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The Nualart-Peccati criterion

Nualart-Peccati 2005

Let F, = Ip(fn) — fOOO 61 0t2 e (;P—lfn(tl’ o 7tp)dW11 .. .thp a
sequence of mutiple Wiener-Itd integrals such that E(F2) = 1 and
E(F%) — 3 then
Fp =225 N(0, 1).
— 00

n

Nourdin-Peccati 2008

“Malliavin-Stein method” = dzy (F,,N) <




Generalization 1 of the Nualart-Peccati criterion

Question : What are the properties of multiple integrals responsible
for the fourth moment phenomenon ?



Generalization 1 of the Nualart-Peccati criterion

Question : What are the properties of multiple integrals responsible
for the fourth moment phenomenon ?

E. Azmoodeh, S. Campese, G.P (2013)

Let L be a Markov diffusive operator on some probability space
(E, F,p). Assume that :

o L*(1n) = @2, Ker(L + \Id),
o F € Ker(L+ \Id),

o F? € @), <2, Ker(L+ \Id), (Stability property)

“Dirichlet-Stein’s method” = dry (F,N) < E(F*) - 3.
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Expository papers :

o L.H.Y. Chen : Stein meets Malliavin in normal approximation.
Acta Mathematica Vietnamica (2015)

@ L.H.Y Chen, G.P : Stein’s method, Malliavin calculus, Dirichlet
forms and the fourth moment theorem. Festschrift Masatoshi
Fukushima. (2014)



Generalization 2 of the Nualart-Peccati criterion

Question : What is special with the number 4 in the Nualart-Peccati
criterion ?



Generalization 2 of the Nualart-Peccati criterion

Question : What is special with the number 4 in the Nualart-Peccati
criterion ?

E. Azmoodeh, D. Malicet, G. Mijoule, G.P. (2014)

if LF = —A\FandVp > 1,

FP e &y Ker(L + old), (Strong stability),
a€sp(—L)N[0,pA]

then using “Dirichlet-Stein method” :

E(F)
\/217 o 1 1+12)p Zdt (2p = 1)”




The polarization constant problem

The polarization constant

Let y;,-- - ,yq be unitary vectors of IR?. We define the polarization
constant S by

S= sup [<u,y > <uys>|.
ueSi-1

— It is conjectured that S >

3
o

@ Problem introduced by Benitez-Sarantopoulos-Tonge (1998).

o Case of complex vectors solved by Arias de Reyna (1998) and
Ball (2001).

@ Pappas, Revesz (2003) case d < 5.
@ Frenkel (2007) produced the best (non optimal) bounds for S.



The Gaussian product conjecture

Gaussian product conjecture

Let (X1, --,X4) be a Gaussian vector. It is conjectured that for all
p=>1:
2 2 2 2
E (X7 X7) > E(X) - B(XT).

o case p = 1 solved by Frenkel (2007) by using exclusively tools
of linear algebra like Hafnians, Pfaffians.

@ case p = 2 remains unsolved but supported by computer
simulations

@ the case of complex Gaussian solved by Arias de Reyna (1998)



Gaussian product conjecture = polarization constant
problem

For some vectors yi, - - - ,yq of R? :

|2

E (X%p...X?iP) — /]Rd <<x7y1>...<x’yd>>2pe_x2 \/C;id

- /&,71 (<u,y1> ... (u,yd>>2pdu

o0 _ -2 d}"
X / pPPdpd=le= T
0

V2

We use that



Arias de Reyna strategy for the case C?

Arias de Reyna

Let (Xi,---,X;) be a complex Gaussian vector. Then, forallp > 1 :

E (|X1|2”--~|Xd|2”) > E(1X1|%) - E(|Xa?).

e Complex Gaussian can be seen as complex linear forms on C¢

under the probability measure
O 3 e

v(dz) = (2;)113 2 dxy - dxgdyy - dyg.

e Simple computations show that z — z' are orthogonal
polynomials with respect to the complex Gaussian measure,
wheni # j:

i 1 _x2+yz
/ 77d—e "2 dxdy=0.
R2 2

us



Arias de Reyna strategy for the case C?

o For any systems of vectors ay, - - - ,a, and by, - - - , b, of C¢ we
have (using orthogonality of z — z) :

/Cd 1 <aiz> ] <z bi > dy(z) = 2"Per(< a;, b; >)
i=1

i=1

@ We can hence give an exact formula for IE ( 4, \X,-|2P) in terms
of the permanent of some Hermitian matrix

@ one is only reduced to use the next Lieb inequality for a positive
Hermitian matrix :

A= < g* g ) = Per(A) > Per(B)Per(C).



Main issue for extending this approach to the real case

@ The stability of z — z' via product is crucially used in the exact
computation of [E ( 41X ) in terms of permanents

o In the real case, the orthogonal polynomials with respect to the
Gaussian measure are Hermite polynomials :

k dk Xz Xz
Hi(x) = (—1) s (e_2> er

@ H;(x)H,(x) is not an Hermite polynomial ! More precisely we
have



Main Theorem

D. Malicet, I. Nourdin, G. Peccato, G.P (2015)

Let X1, - -- , X, be a Gaussian vector. Then, forallp > 1:

E (Hy(X1)* - Hy(Xa)?) > B(Hy(X1)?) - - E(Hy(Xa)?).

@ When p = 1, we recover Frenkel inequality
@ Strong analogy with the complex case et Arias de Reyna strategy

@ we get closer to the cases p = 2, p = 3 since
E((X{+1)-- (X + 1) > E(X{ +1) - E(X] + 1).

E (X0 +3)- (X§+3)) > E(X +3) - E(X§ + 3).
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One key tool : the Ornstein-Uhlenbeck operator

Step 1 of the proof :

— We want to associate to the Hermite polynomial a differential
operator and do "integrations by parts".

2
L _Ix
2

Q@ Vg = dX,

o L[g]:=Adp—x-Vo,

o (¢, 4] = Vo Vo
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Main properties of the Ornstein-Uhlenbeck operator

o [¢L[Y|dva= [ L[¢]¢dys (Symmetry)
R4 R¢

o [T[¢p,v]dyvs = — [ ¢L[]dys (Integration by parts)
R4 R4

o T[f(¢),¢] =f"(¢)I[¢,¢] (chain rule)
o L[$] = 2T[¢, 9] + ¢L[¢)] + 9L[¢] (Link between L and T)
e Sp(—L) = N and

KCI‘(L + kld) = VG:Ct{f]k1 (xl) .- -de(xd) ki+---+ks= k}.
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Using the polynomial structure of the eigenfunctions of L

Step 2 of the proof :

— We want to use the polynomial structure of the eigenspaces of L to
produce "Bernstein"-type inequalities.

Let Fy,- - , F4 be eigenfunctions of L of orders &, - - - , kg4, then :

Fi---Fge @ Ker(L+ald),
k4 tkg

4

E<F1-~-Fd(L—|—(k1 —|—"-—|—kd)ld)[F1~"Fd]) > 0.



Using the relation between L and I" one has

i# \k#ij

(L+ (ki + -+ kg)Id)[Fy - - - Z(H Fk) [F;, Fj]

Hence :

(HF > (H Fk> [Fi, Fj ) 0.
i i#j \k#ij

Equivalently, by integration by parts :

d

; E <L[F,.2] 11 F}) <0

J#i



First method : a monoticity argument

Step 3 of the proof (first method) : We set

st =% (1Trirm).

fi=>E (L[P,sz] HPt[Fiz]) <0.

j=1 i#i

Hence,

T =00

£(0)=E ( : F?) > lim f(1) = f[IE (77).

i=1 i=1



Second method : using an induction on ky + - - - + ky :

Step 3 of the proof (second method) :
— We want to prove by induction on d and the orders k; that

E(F}---F3) > E(F}) - B(F)).
Using again relation between L and I : L[F?| = 2T'[F;, F;] — 2k;F?

(ki +ko+ -+ kq)E (Ff . .FZ,) = Zd:IE(l"[Fi,F,-] HF})
i=1

j#i
1 d

~ ZZ;IE(L[F,-Z]EFJ-Z)
i= JFi

d
(ki + kot + ka)E (FF - F3) > ZE(r[Fi,Fi] HF}).
i=1 JAi



End of the proof

OF?

[[F,F]=VF-VF = Z@x-

If F € Ker(L + kiId) then Vi, & G Ker(L + (k— 1)Id) and by

induction :
d
IE(F[Fi,Fi]HFJ-Z> = ZE(E) 2HF2>
J#i = L
> )*) [ E(F7)
J#i
— ( [F;, F; )HIE
J#i

By integration by parts, E (F[F,-, Fi]) = kB(F?).



Comments on the proof

@ The result proved is actually stronger than the product of squares
of Hermite since it holds for product of Wiener chaos.

@ We can give bounds for norm of product of polylinear forms in
the case when the F; are homogeneous polynomials.

@ Focusing on the Gaussian case, we slightly improve Frenkel
inequality since we have :

d d
1
E (HX?) >~ STEXE(]] 7).
i=1 j=1 i
@ it leads to a natural strategy (so far unsuccessful) to attack the

Gaussian product conjecture by expanding x% into the basis of
H? and studying the signs of the coefficients



Comments on the proof

@ The method by induction actually gives the equality case :

d
E (H F?) HIE (Fz) (Fy,---,Fy) jointly independent.
i=1

o It is possible to give an asymptotic version for sequence of
chaotic vectors (F) PIREE ,Fd,n) converging in law towards
(21, Za).

d
E (H Z,2> H]E (Zz) (Zy1,- -+ ,Z4) jointly independent.
i=1

20



Some corollary : an exact Hadamard inequality

The celebrated Mehler formula asserts that z €] — 1, 1] that

X Hy(x)? 1 2%’z
om0 1 |
2'n V1-22 1+z

n=0

Then, for any Gaussian vector with any covariance X :

d
E (eXiiX) — i ... ! E (][ Hn(X:)?
- 1 d 2n]+"~n‘1nl! . nd! AT

ny,ng=0

we compute and we get...
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Exact Hadamard inequality

|

An Hadamard "equality

Let S = (S;;) be a symmetric positive definite matrix. Set I, the
identity matrix and Z the diagonal part of S. If Z < I; and
Z+S<2y:

NI—=

L=l (-2 HS- D) -2)H,

is symmetric, positive definite and satisfies X; = 1 for each i. For
(Xi,...,X4) acentered Gaussian vector of covariance X,
00, o -
E|Hy, (X3 Hk L (Xa)?
detS = ( Z Il H n .
ki yevookg=0
(1

We recover in particular the classical Hadamard inequality :
detS < T1%, Sii.




