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STEIN METHOD ON Z+-VALUED RVS

Let Y be a Z+-valued rv with E(|Y |) <∞ and

F := {f |f : Z+ → R is bounded}.

We want to estimate Ef (Z )− Ef (Y ) for some rv Z concentrated on Z+ and

f ∈ F . Stein’s method is then realized in three consecutive steps.

For any bounded function g : Z+ → R, a linear operator A satisfying

E(Ag)(Y ) = 0 is established and is called a Stein operator.
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METHOD CONTD.

In the next step, the so-called Stein equation

(Ag)(j) = f (j)− Ef (Y ), j ∈ Z+, f ∈ F (1)

is solved with respect to g(j) in terms of f and is referred to as solution to

Stein equation (1).

As a rule, solutions to the Stein equations have useful properties, such as

‖∆g‖ := supj∈Z+
|∆g(j)| is small, where ∆g(j) := g(j + 1)− g(j) denotes the

first forward difference.

Note that the properties of ∆g depend on the form of A and properties of Y .
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METHOD CONTD.

Finally, taking expectations on both sides of (1), we get

Ef (Z )− Ef (Y ) = E(Ag)(Z ) (2)

and estimates for E(Ag)(Z ) are established through the bounds for ∆g

and ∆k+1g(j) := ∆k (g(j + 1)− g(j)), k = 1,2, . . . .

For more detailed account on the procedure for Stein’s method under more

general setup, we refer the readers to Goldstein and Reinert (2005, 2013),

Ley, Reinert and Swan (2014), Barbour and Chen (2014) and references

therein.
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For some standard distributions, a Stein operator can be established easily.

Indeed, let µj := P(Y = j) > 0, j ∈ Z+. Then∑∞
j=0 µj

(
(j+1)µj+1

µj
g(j + 1)− jg(j)

)
= 0. Therefore,

(Ag)(j) =
(j + 1)µj+1

µj
g(j + 1)− jg(j), j ∈ Z+, (3)

and it can be easily verified the E(Ag)(Y ) = 0.

Some well-known examples are listed below.
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EXAMPLE 1 (POISSON DISTRIBUTION)

For α > 0, let Y1 be a Poisson P(α) rv with µj = αje−α/j!. Then

(Ag)(j) = αg(j + 1)− jg(j), j ∈ Z+. (4)

7 / 48



EXAMPLE 2 (PSEUDO-BINOMIAL DISTRIBUTION)

Let 0 < p < 1, q = 1− p, M̃ > 1, and Y2 have pseudo-binomial distribution

(see Čekanavičius and Roos (2004), p. 370) so that

µj =
1
C̃

(
M̃
j

)
pjqM̃−j , j ∈ {0,1, . . . , bM̃c},

where C̃ =
∑bM̃c

j=0

(M̃
j

)
pjqM̃−j , bM̃c denotes integer part of M̃ and(M̃

j

)
= M̃(M̃−1)···(M̃−j+1)

j! . If M̃ is an integer, then Y2 is a binomial rv. Suppose

now g(0) = 0 and g(bM̃c+ 1) = g(bM̃c+ 2) = ... = 0. Then, from (3)

(Ag)(j) =
(M̃ − j)p

q
g(j + 1)− jg(j), j = 0,1, . . . bM̃c.
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EXAMPLE 2 CONTD.

Multiplying the above expression by q, we can get the following Stein operator:

(Ag)(j) = (M̃ − j)pg(j + 1)− jqg(j), j = 0,1, . . . bM̃c. (5)
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EXAMPLE 3 (NEGATIVE BINOMIAL DISTRIBUTION)

Let Y3 ∼ NB(r , p̄), 0 < p̄ < 1, be negative binomial rv with

µj = Γ(r + j)/(Γ(r)j!)p̄r q̄ j , for j ∈ Z+, r > 0 and q̄ = 1− p̄. Then (3) reduces to

(Ag)(j) := q̄(r + j)g(j + 1)− jg(j), j ∈ Z+. (6)
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REMARK

Observe that (3) is not very useful if we do not have simple expressions for µj .

For example, if we consider compound distribution or convolution of two or

more distributions, then µj ’s are usually expressed through sums or

converging series of probabilities.

Therefore, some other refined approaches for obtaining Stein operator(s) are

needed.
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STEIN OPERATORS VIA PGF

PGF APPROACH: GENERAL IDEA

Let N be a Z+-valued rv with µk = P(N = k) and finite mean. Then its pgf

GN(z) =
∞∑

k=0

µk zk (7)

satisfies

G
′

N(z) =
d
dz

GN(z) =
∞∑

k=1

kµk zk−1 =
∞∑

k=0

(k + 1)µk+1zk . (8)

If we can express G
′

N(z) through GN(z) then, by collecting factors of zk , the

recursion follows.
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STEIN OPERATORS VIA PGF

COMPOUND POISSON DISTRIBUTION

Let {Xj} be an iid sequence of random variables with P(Xj = k) = pk ,

k = 0,1,2, . . . . Also, let N ∼ P(λ) and N be independent of the {Xj}. Then

the distribution of Y4 :=
∑N

j=1 Xj is known as compound Poisson distribution

with pgf

Gcp(z) = exp
{ ∞∑

j=1

λj (z j − 1)
}
, (9)

where λj = λpj and
∑∞

j=1 j |λj | <∞.
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STEIN OPERATORS VIA PGF

COMPOUND POISSON DISTRIBUTION CONTD.

Then

G
′

cp(z) = Gcp(z)
∞∑
j=1

jλjz j−1

=
∞∑

k=0

µk zk
∞∑
j=1

jλjz j−1 =
∞∑

k=0

zk
k∑

m=0

µm(k −m + 1)λk−m+1.

Comparing the last expression to the right-hand side of (8), we obtain

recursive relation, for all k ∈ Z+, as

k∑
m=0

µm(k −m + 1)λk−m+1 − (k + 1)µk+1 = 0.
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STEIN OPERATORS VIA PGF

COMPOUND POISSON DISTRIBUTION CONTD.

Then, we have

0 =
∞∑

k=0

g(k + 1)
[ k∑

m=0

µm(k −m + 1)λk−m+1 − (k + 1)µk+1

]
=

∞∑
m=0

µm

[ ∞∑
k=m

g(k + 1)(k −m + 1)λk−m+1 −mg(m)
]

=
∞∑

m=0

µm

[ ∞∑
j=1

jλjg(j + m)−mg(m)
]
.
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STEIN OPERATORS VIA PGF

COMPOUND POISSON DISTRIBUTION CONTD.

Therefore, a Stein operator for the compound Poisson distribution, defined in

(9), is

(Ag)(j) =
∞∑
l=1

lλlg(j + l)− jg(j)

=
∞∑
l=1

lλlg(j + 1)− jg(j) +
∞∑

m=2

mλm

m−1∑
l=1

∆g(j + l), j ∈ Z+,(10)

since E(Ag)(Y4) = 0. This operator coincides with the one from Barbour,

Chen and Loh (1992a).
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STEIN OPERATORS VIA PGF CONVOLUTIONS OF MEASURES

CONVOLUTIONS AND STEIN OPERATORS

Recall that Y1 ∼ P(α) (α > 0), Y2 ∼ Bi(M,p) (M ∈ N, 0 < p < 1),

Y3 ∼ NB(r , p̄) (0 < p̄ < 1, r > 0) and Y4 follows the compound Poisson

distribution defined in (9). We assume that Y1,Y2,Y3 and Y4 are independent.

Then the pgf ’s of Y1 + Y2, Y2 and Y3 are given by

G12(z) = (q+pz)M exp{α(z−1)}, G2(z) = (q+pz)M , G3(z) =

(
p̄

1− q̄z

)r

,

(11)

respectively. Here q̄ = 1− p̄ and q = 1− p.
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STEIN OPERATORS VIA PGF CONVOLUTIONS OF MEASURES

THEOREM 1.1

Let Gcp(z) be the pgf of Y4, g : Z+ → R be a bounded function and

λ =
∑∞

m=1 jλj . Then we have the following results:

(i) The rv Y24 = Y2 + Y4 has the pgf G2(z)Gcp(z) and its Stein operator is

(Ag)(j) =

(
M +

λ

p
− j
)

pg(j + 1)− qjg(j)

+
∞∑

m=2

(
qmλm + p(m − 1)λm−1

)m−1∑
l=1

∆g(j + l). (12)

(ii)The rv Y34 = Y3 + Y4 has the pgf G3(z)Gcp(z) and a corresponding Stein

operator is

(Ag)(j) =

(
λp̄
q̄

+ r + j
)

q̄g(j + 1)− jg(j)

+
∞∑

m=2

(
mλm − q̄(m − 1)λm−1

)m−1∑
l=1

∆g(j + l). (13)
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STEIN OPERATORS VIA PGF CONVOLUTIONS OF MEASURES

BINOMIAL-POISSON

THEOREM 1.2

Let Y12 = Y1 + Y2 have pgf G12(z) as defined in (11). Then, for all j ∈ Z+ and

bounded functions g : Z+ → R, a Stein operator for Y12 is

(Ag)(j) = (Mp + α− jp)g(j + 1)− jqg(j) + pα∆g(j + 1). (14)

If, in addition p/q < 1, then

(Ag)(j) = (α + Mp)g(j + 1)− jg(j) + M
∞∑
l=2

(−1)l+1
(

p
q

)l l−1∑
k=1

∆g(j + k). (15)
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STEIN OPERATORS VIA PGF CONVOLUTIONS OF MEASURES

REMARK 1.1

(i) As is known in the literature (see Goldstein and Reinert (2005), Ley,

Reinert and Swan (2014)), we have two significantly different Stein operators

(see (14) and (15)) for the approximation problem.

(ii)Observe that, the operator given in (14) is similar to the operator given in

(5), where M̃ is replaced by M + α/p, except for the last term, and hence is

known as a binomial perturbation.

(iii) Similarly, the operator given in (15) is similar to the operator given in (4),

where α is replaced by Mp + α, except for the last sum, leading to a Poisson

perturbation.
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STEIN OPERATORS VIA PGF CONVOLUTIONS OF MEASURES

BINOMIAL-NEGATIVE BINOMIAL

We consider convolution of negative binomial and binomial distributions. It is

logical to use the binomial approximation for sums of rv’s with variances

smaller than their means and the negative binomial approximation if variances

are larger than means. Therefore, one can expect that the sum of binomial

and negative binomial rv as universal discrete approximation.
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STEIN OPERATORS VIA PGF CONVOLUTIONS OF MEASURES

BINOMIAL-NEGATIVE BINOMIAL

THEOREM 1.3

Let Y23 = Y2 + Y3 have pgf G23(z) = G2(z)G3(z) and (p/q) < 1. Then, for

j ∈ Z+ and g ∈ F , the rv Y23 has the following Stein operators:

(A1g)(j) = (Mp + rqq̄ − pj + qq̄j)g(j + 1)

+(r q̄p −Mpq̄ + pq̄j)g(j + 2)− qjg(j), (16)

(A2g)(j) = p
(

r q̄
pp̄

+ M − j
)

g(j + 1)− qjg(j)

+r(qq̄ + p)
∞∑

m=2

q̄m−1
m−1∑
l=1

∆g(j + l), (17)
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STEIN OPERATORS VIA PGF CONVOLUTIONS OF MEASURES

BINOMIAL-NEGATIVE BINOMIAL

(A3g)(j) = q̄
(

Mpp̄
q̄

+ r + j
)

g(j + 1)− jg(j)

+M
(

p
q

+ q̄
) ∞∑

m=2

(−1)m+1
(

p
q

)m−1 m−1∑
l=1

∆g(j + l), (18)

(A4g)(j) =

(
Mp +

r q̄
p̄

)
g(j + 1)− jg(j)

+
∞∑

m=2

(
M(−1)m+1

(
p
q

)m

+ r q̄m
)m−1∑

l=1

∆g(j + l). (19)
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STEIN OPERATORS VIA PGF CONVOLUTIONS OF MEASURES

BINOMIAL-NEGATIVE BINOMIAL

REMARK 1.2

As discussed earlier, the operators A2, A3, and A4 are binomial, negative

binomial and Poisson perturbations, respectively. Note, however, A1 can not

be seen as a perturbation operator.
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PERTURBED SOLUTIONS TO THE STEIN EQUATION

SOLUTION TO STEIN EQUATION

Let us discuss some known facts and explore the properties of exact and

approximate solutions to the Stein equation.

Assume that Y and Z are rvs concentrated on Z+ and f ,g ∈ F

Henceforth, ‖f‖ = supk |f (k)|. The second step in Stein’s method is solving

the equation (1).
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PERTURBED SOLUTIONS TO THE STEIN EQUATION

Suppose a Stein operator is given by

(Ag)(j) = αjg(j + 1)− βjg(j), (20)

where β0 = 0 and αk − αk−1 6 βk − βk−1 (k = 1,2, . . . ), then the solution to

(1) satisfies

|∆g(j)| 6 2‖f‖min
{

1
αj
,

1
βj

}
. j ∈ Z+, f ∈ F . (21)
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PERTURBED SOLUTIONS TO THE STEIN EQUATION

This can be seen as follows.

Let gi be a solution to (1) with the choice f (j) = I(j = i), where I(A) denotes

the indicator function of A. Then, from (2.18) and Theorem 2.10 of Brown and

Xia (2001), we have

|∆g(i)| =
∣∣∣∑∞j=0 f (j)∆gj (i)

∣∣∣ 6 supj>0 f (j)|∆gi (i)| 6 supj>0 f (j) min{α−1
i , β−1

i },

for any nonnegative functions f .

The proof of (21) can now be completed by following steps similar to that of

Lemma 2.2 from Barbour (1987).

If f : Z+ → [0,1], then 2‖f‖ in (21) should be replaced by 1.
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PERTURBED SOLUTIONS TO THE STEIN EQUATION

Note that different choices of f lead to different probabilistic metrics.

In this talk, we consider total variation norm which is twice the total variation

metric. That is,

‖L(Y )− L(Z )‖TV =
∞∑
j=0

|P(Y = j)− P(Z = j)| = sup
‖f‖61

|Ef (Y )− Ef (Z )|

= 2 sup
f∈F1

|Ef (Y )− Ef (Z )| = 2 sup
A
|P(Y ∈ A)− P(Z ∈ A)|,

where F1 = {f |f : Z+ → [0,1]}, and the supremum is taken over all Borel sets

in the last equality.
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PERTURBED SOLUTIONS TO THE STEIN EQUATION

Let g be the solution to (1) for Poisson or negative binomial or

pseudo-binomial rv with the Stein operator given by (4) or (6) or (5),

respectively. Then the corresponding bounds are given respectively as

‖∆g‖ 6 2‖f‖
max(1, λ)

, ‖∆g‖ 6 2‖f‖
r q̄

, ‖∆g‖ 6 2‖f‖
bÑcpq

. (22)

The first two estimates follow directly from (21). Observe that for

pseudo-binomial distribution, the assumptions of (21) are not always satisfied.

The last estimate of (22) follows from Lemma 9.2.1 in Barbour, Holst and

Janson (1992b), and using similar arguments as above.
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PERTURBED SOLUTIONS TO THE STEIN EQUATION

If a Stein operator has a form different from (20), then solving (1) and

checking for properties similar to (21) becomes rather dubious.

In such situations, one can try perturbation technique introduced in Barbour

and Xia (1999) and further developed in Barbour and Čekanavičius (2002)

and Barbour, Čekanavičius and Xia (2007).

Roughly, the basic idea of perturbation can be summarized in the following

way: good properties of the solution of (1) can be carried over to solutions of

Stein operators in similar forms.
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Next, we formulate a partial case of Lemma 2.3 and Theorem 2.4 from

Barbour, Čekanavičius and Xia (2007) under the following setup.

Let A0 be a Stein operator for some distribution with support {0,1,2 . . . ,T}

(T =∞ is allowed) and

g0 be the solution of (1) with A replaced by A0.

Also, let there exist ω1, γ > 0 such that

‖∆g0‖ 6 ω1‖f‖min(1, γ−1).
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LEMMA 2.1

Let H be a (signed) measure with Stein operator A = A0 + U, W be any rv,

both concentrated on Z+ and H(Z+) = 1. For g ∈ F , there exist ω2, ε > 0

such that

‖Ug‖ 6 ω2‖∆g‖, |E(Ag)(W )| 6 ε‖∆g‖

and ω1ω2 < γ, then

‖L(W )− H‖TV 6
γ

γ − ω1ω2

(
εω1 min(1, γ−1) + 2η + 2P(W > T )

)
,

where η =
∑∞

j=T +1 |H{j}|.
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Next, using the assumptions of Lemma 2.1 and (22), we evaluate the values

of ω1, ω2 and γ to the various Stein operators derived in Section 1. Our

observations are as follows:
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COMPOUND POISSON

If a Stein operator is given by

(Ag)(j) =
∞∑
l=1

lλlg(j + l)− jg(j)

=
∞∑
l=1

lλlg(j + 1)− jg(j) +
∞∑

m=2

mλm

m−1∑
l=1

∆g(j + l), j ∈ Z+,

then we have the Poisson perturbation, ω1 = 2, γ =
∑∞

m=1 mλm,

‖Ug‖ 6 ‖∆g‖
∞∑

m=2

m(m − 1)|λm| = ‖∆g‖ω2

and ω1ω2 < γ, provided {λm}m>2 is sufficiently small.

For a general description of the problem, see Barbour, Chen and Loh (1992a).
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BINOMIAL-POISSON

For a Stein operator given by

(Ag)(j) = (Mp + α− jp)g(j + 1)− jqg(j) + pα∆g(j + 1). (23)

we have pseudo-binomial perturbation, ω1 = 2/pq, γ = bM + α/pc, ω2 = pα

and ω1ω2 < γ, if p is sufficiently small.
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BINOMIAL-POISSON

Consider the Stein operator given by

(Ag)(j) = (α + Mp)g(j + 1)− jg(j) + M
∞∑
l=2

(−1)l+1
(

p
q

)l l−1∑
k=1

∆g(j + k). (24)

(15), then we have Poisson perturbation, ω1 = 2, γ = Mp + α,

ω2 = Mp2/(q − p)2 and ω1ω2 < γ, whenever p is sufficiently small (see

Theorem 3.1).
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BINOMIAL-NEGATIVE BINOMIAL

For the Stein operator given by

(A2g)(j) = p
(

r q̄
pp̄

+ M − j
)

g(j + 1)− qjg(j)

+r(qq̄ + p)
∞∑

m=2

q̄m−1
m−1∑
l=1

∆g(j + l),

(17), we have pseudo-binomial perturbation, ω1 = 2, γ = bM + r q̄/(pp̄)cpq

and ω2 = r q̄(qq̄+p)
p̄2 . The condition ω1ω2 < γ is satisfied if p and q̄ are

sufficiently small.

37 / 48
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BINOMIAL-NEGATIVE BINOMIAL

If the Stein operator is given by

(A3g)(j) = q̄
(

Mpp̄
q̄

+ r + j
)

g(j + 1)− jg(j)

+M
(

p
q

+ q̄
) ∞∑

m=2

(−1)m+1
(

p
q

)m−1 m−1∑
l=1

∆g(j + l),

(18), then we have negative binomial perturbation, ω1 = 2, γ = Mpp̄ + r q̄,

ω2 = Mpq(p/q + q̄)(q − p)−2 and ω1ω2 < γ, provided p and q̄ are sufficiently

small.
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BINOMIAL-NEGATIVE BINOMIAL

Finally, consider the Stein operator given by

(A4g)(j) =

(
Mp +

r q̄
p̄

)
g(j + 1)− jg(j)

+
∞∑

m=2

(
M(−1)m+1

(
p
q

)m

+ r q̄m
)m−1∑

l=1

∆g(j + l).

(19), then we have Poisson perturbation, ω1 = 2, γ = Mp + r q̄/p̄,

ω2 = Mp2/(q − p)2 + r q̄2/p̄2 and ω1ω2 < γ, whenever p and q̄ are sufficiently

small.
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REMARKS

(i) Note that, for the Stein operator in (16), no perturbation seems to be

available.

(ii) We also remark here that once a Stein operator is derived, the properties

of the associated exact “solution to the Stein equation” must be derived and

this can be quite difficult.

The perturbation approach, as discussed in some examples above, can be

useful to get an upper bound on approximate solution to the Stein equation.
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APPROXIMATION TO SUMS OF INDICATOR VARIABLES

Let us investigate the effect of different forms of Stein operator on its

estimates.
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APPROXIMATION TO SUMS OF INDICATOR VARIABLES

SETUP

Consider the sum W =
∑n

i=1 Ii of possibly dependent indicator variables

and let W (i) = W − Ii , P(Ii = 1) = pi = 1−P(Ii = 0) = 1− qi (i = 1,2, . . . ,n).

Assume also W̃ (i) satisfy P(W̃ (i) = k) = P(W (i) = k |Ii = 1), for all k .

We choose Y12 = Y1 + Y2 as the approximating variable, where Y1 ∼ P(α),

Y2 ∼ Bi(M,p) and are independent. Denote its distribution by BCP whose pgf

is given in (11).
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CHOICE OF PARAMETERS.

Note that BCP is a three-parametric distribution.

We choose the parameters p, M and α to ensure the almost matching of the

first three moments of W .

Denoting as before the integral part by b·c, we define

M :=

⌊( n∑
i=1

p2
i

)3( n∑
i=1

p3
i

)−2
⌋
, (25)

δ :=

( n∑
i=1

p2
i

)3( n∑
i=1

p3
i

)−2

−M, 0 6 δ < 1, (26)

p :=

( n∑
i=1

p3
i

)( n∑
i=1

p2
i

)−1

; α :=
n∑

i=1

pi −Mp. (27)

Then the following relations hold:
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Mp2 =
n∑

i=1

p2
i − δp2, Mp3 =

n∑
i=1

p3
i − δp3. (28)

Observe that ( n∑
i=1

p2
i

)2

6
n∑

i=1

pi

n∑
i=1

p3
i .

Therefore, for α > 0, the BCP is not a signed measure, but a distribution.

Observe that α and Mp can be of the same order. Indeed, let n be even and

p1 = p2 = · · · = pn/2 = 1/6, pn/2+1 = · · · = pn = 1/12, we have

Mp = O(n) = α.
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POISSON PERTURBATION.

Let I1 and I denote the degenerate distributions concentrated at 1 and 0,

respectively. The convolution operator is denoted by ∗. Also, let

d :=
∥∥∥L(W )∗(I1 − I)∗2

∥∥∥
TV

=
n∑

k=0

|∆2P(W = k)|, (29)

d1 := max
i

∥∥∥L(W (i))∗(I1 − I)∗2
∥∥∥

TV
= max

i

n∑
k=0

|∆2P(W (i) = k)|, (30)

λ̂ =
n∑

i=1

pi , σ2 =
n∑

i=1

piqi , τ = max
i

piqi ,

η1 :=
n∑

i=1

pi (1 + 2pi + 4p2
i )E|W̃ (i) −W (i)|,

θ1 :=
Mp2

(1− 2p)2(Mp + α)
=

∑n
i=1 p2

i − δp2

(1− 2p)2
∑n

i=1 pi
. (31)
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THEOREM 3.1

Let max(p, θ1) < 1/2. Then

‖L(W )− BCP‖TV 6
2

(1− 2θ1)λ̂

{
d1

n∑
i=1

p4
i +

dMp4

(1− 2p)2 + (1 + 2p)δp2 + η1

}
.

COROLLARY 3.2

Let W be the sum of n independent Bernoulli rvs, max(p, θ1) < 1/2 and

σ2 > 3τ . Then

‖L(W )− BCP‖TV

6
2

(1− 2θ1)λ̂

{
2
∑n

i=1 p4
i√

(σ2 − τ)(σ2 − 3τ)
+

2Mp4

(1− 2p)2σ
√
σ2 − τ

+ (1 + 2p)δp2
}
.

(32)
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REMARK 3.1

(i) Observe that θ1 < p(1− 2p)−2 6 maxi pi (1− 2 maxi pi )
−2. Therefore, a

sufficient condition for max(p, θ1) < 1/2 is

maxi pi < (3−
√

5)/4 = 0.19098 . . . .

(ii) If all pi � C, then the order of accuracy in (32) is O(n−1).

(iii) Also, one can compare (32) with the classical Poisson approximation

result (see, Chen and Röllin (2013) eq. (1.1)-(1.2)), where for pi � C and the

order of accuracy is O(1).
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Thank You
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