measure of Ψξ.
Then:

E〈∇g(W ),W 〉 =

=

∫
E
∫ 〈
∇2g(τWξ + (1− τ)W ),Ψξ(dη)⊗ ψ(dξ)

〉
=

=

∫∫
E
〈
∇2g

(
τW (0)

ξη + (1− τ)W (1)
ξη

)
, ψξ(dη)⊗ ψ(dξ)

〉
.
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THE STEIN EXPECTATION (3)

Next,

I = EWW T = E
∫

W Ψ(dξ)T =

∫
EWξ ψ(dξ)T =

=

∫
E(Wξ −W )ψ(dξ)T =

∫∫
ψξ(dη)ψ(dξ)T ,

and consequently,

∆g(w) = 〈∇2g(w), I〉 =

∫∫ 〈
∇2g(w), ψξ(dη)⊗ ψ(dξ)

〉
.

Thus,

E
[
〈∇g(W ),W 〉 −∆g(W )

]
=

=

∫∫
E
〈
∇2g

(
τW (0)

ξη + (1− τ)W (1)
ξη

)
−∇2g(W ),

ψξ(dη)⊗ ψ(dξ)
〉
.
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THE STEIN EXPECTATION (4)

Thus, if g solves the Stein equation:

〈∇g(w),w〉 −∆g(w) = f (w)− E f (Zd )

and the third derivatives are bounded, one can estimate the
error in terms of:∫∫

E
[∣∣W (0)

ξη −W
∣∣+
∣∣W (1)

ξη −W
∣∣)]|ψξ|(dη) |ψ|(dξ) .

Remarks:
The right hand side corresponds to third moments.
The expansion can be continued to arbitrary order.
The key point is coupling of conditional distributions, e. g.,
of Wξ, with the original distribution of W .
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COMBINATORIAL CLT: THE BASIC COUPLING

W =
∑
i∈N

a(i , π(i)) =

∫
dΨ(ξ), where

the domain of Ψ is N × N and Ψ =
∑

i∈N a(i , π(i))δ(i,π(i)).
For x 6= 0, either {Ψ({(i , j)}) = x} = ∅ or
{Ψ({(i , j)}) = x} = {π(i) = j}.

πi→j(k) =


j ; k = i

π(i) ; k = π−1(j)
π(k) ; otherwise

is close to π.

W(i,j) =
∑

k∈N a(k , πi→j(k)) is close to W .
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LOCAL DEPENDENCE: THE BASIC COUPLING

W =
∑

i∈N Xi with Xi being locally dependent
For the domain of Ψ, take N × Rd .
Ψ =

∑
i∈N Xiδ(i,Xi ).

Conditioning at the point (i , x) is equivalent to conditioning
on {Xi = x}.
Xi is independent of the family (Xj)j 6=i

j�i
, where ∼ denotes

adjacency.
For x ∈ Rd , choose (Xj|(i,x))j 6=i

j∼i
so that its conditional

distribution given (Xj)j 6=i
j�i

matches the conditional

distribution of (Xj)j 6=i
j∼i

given Xi = x and (Xj)j 6=i
j�i

.

W(i,x) = x +
∑

j 6=i
j∼i

Xj|(i,x) +
∑

j 6=i
j�i

Xj is close to W .
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BOUNDS FOR SMOOTH TEST FUNCTIONS

Loosely speaking, the Stein expectation can be expressed in
the form:

E
[
〈∇g(W ),W 〉 −∆g(W )

]
=

∫∫∫
E〈∇3g(W̃ ),XXX 〉 ,

where X stands for ψ(dξ), ψξ(dη) or ψ(r)
ξη (dζ) and where

W (r)
ξη −W =

∫
Ψ

(r)
ξη (dζ). In the combinatorial limit theorem, we

have: ∫∫∫
|XXX | ≤ K

n

∑
i∈N

∑
j∈N

|a(i , j)|3 ,

while for local dependence, we have:∫∫∫
|XXX | ≤ K (D + 1)2

∑
i∈N

E |Xi |3 .

This allows us to bound |E f (W )− E f (Zd )|, provided that
∇3g(W ) is bounded. This happens if ∇f is Lipschitz.
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TOWARDS THE MAIN RESULT (1)

Ball (1993), Bentkus (2003): for each ε > 0, there exist smooth
functions f+ε and f−ε , such that:

P(W ∈ C)− P(Zd ∈ C) ≤ E f+ε (W )− E f+ε (Zd )
)

+ 4εd1/4

P(W ∈ C)− P(Zd ∈ C) ≥ E f−ε (W )− E f−ε (Zd )
)
− 4εd1/4

and that |∇2f+/−ε | = O(ε−2).
Next, the solution gε to the Stein equation for f+/−ε can be
expressed as:

gε =

∫ π/2

0
gε,α dα ,

where:

gε,α(w) = E f+/−(cosαw + sinαZd ) tanα .

Then we have:

|∇3gε,α| = O(min{ε−2, cot2 α}) .
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TOWARDS THE MAIN RESULT (2)

Thus, one can bound:∣∣∣∣∫∫∫ E〈∇3g(W̃ ),XXX 〉
∣∣∣∣ = O(min{ε−2, cot2 α})

∫∫∫
|XXX | ,

but this leads to suboptimal bounds. However, it can be shown
that: ∣∣〈E∇3gε,α(Zd ),XXX 〉

∣∣ ≤ cos2 α sinα|XXX |

and therefore: ∣∣〈E∇3gε(Zd ),XXX 〉
∣∣ ≤ 1

6
|XXX | .
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TOWARDS THE MAIN RESULT (3)

If W̃ is approximately normal and the error for the indicators of
convex sets can be estimated by δ, we have:∣∣E〈∇3gε,α(W̃ )−∇3gε,α(Z ),XXX 〉

∣∣ ≤ K δmin{ε−2, cot2 α}|XXX |

Applying the estimate:∫ π/2

0
min{a,b cot2 α}dα ≤ 2

√
ab

we find that:

|P(W ∈ C)− P(Zd ∈ C)| ≤

≤ K
(
εd1/4 +

(
1 +

δ

ε

)∫∫∫
|XXX |

)
.

If δ = O(d1/4 ∫∫∫ |XXX |), one can choose ε = δ/d1/4 to obtain:

|P(W ∈ C)− P(Zd ∈ C)| ≤ K d1/4
∫∫∫

|XXX | .
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TOWARDS THE MAIN RESULT (4)

How do we know that W̃ is approximately normal?

One reason can be that W̃ is actually close to W . The
argument is most effective if the difference is bounded.
This argument has been used several times (Rinott and
Rotar (1996), Fang and Röllin (2012), Fang (2014)).
Bolthausen and Götze (1993) used this argument in a
wrong way.
Götze (1991) uses induction: approximate normality of W̃
is the induction hypothesis. However, for sums of
independent random vectors, this is easy.
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TOWARDS THE MAIN RESULT (5)

Take an index set Λ.
For each λ ∈ Λ, take a random variable Wλ with EWλ = 0
and var(Wλ)

)
= I along with all necessary decompositions.

For each λ ∈ Λ, specify β(λ), which is a suspected upper
bound on the error in the normal approximation of Wλ

(typically, one takes β(λ) =
∫∫∫
|XXX |).

The goal is to prove that there exists a constant K , such
that: ∣∣P(Wλ ∈ C)− P(Zd ∈ C)

∣∣ ≤ K β(λ)

for all λ ∈ Λ and for all C ∈ C .
Typically, there are several random variables W̃λ arising
from decompositions. Assume that each one of them has
the same distribution as Q̃λWλ̃ + w̃λ.

The induction gets through if Q̃λQ̃T
λ are not too far from I

and if β(λ̃) are not too different from β(λ).
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TOWARDS THE MAIN RESULT (6)

The differences between Q̃λQ̃T
λ and I and between β(λ̃) and

β(λ) can give rise to higher moments. To avoid this, one needs
to compare the first- and the third-order expansions:〈

E∇g
(
W̃ (1)
λ

)
,X
〉

W̃ (1)
λ

d
= Q̃(1)

λ W̃λ̃1
+ w̃ (1)

λ ,〈
E∇3g

(
W̃ (3)
λ

)
,XXX

〉
W̃ (3)
λ

d
= Q̃(3)

λ W̃λ̃3
+ w̃ (3)

λ .

Let D stand either for:

E
[
min

{
1, tr

∣∣I− Q̃(1)
λ Q̃(1)T

λ

∣∣+
(
β(λ̃1)− β(λ)

)
+

}]
or for:

E
[
min

{
1,
∥∥I− Q̃(3)

λ Q̃(3)T
λ

∥∥+
(
β(λ̃3)− β(λ)

)
+

}]
.
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MAIN RESULT

Theorem
If there exists a constant K1, such that for all λ ∈ Λ,∫∫∫

|XXX |+
∫
|X |D +

∫
|X |
(∫∫

|XX |D
)2/3

≤ K1 β(λ) ,

then there exists another constant K2, such that for all λ ∈ Λ
and all C ∈ C ,∣∣P(Wλ ∈ C)− P(Zd ∈ C)

∣∣ ≤ K2 d1/4 β(λ) .

The combinatorial CLT and the result for the local dependence
follow.
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THANK YOU FOR YOUR ATTENTION!
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