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Lindeberg-method

(more than) 90 years Lindeberg-method: replacement trick/ swapping trick

renaissance in random matrix theory and for other models
(Chatterjee, Tao, Vu,...)

survey article with M. Löwe, 2013
in progress: use of the method for moderate deviations questions...

A. Toda, 2012: (Xj)j independent, E(Xj) = 0, V(Xj) = 1
νp geometric random variable with mean 1/p, independent of Xj ’s

p1/2

νp∑
j=1

Xj → L(0, 1/
√

2) (p → 0)
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Laplace-distribution

density of the Laplace-distribution L(0, b) with parameter b:

pb(x) =
1

2b
exp

(
−|x |

b

)
, 2b2 = σ2

Stein-characterization:

E
[
b2X f ′′(X ) + 2b2 f ′(X )− X f (X )

]
= 0 ...

4



Laplace-distribution, double exponential

I weak limit of the geometric sum of independent but not identically
distributed random variables

I fatter tails than the normal distribution

I the difference between two independent identically distributed exponential
(λ)-random variables is L(0, λ−1)

I consider λ = 1
2 : exponential ( 1

2 ) = χ2
2 = Γ1/2,1

L(0, 2) = G2
1 + G2

2 − G2
3 − G2

4
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U-statistics

Un(hn) :=
1(
n
2

) ∑
1≤i<j≤n

hn(Xi ,Xj)

examples: homogenous sums, quadratic forms:

Qn(f ,X ) :=
∑

1≤i,j≤n

fn(i , j)Xi Xj

Hoeffding-decomposition:

1(
n
2

) ∑
1≤i<j≤n

h(Xi ,Xj) =
2

n

n∑
i=1

g(Xi ) +
1(
n
2

) ∑
1≤i<j≤n

η(Xi ,Xj)

g(x) := E[h(x ,X2)] η(x , y) := h(x , y)− g(x)− g(y) + E[h(X1,X2)]
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U-statistics, Laplace-distribution

degenerated case: g(x) = 0

example: h(x , y) = x y

n Un(h)
d−→
∑
j

λj(h)(G2
j − 1)

Serfling, 1980; Rubin, Vitale, 1980

the Laplace-distribution appears as a limit of degenerate U-statistics (!)
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the question

does the Laplace-distribution appear as the limit of a sequence of
Wiener-Itô integrals Iq(fn) of fixed order q ?

Double Wiener-Itô integrals, q = 2:
(Bt)t∈R+ Brownian motion∫ ∞

0

f (t)dBt =: I1(f ), f ∈ L2(R+)

I2(f ) =

∫
[0,∞)2

f (t, s) dBtdBs = 2

∫ ∞
0

dBt

∫ t

0

dBs f (t, s), f ∈ L2
s (R2

+)

fact:

I2(f ) =
∞∑
j=1

λj(f )(G2
j − 1) in law

(Gj)j independent N(0, 1), convergence in L2(Ω) and a.s.
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convergence in law: double integrals

Nourdin, Poly, 2012:

Let (Fn)n be a sequence of double Wiener-Itô integrals that converges
in law to F∞.

I Then there exists λ0 ∈ R, f ∈ L2
s (R2

+) such that

F∞ = N(0, λ0) + I2(f )

I

Fn → L(0, b) in law ⇔ κi (Fn)→ κi (L(0, b)) for i = 2, 4, 6

κi (X ): i ’th cumulant

I their result is much more general...
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convergence in law: multiple integrals

a nice observation by Kusuoka, Tudor, 2013:

within the Pearson class of probability distributions:

the only possible limits of sequences of multiple integrals (Iq(fn))n are the
Gaussian law and the Gamma law

density p :
p′(x)

p(x)
=

a + x

b2x2 + b1x + b0

Laplace-approximation for Iq(f ) ? Error bounds ?

10



convergence in law: multiple integrals

a nice observation by Kusuoka, Tudor, 2013:

within the Pearson class of probability distributions:

the only possible limits of sequences of multiple integrals (Iq(fn))n are the
Gaussian law and the Gamma law

density p :
p′(x)

p(x)
=

a + x

b2x2 + b1x + b0

Laplace-approximation for Iq(f ) ? Error bounds ?

10



Gaussian analysis

I Hq: closed linear subspace of L2(Ω) generated by Hq(Iq(f ))
Hq: q’th Hermite polynomial

I

L2(Ω) =
⊕
q≥0

Hq L2(Ω) 3 F = E(F ) +
∑
q≥0

Iq(fq)

Iq(f ⊗q) = Hq

(∫ ∞
0

f dBt

)

I more general: X = {X (h)}h∈H: isonormal Gaussian process over H

E
(
X (f )X (g)

)
= 〈f , g〉H, covariance

E
(
Ip(f ) Iq(g)

)
= p!〈f , g〉H1{p=q}, isometry property
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4 moment theorem

Nourdin, Peccati, 2009: let E(Iq(f )2) = 1

dK (Iq(f ),N) ≤ C

(
E
(

1

q
‖DIq‖2 − 1

)2)1/2

≤
(
q − 1

3q
|E(Iq(f )4)− 3|

)1/2

Dt Iq(f ) := qIq−1(f (·, t)) Malliavin-derivative

Stein: F := Iq(f )

E(Ff (F )) = E
(
f ′(F )

1

q
〈DF ,DF 〉

)
integration-by-parts

product-formula and isometry property:

E
(

1

q
‖DF‖2 − 1

)2

=

q−1∑
r=1

c(r , q)‖f ⊗̃r f ‖2
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Stein for Laplace

p′b(x)

pb(x)
=

1

b
sign(x)

Pike, Ren, 2013: E(f ′′(X )) = 1
b2 E(f (X )− f (0))

application: geometric sums, see also Döbler, 2013

Malliavin: f (x)→ xf (x):

E
[
b2Xf ′′(X ) + 2b2f ′(X )− Xf (X )

]
= 0 Stein-characterization

this is exactly the characterization in Gaunt, 2014
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integration-by-parts

F := Iq(f ) ∣∣E[b2Ff ′′(F ) + 2b2f ′(F )− Ff (F )
]∣∣ ≤ ?

apply
E
[
H G

]
= E

[
H
]
E
[
G
]

+ E
[
〈DH,−DL−1G 〉

]

E
[
Ff (F )

]
= E

[
f ′(F )Γ2(F )

]
= E

[
f ′(F )

]
E
[
Γ2(F )

]
+ E

[
f ′′(F )Γ3(F )

]
with Γ2(F ) := 〈DF ,−DL−1F 〉 = 1

q 〈DF ,DF 〉 and Γ3(F ) := 〈DF ,−DL−1Γ2(F )〉
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Variance-Gamma distributions

remark: κ3(F ) = 2E
[
Γ3(F )

]
Laplace-distribution is a member of the three-parameter family of
Variance-Gamma distributions:

Gaunt, 2014∣∣E[σ2(F + rθ)f ′′(F ) + (σ2r + 2θ(F + rθ))f ′(F )− Ff (F )
]∣∣ ≤ ?

θV + σ
√
VU

with U ∼ N(0, 1), V ∼ Γ(r/2, 1/2), r > 0, σ > 0 and θ ∈ R

conditioning on V the random variable is N(0, σ2V )
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examples

I symmetrized Gamma distribution

I product of two normal distributed random variables, correlated

I difference of two correlated Gamma distributions
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results
remark: Azmoodeh, Peccati, Poly, 2014; finite linear combination of
centered χ2-distributions

Theorem

Let Y be Variance-Gamma distributed, F = Iq(f )

dW (F ,Y ) ≤ C1E
∣∣σ2(F + rθ) + 2θΓ2(F )− Γ3(F )

∣∣+ C2

∣∣rσ2 + 2rθ2 − E(Γ2(F ))
∣∣

Theorem

Y symmetrized Gamma-distributed, λr

2Γ(r) |x |
r−1e−λ|x|, and q is even:

E
( 1

λ2
F − Γ3(F )

)2

= q!
∥∥∥ 1

λ2
f −

q−1∑
r=1

cq(r , q − r)((f ⊗̃r f )⊗̃q−r f )
∥∥∥2

H⊗q

+

3q
2 −2∑

k=0,k 6=q/2

(2k)!
∥∥∥ ∑

r∈C2k

cq(r , 3q/2− k − r)((f ⊗̃r f )⊗̃ 3q
2 −k−r

f )
∥∥∥2

H⊗2k
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compare with free probability

compare with Deya, Nourdin, 2012:

Wigner-integrals

the tetilla law (symmetrized Marchenko-Pastur law) is the free
Laplace-distribution

all cq(·, ·) are 1 (!): there is a 6 moment theorem for every Iq(f )
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results for double integrals

Theorem
Let Y be a symmetrized Gamma-distributed r.v. with r , λ > 0 and suppose
that E[F 2

n ] = 2r/λ2. Then, as n→∞, following assertions are equivalent:

(a) Fn = I2(fn) converges in distribution to Y ,

(b) E[F 4
n ]→ E[Y 4] and E[F 6

n ]→ E[Y 6],

(c) ‖4((fn⊗̃1fn)⊗̃1fn)− 1
λ2 fn‖H⊗2 → 0 and ‖((fn⊗̃1fn)⊗̃2fn)‖2 → 0.
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results for double integrals

Theorem
Let Y be a Variance-Gamma distributed random variable and suppose that
E[F 2

n ] = r(σ2 + 2θ2). Then, as n→∞, following assertions are equivalent:

(a) Fn = I2(fn) converges in distribution to Y ,

(b) E[F j
n]→ E[Y j ] for all j = 3, 4, 5, 6,

(c) ‖4((fn⊗̃1fn)⊗̃1fn)− 2θ (fn⊗̃1fn) − σ2fn‖H⊗2 → 0 and

‖((fn⊗̃1fn)⊗̃2fn)‖H⊗2 → 3
4 rθσ

2 + rθ3.
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results for double integrals

Let Fn = I2(fn) and Y be a symmetrized Gamma-distributed r.v.

Theorem

Assume that E[F 2
n ]→ 2r

λ2 . Then there are constants C1 = C1(λ, r) > 0 and
C2 = C2(λ, r) > 0 such that

dW (Fn,Y ) ≤ C1

( 1

120
κ6(Fn)− 1

6r
κ4(Fn)κ2(Fn) +

1

4r2
κ2(Fn)3 +

1

6
κ3(Fn)2

)1/2

+C2

∣∣∣2r
λ2
− κ2(Fn)

∣∣∣.
the third moment of Fn converges to zero automatically (!)
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homogeneous sums

Hn(X , q) :=
∑

1≤i1,...,iq≤n

hn(i1, . . . , iq)Xi1 · · ·Xiq , (Xi )i independent

Theorem

Suppose that E[Hn(G , q)2] = r(σ2 + 2θ2), let Y be a Variance-Gamma
distributed random variable Then, as n→∞, the following assertions are
equivalent:

(a) Hn(X , q) converges in distribution to Y , for every independent (Xi )i .

(b) Hn(G , q) converges in distribution to Y .

If q = 2 then (a) and (b) are equivalent to E[Hn(G , 2)j ]→ E[Y j ] for j = 3, 4, 5, 6.

see Nourdin, Peccati, Reinert, 2010
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multivariate extensions

Fn := (Fn,1, . . . ,Fn,d) and put Y := (Y1, . . . ,Yd).

An(j) := E
∣∣σ2

j (Fn,j + rjθj)− 2θjΓ2(Fn,j)− Γ3(Fn,j)
∣∣+
∣∣rjσ2

j + 2rjθ
2
j − E[Γ2(Fn,j)]

∣∣,
and for j 6= i define

Bn(i , j) := E
∣∣〈DFn,i ,−DL−1Fn,j〉

∣∣.
Theorem
There are constants C1 > 0 and C2 > 0 only depending on d and the parameters
rj , θj and σj , j = 1, . . . , d, such that

dist(Fn,Y ) ≤ C1

d∑
j=1

An(j) + C2

d∑
i,j=1
i 6=j

Bn(i , j).

see Bourguin, Peccati, 2012
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new research group

The Research Training Group (RTG), funded by DFG,

High-dimensional Phenomena in Probability - Fluctuations and
Discontinuity

offers excellent national and international graduates in the mathematical sciences
the opportunity to conduct internationally visible doctoral research in probability
theory. The goal of the RTG is to bring together the joint expertise on aspects of
high dimension in probability.

11 Ph.D.-positions and 2 postdoc positions; Ruhr University of Bochum,
TU-Dortmund and University Essen/Duisburg
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Thank you for your attention!
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