From the Nualart-Peccati criterion to the Gaussian product conjecture

Guillaume Poly
University of Rennes (IRMAR)

Workshop on Stein's method

21 May 2015

The Nualart-Peccati criterion

Nualart-Peccati 2005

Let $F_n=I_p(f_n)=\int_0^\infty\int_0^{t_1}\int_0^{t_2}\cdots\int_0^{t_{p-1}}f_n(t_1,\cdots,t_p)dW_{t_1}\cdots dW_{t_p}$ a sequence of mutiple Wiener-Itô integrals such that $\mathbb{E}(F_n^2)=1$ and $\mathbb{E}(F_n^4)\to 3$ then

$$F_n \xrightarrow[n \to \infty]{\text{Law}} \mathcal{N}(0,1).$$

Nourdin-Peccati 2008

"Malliavin-Stein method"
$$\Rightarrow d_{TV}(F_n, N) \leq \frac{2}{\sqrt{3}} \sqrt{\mathbb{E}(F_n^4) - 3}$$
.

Generalization 1 of the Nualart-Peccati criterion

<u>Question</u>: What are the properties of multiple integrals responsible for the fourth moment phenomenon?

E. Azmoodeh, S. Campese, G.P (2013)

Let L be a Markov diffusive operator on some probability space (E, \mathcal{F}, μ) . Assume that :

- $L^2(\mu) = \bigoplus_{k=0}^{\infty} \mathbf{Ker}(L + \lambda_k \mathbf{Id}),$
- $F \in \mathbf{Ker}(L + \lambda_p \mathbf{Id})$,
- $F^2 \in \bigoplus_{\lambda_k \le 2\lambda_p} \mathbf{Ker}(L + \lambda_k \mathbf{Id})$, (Stability property)

"Dirichlet-Stein's method"
$$\Rightarrow d_{TV}(F, N) \le \frac{2}{\sqrt{3}} \sqrt{\mathbb{E}(F^4) - 3}$$

Generalization 1 of the Nualart-Peccati criterion

<u>Question</u>: What are the properties of multiple integrals responsible for the fourth moment phenomenon?

E. Azmoodeh, S. Campese, G.P (2013)

Let L be a Markov diffusive operator on some probability space (E,\mathcal{F},μ) . Assume that :

- $L^2(\mu) = \bigoplus_{k=0}^{\infty} \mathbf{Ker}(L + \lambda_k \mathbf{Id}),$
- $F \in \mathbf{Ker}(L + \lambda_p \mathbf{Id})$,
- $F^2 \in \bigoplus_{\lambda_k \leq 2\lambda_p} \mathbf{Ker}(L + \lambda_k \mathbf{Id})$, (Stability property)
 - "Dirichlet-Stein's method" $\Rightarrow d_{TV}(F, N) \leq \frac{2}{\sqrt{3}} \sqrt{\mathbb{E}(F^4) 3}$.

Expository papers:

- L.H.Y. Chen: Stein meets Malliavin in normal approximation. Acta Mathematica Vietnamica (2015)
- L.H.Y Chen, G.P: Stein's method, Malliavin calculus, Dirichlet forms and the fourth moment theorem. Festschrift Masatoshi Fukushima. (2014)

Generalization 2 of the Nualart-Peccati criterion

Question: What is special with the number 4 in the Nualart-Peccati criterion?

E. Azmoodeh, D. Malicet, G. Mijoule, G.P. (2014)

if $LF = -\lambda F$ and $\forall p \ge 1$,

$$F^p \in \bigoplus_{\alpha \in sp(-L) \cap [0,p\lambda]} \mathbf{Ker}(L + \alpha \mathbf{Id}), \ \ (\mathbf{Strong\ stability}),$$

then using "Dirichlet-Stein method":

$$d_{TV}(F,N) \le \frac{4}{\sqrt{2p(p-1)\int_0^1(\frac{1+t^2}{2})^{p-2}dt}} \sqrt{\frac{\mathbb{E}(F^{2p})}{(2p-1)!!}} - 1$$

Generalization 2 of the Nualart-Peccati criterion

<u>Question</u>: What is special with the number 4 in the Nualart-Peccati criterion?

E. Azmoodeh, D. Malicet, G. Mijoule, G.P. (2014)

if $LF = -\lambda F$ and $\forall p \ge 1$,

$$F^p \in \bigoplus_{\alpha \in sp(-L) \cap [0,p\lambda]} \mathbf{Ker}(L + \alpha \mathbf{Id}),$$
 (Strong stability),

then using "Dirichlet-Stein method":

$$d_{TV}(F,N) \le \frac{4}{\sqrt{2p(p-1)\int_0^1(\frac{1+t^2}{2})^{p-2}dt}}\sqrt{\frac{\mathbb{E}(F^{2p})}{(2p-1)!!}-1}$$

The polarization constant problem

The polarization constant

Let y_1, \dots, y_d be unitary vectors of \mathbb{R}^d . We define the polarization constant *S* by

$$S = \sup_{u \in S^{d-1}} |\langle u, y_1 \rangle \cdots \langle u, y_d \rangle|.$$

 \rightarrow It is conjectured that $S \ge \frac{1}{\sqrt{d^d}}$.

- Problem introduced by Benitez-Sarantopoulos-Tonge (1998).
- Case of **complex** vectors solved by Arias de Reyna (1998) and Ball (2001).
- Pappas, Revesz (2003) case $d \le 5$.
- Frenkel (2007) produced the best (non optimal) bounds for S.

The Gaussian product conjecture

Gaussian product conjecture

Let (X_1, \dots, X_d) be a Gaussian vector. It is conjectured that for all $p \ge 1$:

$$\mathbb{E}\left(X_1^{2p}\cdots X_d^{2p}\right) \geq \mathbb{E}(X_1^{2p})\cdots \mathbb{E}(X_d^{2p}).$$

- case p = 1 solved by Frenkel (2007) by using exclusively tools of linear algebra like **Hafnians**, **Pfaffians**.
- case p = 2 remains unsolved but supported by computer simulations
- the case of complex Gaussian solved by Arias de Reyna (1998)

Gaussian product conjecture \Rightarrow polarization constant problem

For some vectors y_1, \dots, y_d of \mathbb{R}^d :

$$\mathbb{E}\left(X_1^{2p}\cdots X_d^{2p}\right) = \int_{\mathbb{R}^d} \left(\langle x, y_1 \rangle \cdots \langle x, y_d \rangle\right)^{2p} e^{-\frac{|x|^2}{2}} \frac{dx}{\sqrt{2\pi^d}}$$

$$= \int_{\mathcal{S}^{d-1}} \left(\langle u, y_1 \rangle \cdots \langle u, y_d \rangle\right)^{2p} du$$

$$\times \int_0^\infty r^{2pd} r^{d-1} e^{\frac{-r^2}{2}} \frac{dr}{\sqrt{2\pi^d}}$$

We use that

$$\int_{\mathcal{S}^{d-1}} \left(\langle u, y_1 \rangle \cdots \langle u, y_d \rangle \right)^{2p} du \right)^{\frac{1}{2p}} \xrightarrow{p \to \infty} S.$$

Arias de Reyna strategy for the case \mathbb{C}^d

Arias de Reyna

Let (X_1, \dots, X_d) be a **complex** Gaussian vector. Then, for all $p \ge 1$:

$$\mathbb{E}\left(|X_1|^{2p}\cdots|X_d|^{2p}\right)\geq \mathbb{E}(|X_1|^{2p})\cdots\mathbb{E}(|X_d|^{2p}).$$

 Complex Gaussian can be seen as complex linear forms on C^d under the probability measure

$$\gamma(dz) = \frac{1}{(2\pi)^d} e^{-\frac{\|x\|^2 + \|y\|^2}{2}} dx_1 \cdots dx_d dy_1 \cdots dy_d.$$

• Simple computations show that $z \to z^i$ are orthogonal polynomials with respect to the complex Gaussian measure, when $i \neq j$:

$$\int_{\mathbb{R}^2} z^i \bar{z}^j \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy = 0.$$

Arias de Reyna strategy for the case \mathbb{C}^d

• For any systems of vectors a_1, \dots, a_n and b_1, \dots, b_n of \mathbb{C}^d we have (using orthogonality of $z \to z^i$):

$$\int_{\mathbb{C}^d} \prod_{i=1}^n \langle a_i, z \rangle \prod_{i=1}^n \langle z, b_i \rangle d\gamma(z) = 2^n \text{Per}(\langle a_i, b_i \rangle)$$

- We can hence give an exact formula for $\mathbb{E}\left(\prod_{i=1}^{d}|X_i|^{2p}\right)$ in terms of the permanent of some Hermitian matrix
- one is only reduced to use the next Lieb inequality for a positive Hermitian matrix :

$$A = \left(egin{array}{cc} B & C \\ C^* & D \end{array}
ight) \ \Rightarrow \ \operatorname{Per}(A) \geq \operatorname{Per}(B)\operatorname{Per}(C).$$

Main issue for extending this approach to the real case

- The stability of $z \to z^i$ via product is crucially used in the exact computation of $\mathbb{E}\left(\prod_{i=1}^d |X_i|^{2p}\right)$ in terms of permanents
- In the real case, the orthogonal polynomials with respect to the Gaussian measure are Hermite polynomials:

$$H_k(x) = (-1)^k \frac{d^k}{dx^k} \left(e^{-\frac{x^2}{2}}\right) e^{\frac{x^2}{2}}$$

• $H_k(x)H_l(x)$ is not an Hermite polynomial! More precisely we have

$$H_k(x)H_l(x) = \sum_{r=0}^{\min(k,l)} r! \binom{l}{r} \binom{k}{r} H_{k+l-2r}(x).$$

Main Theorem

D. Malicet, I. Nourdin, G. Peccato, G.P (2015)

Let X_1, \dots, X_d be a Gaussian vector. Then, for all $p \ge 1$:

$$\mathbb{E}\left(H_p(X_1)^2\cdots H_p(X_d)^2\right)\geq \mathbb{E}\left(H_p(X_1)^2\right)\cdots \mathbb{E}\left(H_p(X_d)^2\right).$$

- When p = 1, we recover Frenkel inequality
- Strong analogy with the complex case et Arias de Reyna strategy
- we get closer to the cases p = 2, p = 3 since

$$\mathbb{E}\left((X_1^4+1)\cdots(X_d^4+1)\right) \ge \mathbb{E}(X_1^4+1)\cdots\mathbb{E}(X_d^4+1).$$

$$\mathbb{E}\left((X_1^6+3)\cdots(X_d^6+3)\right) \ge \mathbb{E}(X_1^6+3)\cdots\mathbb{E}(X_d^6+3).$$

One key tool: the Ornstein-Uhlenbeck operator

Step 1 of the proof:

 \rightarrow We want to associate to the Hermite polynomial a differential operator and do "integrations by parts".

$$\bullet \ \gamma_d = \frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{\|\mathbf{x}\|^2}{2}} d\mathbf{x},$$

•
$$L[\phi] := \Delta \phi - \mathbf{x} \cdot \nabla \phi$$
,

$$\bullet \ \Gamma[\phi,\psi] = \nabla \phi \cdot \nabla \psi.$$

Main properties of the Ornstein-Uhlenbeck operator

- $\int\limits_{\mathbb{R}^d} \phi L[\psi] \mathrm{d}\gamma_d = \int\limits_{\mathbb{R}^d} L[\phi] \, \psi \mathrm{d}\gamma_d$ (Symmetry)
- $\int\limits_{\mathbb{R}^d} \Gamma[\phi,\psi] \mathrm{d}\gamma_d = -\int\limits_{\mathbb{R}^d} \phi \, L[\psi] \mathrm{d}\gamma_d$ (Integration by parts)
- $\Gamma[f(\phi), \psi] = f'(\phi)\Gamma[\phi, \psi]$ (chain rule)
- $L[\phi\psi] = 2\Gamma[\phi,\psi] + \phi L[\psi] + \psi L[\phi]$ (Link between L and Γ)
- $\operatorname{Sp}(-L) = \mathbb{N}$ and

$$\operatorname{Ker}(L+kId) = \operatorname{Vect}\Big\{H_{k_1}(x_1)\cdots H_{k_d}(x_d) \,\Big|\, k_1+\cdots+k_d=k\Big\}.$$

Using the polynomial structure of the eigenfunctions of L

Step 2 of the proof:

 \rightarrow We want to use the polynomial structure of the eigenspaces of L to produce "Bernstein"-type inequalities.

Let F_1, \dots, F_d be eigenfunctions of L of orders k_1, \dots, k_d , then:

$$F_1 \cdots F_d \in \bigoplus_{\alpha \le k_1 + \cdots + k_d} \operatorname{Ker}(L + \alpha Id),$$
 \Downarrow

$$\mathbb{E}\Big(F_1\cdots F_d(L+(k_1+\cdots+k_d)Id)[F_1\cdots F_d]\Big)\geq 0.$$

Using the relation between L and Γ one has

$$(L + (k_1 + \dots + k_d)Id)[F_1 \dots F_d] = \sum_{i \neq j} \left(\prod_{k \neq i,j} F_k \right) \Gamma[F_i, F_j]$$

Hence:

$$\mathbb{E}\left(\prod_{i} F_{i} \sum_{i \neq j} \left(\prod_{k \neq i, j} F_{k}\right) \Gamma[F_{i}, F_{j}]\right) \geq 0.$$

Equivalently, by integration by parts:

$$\sum_{i=1}^d \mathbb{E}\left(L[F_i^2] \prod_{j \neq i} F_j^2\right) \le 0.$$

First method: a monoticity argument

Step 3 of the proof (first method) : We set

$$f(t) = \mathbb{E}\left(\prod_{i=1}^{d} P_t[F_i^2]\right),$$

$$f'(t) = \sum_{j=1}^d \mathbb{E}\left(L[P_t F_j^2] \prod_{i \neq i} P_t[F_i^2]\right) \leq 0.$$

Hence,

$$f(0) = \mathbb{E}\left(\prod_{i=1}^{d} F_i^2\right) \ge \lim_{t \to \infty} f(t) = \prod_{i=1}^{d} \mathbb{E}\left(F_i^2\right).$$

Second method: using an induction on $k_1 + \cdots + k_d$:

Step 3 of the proof (second method):

 \rightarrow We want to prove by induction on d and the orders k_i that

$$\mathbb{E}\left(F_1^2\cdots F_d^2\right) \geq \mathbb{E}(F_1^2)\cdots \mathbb{E}(F_d^2).$$

Using again relation between L and $\Gamma: L[F_i^2] = 2\Gamma[F_i, F_i] - 2k_iF_i^2$

$$(k_1 + k_2 + \dots + k_d) \mathbb{E}\left(F_1^2 \dots F_d^2\right) = \sum_{i=1}^d \mathbb{E}\left(\Gamma[F_i, F_i] \prod_{j \neq i} F_j^2\right)$$
$$- \frac{1}{2} \sum_{i=1}^d \mathbb{E}\left(L[F_i^2] \prod_{j \neq i} F_j^2\right)$$

$$(k_1 + k_2 + \dots + k_d) \mathbb{E}\left(F_1^2 \dots F_d^2\right) \ge \sum_{i=1}^d \mathbb{E}\left(\Gamma[F_i, F_i] \prod_{i \ne i} F_j^2\right).$$

End of the proof

$$\Gamma[F, F] = \nabla F \cdot \nabla F = \sum_{i=1}^{d} \frac{\partial F^{2}}{\partial x_{i}}$$

If $F \in Ker(L + kId)$ then $\forall i, \frac{\partial F}{\partial x_i} \in Ker(L + (k-1)Id)$ and by induction :

$$\mathbb{E}\left(\Gamma[F_i, F_i] \prod_{j \neq i} F_j^2\right) = \sum_{k=1}^d \mathbb{E}\left(\left(\frac{\partial F_i}{\partial x_k}\right)^2 \prod_{j \neq i} F_j^2\right)$$

$$\geq \mathbb{E}\left(\left(\frac{\partial F_i}{\partial x_k}\right)^2\right) \prod_{j \neq i} \mathbb{E}(F_j^2)$$

$$= \mathbb{E}\left(\Gamma[F_i, F_i]\right) \prod_{i \neq i} \mathbb{E}(F_j^2)$$

By integration by parts, $\mathbb{E}(\Gamma[F_i, F_i]) = k_i \mathbb{E}(F_i^2)$.

Comments on the proof

- The result proved is actually stronger than the product of squares of Hermite since it holds for product of Wiener chaos.
- We can give bounds for norm of product of polylinear forms in the case when the F_i are homogeneous polynomials.
- Focusing on the Gaussian case, we slightly improve Frenkel inequality since we have :

$$\mathbb{E}\left(\prod_{i=1}^{d} X_i^2\right) \ge \frac{1}{d} \sum_{j=1}^{d} \mathbb{E}(X_j^2) \mathbb{E}(\prod_{i \ne j} X_i^2).$$

• it leads to a natural strategy (so far unsuccessful) to attack the Gaussian product conjecture by expanding x^{2p} into the basis of H_k^2 and studying the signs of the coefficients

Comments on the proof

• The method by induction actually gives the equality case :

$$\mathbb{E}\left(\prod_{i=1}^{d} F_i^2\right) = \prod_{i=1}^{d} \mathbb{E}\left(F_i^2\right) \Leftrightarrow (F_1, \cdots, F_d) \text{ jointly independent.}$$

• It is possible to give an asymptotic version for sequence of chaotic vectors $(F_{1,n}, \dots, F_{d,n})$ converging in law towards (Z_1, \dots, Z_d) .

$$E\left(\prod_{i=1}^{d} Z_i^2\right) = \prod_{i=1}^{d} \mathbb{E}\left(Z_i^2\right) \Rightarrow (Z_1, \dots, Z_d)$$
 jointly independent.

Some corollary: an exact Hadamard inequality

The celebrated Mehler formula asserts that $z \in]-1,1[$ that

$$\sum_{n=0}^{\infty} z^n \frac{H_n(x)^2}{2^n n!} = \frac{1}{\sqrt{1-z^2}} \exp\left(\frac{2x^2 z}{1+z}\right).$$

Then, for any Gaussian vector with any covariance Σ :

$$\mathbb{E}\left(e^{\sum_{i=1}^{d} t_i X_i^2}\right) = \sum_{n_1, \dots n_d = 0}^{\infty} t_1^{n_1} \cdots t_d^{n_d} \frac{1}{2^{n_1 + \dots n_d} n_1! \cdots n_d!} \mathbb{E}\left(\prod_{i=1}^{d} H_{n_i}(X_i)^2\right)$$

we compute and we get...

Exact Hadamard inequality

An Hadamard "equality"

Let $S = (S_{ij})$ be a symmetric positive definite matrix. Set I_d the identity matrix and Z the diagonal part of S. If $Z < I_d$ and $Z + S < 2I_d$:

$$\Sigma = I_d - \frac{1}{2}(I_d - Z)^{-\frac{1}{2}}(S - Z)(I_d - Z)^{-\frac{1}{2}},$$

is symmetric, positive definite and satisfies $\Sigma_{ii} = 1$ for each i. For (X_1, \dots, X_d) a centered Gaussian vector of covariance Σ ,

$$\det S = \left(\sum_{k_1,\dots,k_d=0}^{\infty} \frac{E[H_{k_1}(X_1)^2 \dots H_{k_d}(X_d)^2]}{k_1! \dots k_d!} \prod_{i=1}^d \sqrt{S_{ii}} (1 - S_{ii})^{k_i}\right)^{-2}.$$
(1)

We recover in particular the classical Hadamard inequality : $\det S \leq \prod_{i=1}^{d} S_{ii}$.