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The collective model from actuarial mathematics

Let (Xn)n∈N denote i.i.d. claims, independent of the random
number N of claims. Total claim amount is the random sum

SN =
N∑

n=1

Xn .

If N,X1 ∈ L1(P), then (special case of Wald’s equation)

E[SN ] = E
[
E[SN |N ]︸ ︷︷ ︸
a.s.
= N E[X1]

]
= E[N]E[X1] .

If N,X1 ∈ L2(P), then (Blackwell–Girshick equation)

Var(SN) = E
[
Var(SN |N)︸ ︷︷ ︸
a.s.
= N Var(X1)

]
+ Var

(
E[SN |N ]︸ ︷︷ ︸
a.s.
= N E[X1]

)
= E[N] Var(X1) + Var(N) (E[X1])2.
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Calculating the distribution of the random sum SN

If X1 takes values in Nd
0 , then there is a fast algorithm (the

extended Panjer recursion) to compute the distribution of the
random sum SN , provided L(N) = Panjer(a, b, k).

Definition

A probability distribution (qn)n∈N0 is called Panjer(a, b, k) with
a, b ∈ R and k ∈ N0 if q0 = q1 = · · · = qk−1 = 0 and

qn =
(
a +

b

n

)
qn−1 for all n ∈ N with n ≥ k + 1.

Determination of all these distributions:

k = 0: Sundt and Jewell (1981)

k = 1: Willmot (1988)

General k ∈ N0: Hess, Liewald and Schmidt (2002)
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Basic Panjer class distributions

Bin(m, p) = Panjer( p
1−p ,−

m+1
1−p p, 0) with m ∈ N and p ∈ [0, 1)

Poi(λ) = Panjer(0, λ, 0) with λ ≥ 0

NegBin(α, p) = Panjer(p, (α− 1)p, 0) with α > 0 and p ∈ [0, 1)

Log(p) = Panjer(p,−p, 1) with p ∈ [0, 1) and

qn = − pn−1

c(p)n for all n ∈ N with c(p) := − log(1−p)
p

Extended logarithmic distribution: Given k ∈ N \ {1} and
p ∈ (0, 1], define q0 = · · · = qk−1 = 0 and

qn =

(n
k

)−1
pn∑∞

l=k

( l
k

)−1
pl

for n ≥ k .

ExtLog(k, p) = Panjer(p,−kp, k), has heavy tails for p = 1.
Closed-form expression for the series is available.
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Basic Panjer class distributions (cont.)

Extended negative binomial distribution: For k ∈ N,
α ∈ (−k ,−k + 1) and p ∈ (0, 1] define q0 = · · · = qk−1 = 0
and

qn =

(
α+n−1

n

)
pn

(1− p)−α −
∑k−1

j=0

(
α+j−1

j

)
pj

for n ≥ k .

ExtNegBin(α, k , p) = Panjer(p, (α− 1)p, k). It has heavy
tails for p = 1, which is good for reinsurance companies.

Theorem (Hess, Liewald and Schmidt, 2002)

Let Q = (qn)n∈N0 be non-degenerate. Then are equivalent:

Q is in Panjer(a, b, k).

Q is the k-truncation of a basic Panjer(a, b, k ′) distribution
Q ′ = (q′n)n∈N0 with k ′ ≤ k and c :=

∑∞
n=k q

′
n > 0, i.e.,

qn = 0 for n ∈ {0, 1, . . . , k − 1} and qn = q′n/c for all n ≥ k .
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Numerical stability of Panjer’s recursion

Panjer’s recursion is certainly numerically stable when

a +
bj

n
≥ 0 for all j ∈ {1, . . . , n}.

This is the case when a ≥ 0 and b ≥ −a, hence for

Poisson distribution,

Negative binomial distribution,

Logarithmic distribution,

Truncations of the above.

It is potentially unstable for

Binomial distribution,

Extended negative binomial distribution,

Extended logarithmic distribution.
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Application: Poisson–tempered-α-stable mixtures

Definition (τ -tempered α-stable distribution Fα,σ,τ )

For index α ∈ (0, 1), scale σ > 0 and tempering τ ≥ 0 define

Fα,σ,τ (y) := E[e−τY 1{Y≤y}]/E[e−τY ], y ∈ R.

where Y is α-stable on [0,∞) with Laplace transform
E[exp(−sY )] = exp(−γα,σsα) for s ≥ 0, where γα,σ = σα

cos(απ/2) .

Theorem (Gerhold, S., Warnung, 2010)

Let Λ ∼ Fα,σ,τ and L(N|Λ)
a.s.
= Poi(λΛ) with λ > 0. Then

N
d
= N1 + · · ·+ NM

with independent M ∼ Poi(γα,σ((λ+ τ)α − τα)) and
Nm ∼ ExtNegBin

(
−α, 1, λ

λ+τ

)
for m ∈ N.
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Application: Poisson–tempered α-stable mixtures (cont.)

Let Λ ∼ Fα,σ,τ and L(N|Λ)
a.s.
= Poi(λΛ) with λ > 0. Then the

stochastic representation N
d
= N1 + · · ·+ NM leads to

S =
N∑
j=1

Xj
d
=

M∑
i=1

N1+···+Ni∑
j=N1+···+Ni−1+1

Xj
d
=

M∑
i=1

Ni∑
j=1

Xi ,j ,

where (Xi ,j)i ,j∈N are i.i.d. with Xi ,j
d
= X1.

Algorithm (numerically stable, τ 6= 0)

Panjer recursion for Ñ ∼ NegBin
(
1− α, λ

λ+τ

)
Weighted convolution: N1 ∼ ExtNegBin

(
−α, 1, λ

λ+τ

)
Panjer recursion for M ∼ Poi(γα,σ((λ+ τ)α − τα))

If τ = 0, use the special algorithm for N1 ∼ ExtNegBin(−α, 1, 1).
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Examples for τ -tempered 1
2-stable distributions

Definition (Lévy distribution with scale parameter σ > 0)

A density of F1/2,σ,0 is

fLévy,σ(x) =
( σ

2πx3

)1/2
exp
(
− σ

2x

)
, x > 0.

(Distribution of first hitting time of Brownian motion for level σ2.)

Definition (inverse Gaussian distribution, parameters µ, σ̃ > 0)

Define σ = µ2/σ̃2 and τ = 1/(2σ̃2). A density of F1/2,σ,τ is

fIG,µ,σ̃(x) =
µ√

2πσ̃2x3
exp

(
−(x − µ)2

2σ̃2x

)
, x > 0.

(Distribution of first hitting time of Brownian motion with drift
1/σ̃ for level µ/σ̃.)
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Additional examples of probability distributions
for the Poisson mixture that can be handled

Generalized τ -tempered α-stable distributions
(one additional parameter m ∈ N0)

Inverse gamma distribution
(with half-integer shape parameter)

Generalized inverse Gaussian distribution
(with additional half-integer parameter m + 1

2 )

With an additional convolution:

Reciprocal generalized inverse Gaussian distribution
(with additional half-integer parameter m + 1

2 )
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References for the explicit calculation of the distribution of
the random sum SN and generalisations

Uwe Schmock: Modelling Dependent Credit Risks with
Extensions of CreditRisk+ and Application to Operational Risk,
Lecture Notes, Vienna University of Technology, 2004–2015.

Stefan Gerhold, Uwe Schmock, and Richard Warnung:
A generalization of Panjer’s recursion and numerically stable
risk aggregation, Finance & Stochastics, 14, (81–128), 2010.

Cordelia Rudolph: A Generalization of Panjer’s Recursion for
Dependent Claim Numbers and an Approximation of Poisson
Mixture Models, Ph.D. thesis, Vienna University of
Technology, Austria, 2014.

Available via my home page.
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Lower quantile (value-at-risk) and Kolmogorov metric

Let X , Y be real-valued random variables and δ ∈ (0, 1) a level.
1 Define the lower δ-quantile of X by

qδ(X ) = min{x ∈ R | P[X ≤ x ] ≥ δ}
2 Define the Kolmogorov distance of their distributions by

dK(L(X ),L(Y )) = sup
z∈R

∣∣P[X ≤ z ]− P[Y ≤ z ]
∣∣.

Lemma (Quantiles and Kolmogorov metric)

Let X and Y be real-valued random variables and denote the
Kolmogorov distance of their distributions by d . Then the lower
quantiles of X and Y satisfy

1 qδ−d(X ) ≤ qδ(Y ) for every level δ ∈ (d , 1) and

2 qδ(Y ) ≤ qδ+d(X ) for every level δ ∈ (0, 1− d).
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Expected shortfall as risk measure

Definition

Let X be a real-valued random variable. Then the expected
shortfall of the loss variable X at level δ ∈ (0, 1) is defined as

ESδ[X ] =
E
[
X1{X>qδ(X )}

]
+ qδ(X )(P[X ≤ qδ(X )]− δ)

1− δ
. (2)

Note that ESδ[X ] =∞ if E[X1{X>qδ(X )}] =∞.
If P[X ≤ qδ(X )] = δ, in particular if the distribution function of X
is also left-continuous at x = qδ(X ), then (2) simplifies to

ESδ[X ] = E[X |X > qδ(X )] .

When expected shortfall is taken as a risk measures, then (contrary
to VaR) the sizes of large losses exceeding the threshold qδ(X ) are
clearly taken into account. The additional term in (2) is necessary
to prove the sub-additivity of expected shortfall (diversification).
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Expected shortfall and Wasserstein metric

Let (S , %) be a metric space and let X , Y be S-valued random
variables. The Wasserstein distance of their distributions is defined
by

dW(L(X ),L(Y )) = sup
b>0

sup
h∈Hb

E[h(X )− h(Y )] ,

where Hb denotes the set of all functions h: S → R with
‖h‖∞ ≤ b and Lipschitz constant Lip(h) ≤ 1.

Lemma (Expected shortfall and Wasserstein metric)

Let X and Y be real-valued, integrable random variables. Then the
expected shortfall of X and Y satisfies, for every level δ ∈ (0, 1),

∣∣ESδ[X ]− ESδ[Y ]
∣∣ ≤ dW(L(X ),L(Y ))

1− δ
.

Uwe Schmock (with Peter Eichelsbacher, Piet Porkert) Weak Limit of Poisson-Mixture Sums via Stein’s Method 15



Introduction and discussion of random sums
Prerequisites for the approximation theorem

Approximation of Poisson-mixture sums

Kolmogorov and Wasserstein distance
Justification for Poisson-mixture distributions
Limiting distributions: Normal variance mixtures

Definition of the one-factor Bernoulli mixture model

Consider Bernoulli random variables X1, . . . ,Xm, a [0,∞)-valued
random variable Λ and p1, . . . , pm ∈ [0, 1] such that
max{p1, . . . , pm}Λ ≤ 1 almost surely. If

P[Xi = 1|Λ]
a.s.
= piΛ, i ∈ {1, . . . ,m},

and if X1, . . . ,Xm are conditionally independent given Λ, i.e.,

P[X1 = x1, . . . ,Xm = xm |Λ]
a.s.
=

m∏
i=1

P[Xi = xi |Λ]

for all x1, . . . , xm ∈ {0, 1}, then we call (X1, . . . ,Xm,Λ) a
one-factor Bernoulli mixture model.

Since P[Xi = 1] = E[P[Xi = 1|Λ]] = pi E[Λ], the case E[Λ] = 1 is
convenient.
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Convergence to Poisson-mixture distributions

In the above one-factor Bernoulli mixture model, define
W = X1 + · · ·+ Xm and λ = p1 + · · ·+ pm. Consider N0-valued N
such that L(N|Λ)

a.s.
= Poi(λΛ). For the total variation distance,

dTV(L(W ),L(N)) = sup
f : N0→[0,1]

E
[
E[f (W )− f (N) |Λ]

]
and almost surely

E[f (W )− f (N) |Λ] ≤ dTV

(
L(W |Λ),L(N|Λ)

)
≤ 1− e−λΛ

λΛ

m∑
i=1

(piΛ)2,

using the classical estimate by Barbour & Hall (1984). Hence

dTV(L(W ),L(N)) ≤ E[Λ(1− e−λΛ)]

λ

m∑
i=1

p2
i .

Similarly for the Wasserstein distance.
(Implications and improvements are ongoing work with Larry Goldstein.)
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Definition of a normal variance mixture distribution

Definition

An Rd -valued random vector Z has a normal variance mixture
distribution with parameters µ ∈ Rd and Σ ∈ Rd×d if there exist

1 a dimension k ∈ N,

2 a matrix A ∈ Rd×k with AA> = Σ,

3 a k-dimensional standard normally distributed random vector
X , and

4 a variance mixture variable Λ ≥ 0, independent of X ,

satisfying the stochastic representation

Z
d
= µ+

√
ΛAX .
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Examples of normal variance mixture distributions

1 Let Λ be constant. Then Z ∼ N (µ,ΛΣ).

2 Let Λ ∼ Γ(α, β) with α, β > 0, then Z has a normal
variance-gamma mixture distribution. The special case α = 1
corresponds to the d-dimensional Laplace distribution
centered at µ.

3 Let 1/Λ ∼ Γ(α, β) with α, β > 0. The special case
α = β = ν/2 corresponds to a d-dimensional t-distribution
td(ν, µ,Σ), with location vector µ ∈ Rd , dispersion matrix Σ
and ν > 0 degrees of freedom. The special case ν = 1
corresponds to the d-dimensional Cauchy distribution.

4 Suppose that Λ has a τ -tempered α-stable distribution with
index α ∈ (0, 1), scale parameter σ > 0 and tempering
parameter τ ≥ 0. The special case α = 1/2 and τ = 0
corresponds to a Lévy distribution with scale parameter σ.
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Setting

Let (Xn)n∈N be independent (not necessarily identically
distributed) real-valued square-integrable random variables
with E[Xn] = 0 and Var(Xn) = 1 for all n ∈ N.

Let Λ be a (0,∞)-valued random variable.

Given λ > 0, let L(Nλ|Λ)
a.s.
= Poi(λΛ) and assume that

(Nλ,Λ) is independent of (Xn)n∈N.

Define the Poisson-mixture sums

Zλ =
1√
λ

Nλ∑
n=1

Xn , λ > 0.

Define the limiting variable Z =
√

ΛX , where X ∼ N (0, 1) is
independent of (Xn)n∈N and (Nλ,Λ).
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Weighted average of third moments

For λ > 0 we define

%(λ) := e−λ
∞∑
n=1

λn−1

n!

n∑
i=1

E
[
|Xi |3

]
∈ [1,∞].

Given Pλ ∼ Poi(λ), then E[Pλ] = λ and we can rewrite

%(λ) =
1

E[Pλ]
E
[ Pλ∑

i=1

E
[
|Xi |3

]]
.

We note that
%(λ) ≤ sup

i∈N
E
[
|Xi |3

]
for all λ > 0.
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Theorem (Eichelsbacher, Porkert, S.)

Let Yλ := Zλ/
√

Λ. On the set {%(λΛ) <∞} the conditional
expectation E

[
|Yλ|

∣∣Λ] is a.s. finite, the Wasserstein distance of
L(Yλ |Λ) to the standard normal distribution L(X ) = N (0, 1) is
a.s. well defined, and

dW

(
L(Yλ|Λ),L(X )

)
≤ 4 + 2%(λΛ)√

λΛ
a.s. (3)

If E[%(λΛ)] <∞, then

dW

(
L(Zλ),L(Z )

)
≤ 4 + 2E[%(λΛ)]√

λ
. (4)
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Proof of (3) =⇒ (4)

Assume that E[%(λΛ)] <∞. Then, for every bounded h: R→ R
with Lip(h) ≤ 1,

E[h(Zλ)− h(Z )] = E
[
E[h(Zλ)− h(Z )|Λ]

]
≤ E

[
dW

(
L(Zλ|Λ),L(Z |Λ)

)]
= E

[
dW

(
L(
√

ΛYλ|Λ),L(
√

ΛX |Λ)
)]

= E
[√

Λ dW

(
L(Yλ|Λ),L(X )

)]
,

where we used the scaling property of the Wasserstein distance in
the last step.
Plugging in (3), the upper bound (4) follows.
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Remarks

The scaled random sum Zλ and the approximation Z =
√

ΛX
are coupled through their joint dependence on Λ. This makes
the bound (4) possible even when Zλ and Z are not integrable.

Due to this coupling we do not need a special Stein equation
for the limiting normal variance mixture distribution, it is
enough to have the Stein equation for N (0, 1) to prove (3).

The assumptions on %(λΛ) of the theorem and the corollaries
below are trivially satisfied if supi∈N E[|Xi |3] <∞, because
this is an upper bound for the function %.

The proof of (3) uses the standard techniques combined with
size biasing.
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Corollaries

1 If E[
√

Λ] <∞, then Z is integrable. If, in addition,
E[%(λΛ)] <∞ for some λ > 0, then Zλ is integrable too, the
Wasserstein distance of L(Zλ) and L(Z ) is finite, and

dW(L(Zλ),L(Z )) := sup
h∈H

E[h(Zλ)− h(Z )] ≤ 4 + 2E[%(λΛ)]√
λ

,

where H denotes the set of all h: R→ R with Lip(h) ≤ 1.

2 If E[%(λΛ)] = o(
√
λ) as λ→∞, then Zλ converges weakly to

Z . Using the Cramér–Wold theorem, this transfers to the
multi-dimensional setting.

3 Suppose that E[
√

Λ] <∞. Let (λn)n∈N be a sequence in
(0,∞) with λn →∞ as n→∞. If E[%(λnΛ)] = o(

√
λn) as

n→∞, then {Zλn}n∈N is uniformly integrable.
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Example illustrating growing third absolute moments (1)

Given γ > 0, consider independent random variables (Xn)n∈N with
P[Xn = eγn] = P[Xn = −eγn] = e−2γn/2 and
P[Xn = 0] = 1− e−2γn for every n ∈ N.
Then E[Xn] = 0, E[X 2

n ] = 1 and E[|Xn|3] = eγn for every n ∈ N.
For λ > 0 consider Pλ ∼ Poi(λ). By summing the first Pλ terms of
a geometric progression with factor eγ ,

Pλ∑
n=1

E
[
|Xn|3

]
=

eγPλ − 1

1− e−γ
,

hence by the definition of %(λ), using ex−1
x ≤ ex for x > 0,

%(λ) =
E[eγPλ ]− 1

λ(1− e−γ)
=

exp(λ(eγ − 1))− 1

λ(1− e−γ)
≤ eγ exp(λ(eγ − 1)).
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Example illustrating growing third absolute moments (2)

Therefore, %(λΛ) <∞ for every (0,∞)-valued random variable Λ
and the conditional approximation (3) applies.
If Λ has a gamma distribution Γ(α, β) with shape parameter α > 0
and inverse scale parameter β > 0, then

E[%(λΛ)] ≤ eγ E[exp(λΛ(eγ − 1))] = eγ
(

β

β − λ(eγ − 1)

)α
for λ < β/(eγ − 1). Hence the approximation (4) with the normal
variance-gamma mixture applies for these positive λ, and also
Corollary 1, because E[

√
Λ] = Γ(α + 1/2)/(

√
βΓ(α)) <∞.

However, the third absolute moments are increasing too fast to
make the convergence of Corollary 2 applicable. No surprise:

E
[ Nλ∑
n=1

1{Xn 6=0}

]
≤
∞∑
n=1

P[Xn 6= 0] =
1

e2γ − 1
, λ > 0,

for every distribution of the (0,∞)-valued Λ.
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Approximation of random sums in the Kolmogorov metric

Theorem (Eichelsbacher, Porkert, S.)

Let c := supi∈N E
[
|Xi |3

]
<∞. For every z ∈ R,∣∣P[Zλ ≤ z |Λ]− P[

√
ΛX ≤ z |Λ]

∣∣
≤ 1

2
√
λΛ

(√√√√%(λΛ)E
[

1

λΛ

Nλ+1∑
n=1

E[|Xn|3]

∣∣∣∣Λ]+
√
π

4 + %(λΛ)

2
√

2
+ 4

)

+

(
1 +

λΛ

2

)
e−λΛ +

√
2(c/2 + 2) + (1 +

√
2)c√

λΛ

√
E[Λ] a.s.
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Weak limit theory for random sums

The weak limit behavior of random sums is well studied, see

B. V. Gnedenko and V. Y. Korolev:
Random Summation, Limit Theorems and Applications,
CRC Press, Boca Raton, FL, 1996.

Normal variance mixture distributions are not surprising as
limit distributions of random sums (transfer theorem).

Normal variance mixture distributions have natural
applications, e.g. in mathematical finance (fat tales).
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Theorem (Transfer theorem)

Let (Xi )i∈N be independent random variables and denote
Sn :=

∑n
i=1 Xi for n ∈ N. Let the sequences of real numbers

(an)n∈N, (bn)n∈N, (cn)n∈N, (dn)n∈N be such that bn, dn > 0,

n ∈ N, and bn, dn →∞ as n→∞ and Yn := (Sn − an)/bn
d−→ Y ,

as n→∞, for some random variable Y with distribution function
F . Let (Nn)n∈N be N-valued random variables independent of
(Xi )i∈N, such that(bNn

dn
,
aNn − cn

dn

)
d−→ (U,V ), n→∞,

for some random variables U and V . Then

P
[
SNn − cn

dn
< x

]
→ E

[
F
(x − V

U

)]
, n→∞.
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Comments

Often certain model parameters are unkown and subject to
statistical variation. One approach to deal with this
phenomenon is to model this uncertainty with a random
variable and analyze its impact on the final result. In actuarial
mathematics this is done e.g. in credibility theory. By
considering Poisson-mixture sums we take such an approach.

According to our best knowledge, considering mixture
distributions combined with studying a conditional version of
Stein’s equation is new.

The appearance of the size-bias transformation in this context
is a new phenomenon, compared to the analysis of

E[f ′(W )] and E[Wf (W )] .
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Related work

Let (Xi )i∈N be a sequence of independent random variables.
Under a Lindeberg-type condition, Toda (2012) proves that
the weak limit for λ→∞ of the properly normalized random
sum

∑Nλ
i=1 Xi , where Nλ ∼ Geom(λ), is the Laplace

distribution.

The Laplace distribution was analyzed via Stein’s method by
Pike & Ren (2014) and their results were applied to
supplement Toda (2012) by a Berry–Esseen type theorem. An
upper bound for the bounded Lipschitz distance of the above
mentioned normalized random sum and the Laplace
distribution is established, but due to a distributional
transformation, which is used for the coupling construction,
the summands Xi , i ∈ N, have to satisfy the symmetry
condition P[Xi > 0] = P[Xi < 0] = 1/2.
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Related work

In Döbler (2012), Berry–Esseen type results for the
Kolmogorov distance between the above mentioned geometric
random sum and the Laplace distribution and the Wasserstein
distance of Poisson and binomial random sums and the
Laplace distribution were proved by direct calculations, not
relying on Stein’s method.

Gaunt (2014) extends Stein’s method to the class of
variance-gamma distributions, which contains the normal and
Laplace distributions as special cases. The Stein equation he
derives is a second order differential equation. As an
application he derives the limit theorem for an asymptotically
variance-gamma distributed statistic.
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Ch. Döbler: On rates of convergence and Berry–Esseen bounds
for random sums of centered random variables with finite third
moments. arXiv:1212.5401v1, 2012.

R. E. Gaunt: Variance-gamma approximation via Stein’s
method. Electron. J. Probab., 19:no. 38, 33, 2014.
URL http://dx.doi.org/10.1214/EJP.v19-3020.

John Pike and Haining Ren: Stein’s method and the Laplace
distribution. ALEA Lat. Am. J. Probab. Math. Stat., 11(1):
571–587, 2014.

Alexis Akira Toda: Weak limit of the geometric sum of
independent but not identically distributed random variables.
arXiv:111.1786v2, 2012.
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Sketch of proof for the Wasserstein distance (1)

For h ∈ Hb, the function

f (x) := exp

(
x2

2

)∫ x

−∞
(h(y)− E[h(X )]

)
exp

(
−y2

2

)
dy , x ∈ R,

solves the conditional Stein equation

Ψ := E[h(Yλ) |Λ]− E[h(X )]
a.s.
= E

[
f ′(Yλ)− Yλf (Yλ)|Λ

]
. (5)

For n ∈ N we define

Y ′λ :=
1√
λΛ

Nλ−1∑
i=1

Xi and Yλ,n :=
1√
λΛ

Nλ∑
i=1,i 6=n

Xi .
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Sketch of proof for the Wasserstein distance (2)

Then

E
[
f ′(Yλ)|Λ

] a.s.
= E

[
1

λΛ

Nλ∑
i=1

f ′(Y ′λ)

∣∣∣∣Λ] (6)

a.s.
= E

[
1

λΛ

Nλ∑
i=1

(
f ′(Y ′λ)− f ′(YΛ,i )

)∣∣∣∣Λ]+ E
[

1

λΛ

Nλ∑
i=1

f ′(Yλ,i )

∣∣∣∣Λ]
a.s.
= E

[
1

λΛ

Nλ∑
i=1

(
f ′(Y ′λ)− f ′(YΛ,i )

)∣∣∣∣Λ]+ E
[

1

λΛ

Nλ∑
i=1

X 2
i f
′(Yλ,i )

∣∣∣∣Λ].
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Sketch of proof for the Wasserstein distance (3)

Furthermore

E[Yλf (Yλ) |Λ]
a.s.
= E

[
1

λΛ

Nλ∑
i=1

X 2
i

∫ 1

0
f ′
(
Yλ,i + t(Yλ − Yλ,i )

)
dt

∣∣∣∣Λ].
(7)

Subtracting (7) from (6) leads to

Ψ
a.s.
= E

[
1

λΛ

Nλ∑
i=1

(
f ′(Y ′λ)− f ′(YΛ,i )

)∣∣∣∣Λ]

+ E
[

1

λΛ

Nλ∑
i=1

X 2
i

∫ 1

0

(
f ′(Yλ,i )− f ′(Yλ,i + t(Yλ − Yλ,i ))

)
dt

∣∣∣∣Λ]
(8)

To control (8) we use the properties of Hb . . .
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Sketch of proof for the Kolmogorov distance

For n ∈ N we define

Z ′λ =
1√
λ

Nλ−1∑
i=1

Xi , Zλ,n =
1√
λ

Nλ∑
i=1
i 6=n

Xi , Z ′λ,n =
1√
λ

Nλ−1∑
i=1
i 6=n

Xi ,

hz := 1(−∞,z] and gz(σ2) := E[hz(σX )], and Yλ,n := Xn√
λ

as well as

Kλ,n(t) := E
[
Yλ,n(1{0≤t≤Yλ,n − 1Yλ,n≤t≤0)

]
, t ∈ R.

Φ := P[Zλ ≤ z |Λ]− P[
√

ΛX ≤ z |Λ]
a.s.
= E

[
hz(Zλ)

∣∣Λ]− gz(Λ)

a.s.
= E

[Nλ
λΛ

(
hz(Z ′λ)− gz(Λ)

)∣∣∣Λ]
a.s.
=

1

Λ
E
[ Nλ∑
n=1

∫
R

(
hz(Z ′λ)− gz(Λ)

)
Kλ,n(t) dt

∣∣∣∣Λ].
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Sketch of proof for the Kolmogorov distance

Further Φ
a.s.
= A + B for

A :=
1

Λ
E
[ Nλ∑
n=1

∫
R

(
hz(Z ′λ)− hz(Zλ,n + t)

)
Kλ,n(t) dt

∣∣∣∣Λ], (9)

and

B :=
1

Λ
E
[ Nλ∑
n=1

∫
R

(
hz(Zλ,n + t)− gz(Λ)

)
Kλ,n(t) dt

∣∣∣∣Λ]. (10)

The terms A and B have to be analyzed . . .
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