
ar
X

iv
:1

41
2.

36
61

v3
  [

m
at

h.
ST

] 
 2

1 
M

ar
 2

01
5

CENTRAL LIMIT THEOREMS AND BOOTSTRAP IN

HIGH DIMENSIONS

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. This paper derives central limit and bootstrap theorems for
probabilities that sums of centered high-dimensional random vectors hit
hyperrectangles and sparsely convex sets. Specifically, we derive Gauss-
ian and bootstrap approximations for probabilities P(n−1/2 ∑n

i=1 Xi ∈

A) where X1, . . . , Xn are independent random vectors in R
p and A is

a hyperrectangle, or, more generally, a sparsely convex set, and show
that the approximation error converges to zero even if p = pn → ∞ as
n → ∞ and p ≫ n; in particular, p can be as large as O(eCnc

) for some
constants c, C > 0. The result holds uniformly over all hyperrectangles,
or more generally, sparsely convex sets, and does not require any re-
striction on the correlation structure among coordinates of Xi. Sparsely
convex sets are sets that can be represented as intersections of many
convex sets whose indicator functions depend only on a small subset of
their arguments, with hyperrectangles being a special case.

1. Introduction

Let X1, . . . ,Xn be independent random vectors in R
p where p ≥ 3 may be

large or even much larger than n. Denote by Xij the j-th coordinate of Xi,
so that Xi = (Xi1, . . . ,Xip)

′. We assume that each Xi is centered, namely
E[Xij ] = 0, and E[X2

ij ] <∞ for all i = 1, . . . , n and j = 1, . . . , p. Define the
normalized sum

SXn := (SXn1, . . . , S
X
np)

′ :=
1√
n

n∑

i=1

Xi.

We consider Gaussian approximation to SXn , and to this end, let Y1, . . . , Yn
be independent centered Gaussian random vectors in R

p such that each Yi
has the same covariance matrix as Xi, that is, Yi ∼ N(0,E[XiX

′
i]). Define

the normalized sum for the Gaussian random vectors:

SYn := (SYn1, . . . , S
Y
np)

′ :=
1√
n

n∑

i=1

Yi.
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We are interested in bounding the quantity

ρn(A) := sup
A∈A

|P(SXn ∈ A)− P(SYn ∈ A)|, (1)

where A is a class of Borel sets in R
p.

Bounding ρn(A) for various classes A of sets in R
p, with a special emphasis

on explicit dependence on the dimension p in the bounds, has been studied
by a number of authors; see, for example, [6], [7], [8], [23], [29], [35], [36], [37],
and [38]; we refer to [18] for an exhaustive literature review. Typically, we
are interested in how fast p = pn → ∞ is allowed to grow while guaranteeing
ρn(A) → 0. In particular, Bentkus [7] established one of the sharpest results
in this direction which states that whenX1, . . . ,Xn are i.i.d. with E[XiX

′
i] =

I (I denotes the p× p identity matrix),

ρn(A) ≤ Cp(A)
E[‖X1‖3]√

n
, (2)

where Cp(A) is a constant that depends only on p and A; for example, Cp(A)
is bounded by a universal constant when A is the class of all Euclidean balls
in R

p, and Cp(A) ≤ 400p1/4 when A is the class of all convex sets in R
p.

Note, however, that this bound does not allow p to be larger than n once
we require ρn(A) → 0. Indeed by Hölder’s inequality, when E[X1X

′
1] = I,

E[‖X1‖3] ≥ (E[‖X1‖2])3/2 = p3/2, and hence in order to make the right-

hand side of (2) to be o(1), we at least need p = o(n1/3) when A is the class
of Euclidean balls, and p = o(n2/7) when A is the class of all convex sets.
Similar conditions are needed in other papers cited above. It is worthwhile
to mention here that, when A is the class of all convex sets, it was proved
by [29] that ρn(A) ≥ cE[‖X1‖3]/

√
n for some universal constant c > 0.

In modern statistical applications, such as high dimensional estimation
and multiple hypothesis testing, however, p is often larger or even much
larger than n. It is therefore interesting to ask whether it is possible to
provide a nontrivial class of sets A in R

p for which we would have

ρn(A) → 0 even if p is potentially larger or much larger than n. (3)

In this paper, we derive bounds on ρn(A) for A = Are being the class
of all hyperrectangles, or more generally for A ⊂ Asi(a, d) being a class of
simple convex sets, and show that these bounds lead to results of type (3).
We call any convex set a simple convex set if it can be well approximated
by a convex polytope whose number of facets is (potentially very large but)
not too large; see Section 3 for details. An extension to simple convex sets is
interesting because it allows us to derive similar bounds forA = Asp(s) being
the class of (s-)sparsely convex sets. These are sets that can be represented
as an intersection of many convex sets whose indicator functions depend
nontrivially at most on s elements of their arguments (for some small s).

The sets considered are useful for applications to statistics. In particular,
the results for hyperrectangles and sparsely convex sets are of importance
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because they allow us to approximate the distributions of various key sta-
tistics that arise in inference for high-dimensional models. For example,
the probability that a collection of Kolmogorov-Smirnov type statistics falls
below a collection of thresholds

P

(
max
j∈Jk

SXnj ≤ tk for all k = 1, . . . , κ

)
= P

(
SXn ∈ A

)

can be approximated by P(SYn ∈ A) within the error margin ρn(Are); here
{Jk} are (non-intersecting) subsets of {1, . . . , p}, {tk} are thresholds in the
interval (−∞,∞), κ ≥ 1 is an integer, and A ∈ Are is a hyperrectangle of
the form {w ∈ R

p : maxj∈Jk wj ≤ tk for all k = 1, . . . , κ}. Another example
is the probability that a collection of Pearson type statistics falls below a
collection of thresholds

P
(
‖(SXnj)j∈Jk‖2 ≤ tk for all k = 1, . . . , κ

)
= P

(
SXn ∈ A

)

can be approximated by P(SYn ∈ A) within the error margin ρn(Asp(s));
here {Jk} are subsets of {1, . . . , p} of fixed cardinality s, {tk} are thresholds
in the interval (0,∞), κ ≥ 1 is an integer, and A ∈ Asp(s) is a sparsely
convex set of the form {w ∈ R

p : ‖(wj)j∈Jk‖2 ≤ tk for all k = 1, . . . , κ}. In
practice, as we demonstrate, the approximations above could be estimated
using the empirical or multiplier bootstraps.

The results in this paper substantially extend those obtained in [17] where
we considered the class A = Am of sets of the form A = {w ∈ R

p :
maxj∈J wj ≤ a} for some a ∈ R and J ⊂ {1, . . . , p}, but in order to obtain
much better dependence on n, we employ new techniques. Most notably, as
the main ingredient in the new proof, we employ an argument inspired by
Bolthausen [10]. Our paper builds upon our previous work [17], which in
turn builds on a number of works listed in the bibliography (see [18] for a
detailed review and links to the literature).

The organization of this paper is as follows. In Section 2, we derive
a Central Limit Theorem (CLT) for hyperrectangles in high dimensions;
that is, we derive a bound on ρn(A) for A = Are being the class of all
hyperrectangles and show that the bound converges to zero under certain
conditions even when p is potentially larger or much larger than n. In Section
3, we extend this result by showing that similar bounds apply for A ⊂
Asi(a, d) being a class of simple convex sets and for A = Asp(s) being the
class of all s-sparsely convex sets. In Section 4, we derive high dimensional
empirical and multiplier bootstrap theorems that allow us to approximate
P(SYn ∈ A) for A ∈ Are, Asi(a, d), or Asp(s) using the data X1, . . . ,Xn.
In Section 5, we state an important technical lemma, which constitutes the
main part of the derivation of our high dimensional CLT. Finally, we provide
all the proofs as well as some technical results in the Appendix.

1.1. Notation. For a ∈ R, [a] denotes the largest integer smaller than or
equal to a. For w = (w1, . . . , wp)

′ ∈ R
p and y = (y1, . . . , yp)

′ ∈ R
p, we write
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w ≤ y if wj ≤ yj for all j = 1, . . . , p. For y = (y1, . . . , yp)
′ ∈ R

p and a ∈ R,
we write y+a = (y1+a, . . . , yp+a)

′. Throughout the paper, En[·] denotes the
average over index i = 1, . . . , n; that is, it simply abbreviates the notation
n−1

∑n
i=1[·]. For example, En[xij ] = n−1

∑n
i=1 xij. We also write Xn

1 :=
{X1, . . . ,Xn}. For v ∈ R

p, we use the notation ‖v‖0 :=
∑p

j=1 1{vj 6= 0} and

‖v‖ = (
∑p

j=1 v
2
j )

1/2. For α > 0, we define the function ψα : [0,∞) → [0,∞)

by ψα(x) := exp(xα)− 1, and for a real-valued random variable ξ, we define

‖ξ‖ψα := inf{λ > 0 : E[ψα(|ξ|/λ)] ≤ 1}.
For α ∈ [1,∞), ‖ · ‖ψα is an Orlicz norm, while for α ∈ (0, 1), ‖ · ‖ψα is not a
norm but a quasi-norm, that is, there exists a constant Kα depending only
on α such that ‖ξ1 + ξ2‖ψα ≤ Kα(‖ξ1‖ψα + ‖ξ2‖ψα). Throughout the paper,
we assume that n ≥ 4 and p ≥ 3.

2. High Dimensional CLT for Hyperrectangles

This section presents a high dimensional CLT for hyperrectangles. We
begin with presenting an abstract theorem (Theorem 2.1); the bound in
Theorem 2.1 is general but depends on the tail properties of the distri-
butions of the coordinates of Xi in a nontrivial way. Next we apply this
theorem under simple moment conditions and derive more explicit bounds
(Proposition 2.1).

Let Are be the class of all hyperrectangles in R
p; that is, Are consists of

all sets A of the form

A = {w ∈ R
p : aj ≤ wj ≤ bj for all j = 1, . . . , p} (4)

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p. We will derive a bound on
ρn(Are), and show that under certain conditions it leads to ρn(Are) → 0
even when p = pn is potentially larger or much larger than n.

To describe the bound, we need to prepare some notation. Define

Ln := max
1≤j≤p

n∑

i=1

E[|Xij |3]/n,

and for φ ≥ 1, define

Mn,X(φ) := n−1
n∑

i=1

E

[
max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | >
√
n/(4φ log p)

}]
. (5)

Similarly, define Mn,Y (φ) with Xij ’s replaced by Yij ’s in (5), and let

Mn(φ) := Mn,X(φ) +Mn,Y (φ).

The following is the first main result of this paper.

Theorem 2.1 (Abstract High Dimensional CLT for Hyperrectangles). Sup-
pose that there exists some constant b > 0 such that n−1

∑n
i=1 E[X

2
ij ] ≥ b
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for all j = 1, . . . , p. Then there exist constants K1,K2 > 0 depending only b
such that for every constant Ln ≥ Ln, we have

ρn(Are) ≤ K1



(
L
2
n log

7 p

n

)1/6

+
Mn(φn)

Ln


 (6)

with

φn := K2

(
L
2
n log

4 p

n

)−1/6

. (7)

Remark 2.1 (Key features of Theorem 2.1). (i) The bound (6) should be
contrasted with Bentkus’s [7] bound (2). For the sake of exposition, assume
that the vectors X1, . . . ,Xn are such that E[X2

ij ] = 1 and for some sequence

of constants Bn ≥ 1, |Xij | ≤ Bn for all i = 1, . . . , n and j = 1, . . . , p. Then
it can be shown that the bound (6) reduces to

ρn(Are) ≤ K
(
n−1B2

n log
7(pn)

)1/6
(8)

for some universal constant K; see Proposition 2.1 below. Importantly, the
right-hand side of (8) converges to zero even when p is much larger than
n; indeed we just need B2

n log
7(pn) = o(n) to make ρn(Are) → 0, and if in

addition Bn = O(1), the condition reduces to log p = o(n1/7). In contrast,
Bentkus’s bound (2) requires

√
p = o(n1/7) to make ρn(A) → 0 when A

is the class of all convex sets. Hence by restricting the class of sets to the
smaller one, A = Are, we are able to considerably weaken the requirement
on p, replacing

√
p by log p.

(ii) On the other hand, the bound in (8) depends on n through n−1/6, so
that our Theorem 2.1 does not recover the Berry-Esseen bound when p is
fixed. However, given that the rate n−1/6 is optimal (in a minimax sense) in
CLT in infinite dimensional Banach spaces (see [5]), the factor n−1/6 seems
nearly optimal in terms of dependence on n in the high-dimensional settings
as considered here. In addition, examples in [19] suggest that dependence
on Bn is also optimal. Hence we conjecture that up to a universal constant,

(
n−1B2

n(log p)
a
)1/6

for some a > 0 is an optimal bound (in a minimax sense) in the high di-
mensional setting as considered here. The value a = 3 could be motivated
by the theory of moderate deviations for self-normalized sums when all the
coordinates of Xi are independent. �

Remark 2.2 (Relation to previous work). Theorem 2.1 extends Theorem
2.2 in [17] where we derived a bound on ρn(Am) with Am ⊂ Are consisting
of all sets of the form

A = {w ∈ R
p : wj ≤ a for all j = 1, . . . , p}
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for some a ∈ R. In particular, we improve the dependence on n from n−1/8

in [17] to n−1/6. In addition, we note that extension to the class Are from the
class Am is not immediate since in both papers we assume that Var(SXnj) is
bounded below from zero uniformly in j = 1, . . . , p, so that it is not possible
to directly extend the results in [17] to the class of hyperrectangles A = Are

by just rescaling the coordinates in SXn . �

The bound (6) depends on Mn(φn) whose values are problem specific.
Therefore, we now apply Theorem 2.1 in two specific examples that are
most useful in mathematical statistics (as well as other related fields such
as econometrics). Let b, q > 0 be some constants, and let Bn ≥ 1 be a
sequence of constants, possibly growing to infinity as n→ ∞. Assume that
the following conditions are satisfied:

(M.1) n−1
∑n

i=1 E[X
2
ij ] ≥ b for all j = 1, . . . , p,

(M.2) n−1
∑n

i=1 E[|Xij |2+k] ≤ Bk
n for all j = 1, . . . , p and k = 1, 2.

We consider examples where one of the following conditions holds:

(E.1) E[exp(|Xij |/Bn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . , p,
(E.2) E[(max1≤j≤p |Xij |/Bn)q] ≤ 2 for all i = 1, . . . , n,

In addition, denote

D(1)
n =

(
B2
n log

7(pn)

n

)1/6

, D(2)
n,q =

(
B2
n log

3(pn)

n1−2/q

)1/3

. (9)

An application of Theorem 2.1 under these conditions leads to the following
proposition.

Proposition 2.1 (High Dimensional CLT for Hyperrectangles). Suppose
that conditions (M.1) and (M.2) are satisfied. Then under (E.1), we have

ρn(Are) ≤ CD(1)
n ,

where the constant C depends only on b; while under (E.2), we have

ρn(Are) ≤ C{D(1)
n +D(2)

n,q},
where the constant C depends only on b and q.

3. High Dimensional CLT for Simple and Sparsely Convex Sets

In this section, we extend the results of Section 2 by considering larger
classes of sets; in particular, we consider classes of simple convex sets, and
obtain, under certain conditions, bounds that are similar to those in Section
2 (Proposition 3.1). Although an extension to simple convex sets is not
difficult, in high dimensional spaces, the class of simple convex sets is rather
large. In addition, it allows us to derive similar bounds for classes of sparsely
convex sets. These classes in turn may be of interest in statistics where
sparse models and techniques have been of canonical importance in the past
years.
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3.1. Simple convex sets. Consider a convex set A ⊂ R
p. This set can be

characterized by its support function:

SA : Sp−1 → R ∪ {∞}, v 7→ SA(v) := sup{w′v : w ∈ A},
where S

p−1 := {v ∈ R
p : ‖v‖ = 1}; in particular, A = ∩v∈Sp−1{w ∈ R

p :
w′v ≤ SA(v)}. We say that a convex set A is m-generated if it is generated
by the intersection of m half-spaces (that is, A is a convex polytope with at
mostm facets). The support function SA of such a set A can be characterized
completely by its values {SA(v) : v ∈ V(A)} for the set V(A) consisting of
m unit vectors that are outward normal to the facets of A. Indeed,

A = ∩v∈V(A){w ∈ R
p : w′v ≤ SA(v)}.

For ǫ > 0 and an m-generated convex set Am, we define

Am,ǫ := ∩v∈V(Am){w ∈ R
p : w′v ≤ SAm(v) + ǫ},

and we say that a convex set A admits an approximation with precision ǫ
by an m-generated convex set Am if

Am ⊂ A ⊂ Am,ǫ.

Let a, d > 0 be some constants. Let Asi(a, d) be the class of all sets A in
R
p that satisfy the following condition:

(C) The set A admits an approximation with precision ǫ = a/n by an
m-generated convex set Am where m ≤ (pn)d.

We refer to sets A that satisfy condition (C) as simple convex sets. Note
that any hyperrectangle A ∈ Are satisfies condition (C) with a = 0 and d = 1
(recall that n ≥ 4), and so belongs to the class Asi(0, 1). For A ∈ Asi(a, d),
let Am(A) denote the set Am that appears in condition (C) applied to the
set A.

We will considers subclasses A of the class Asi(a, d) consisting of sets

A such that for Am = Am(A) and X̃i = (X̃i1, . . . , X̃im)
′ = (v′Xi)v∈V(Am),

i = 1, . . . , n, the following conditions are satisfied:

(M.1′) n−1
∑n

i=1 E[X̃
2
ij ] ≥ b for all j = 1, . . . ,m,

(M.2′) n−1
∑n

i=1 E[|X̃ij |2+k] ≤ Bk
n for all j = 1, . . . ,m and k = 1, 2,

and, in addition, one of the following conditions is satisfied:

(E.1′) E[exp(|X̃ij |/Bn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . ,m,

(E.2′) E[(max1≤j≤m |X̃ij |/Bn)q] ≤ 2 for all i = 1, . . . , n.

Conditions (M.1′), (M.2′), (E.1′), and (E.2′) are similar to those used in

the previous section but they apply to X̃1, . . . , X̃n rather than toX1, . . . ,Xn.

Recall the definition of ρn(A) in (1) and the definitions of D
(1)
n and D

(2)
n,q

in (9). An extension of Proposition 2.1 leads to the following result.

Proposition 3.1 (High Dimensional CLT for Simple Convex Sets). Let A
be a subclass of Asi(a, d) such that conditions (M.1′), (M.2′), and (E.1′) are
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satisfied for every A ∈ A. Then

ρn(A) ≤ CD(1)
n , (10)

where the constant C depends only on a, b, and d. If, instead of condition
(E.1′), condition (E.2′) is satisfied for every A ∈ A, then

ρn(A) ≤ C{D(1)
n +D(2)

n,q}, (11)

where the constant C depends only on a, b, d, and q.

It is worthwhile to mention that a notable example where the transformed

variables X̃i = (v′Xi)v∈V(Am) satisfy condition (E.1′) is the case where each
Xi obeys a log-concave distribution. Recall that a Borel probability measure
µ on R

p is log-concave if for every Borel subsets A1, A2 of Rp and λ ∈ (0, 1),

µ(λA1 + (1− λ)A2) ≥ µ(A1)
λµ(A2)

1−λ,

where λA1 + (1− λ)A2 = {λx+ (1− λ)y : x ∈ A1, y ∈ A2}.
Corollary 3.1 (High Dimensional CLT for Simple Convex Sets with Log–
concave Distributions). Suppose that each Xi obeys a centered log-concave
distribution on R

p and that all the eigenvalues of E[XiX
′
i] are bounded from

below by a constant k1 > 0 and from above by a constant k2 ≥ k1 for every
i = 1, . . . , n. Then

ρn(Asi(a, d)) ≤ Cn−1/6 log7/6(pn),

where the constant C depends only on a, b, d, k1, and k2.

3.2. Sparsely convex sets. We next consider classes of sparsely convex
sets defined as follows.

Definition 3.1 (Sparsely convex sets). For integer s > 0, we say that
A ⊂ R

p is an s-sparsely convex set if there exist an integer Q > 0 and

convex sets Aq ⊂ R
p, q = 1, . . . , Q, such that A = ∩Qq=1Aq and the indicator

function of each Aq, w 7→ I(w ∈ Aq), depends at most on s elements of its
argument w = (w1, . . . , wp) (which we call the main components of Aq). We

also say that A = ∩Qq=1Aq is a sparse representation of A.

Observe that for any s-sparsely convex set A ⊂ R
p, the integer Q in

Definition 3.1 can be chosen to satisfy Q ≤ Cps ≤ ps. Indeed, if we have a

sparse representation A = ∩Qq=1Aq for Q > Cps , then there are at least two
sets Aq1 and Aq2 with the same main components, and hence we can replace
these two sets by one convex set Aq1 ∩Aq2 with the same main components;
this procedure can be repeated until we have Q ≤ Cps .

Example 3.1. The simplest example satisfying Definition 3.1 is a hyper-
rectangle as in (4), which is a 1-sparsely convex set. Another example is the
set

A = {w ∈ R
p : v′kw ≤ ak for all k = 1, . . . ,m}
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for some unit vectors vk ∈ S
p−1 and coefficients ak, k = 1, . . . ,m. If the

number of non-zero elements of each vk does not exceed s, this A is an
s-sparsely convex set. Yet another example is the set

A = {w ∈ R
p : aj ≤ wj ≤ bj for all j = 1, . . . , p and w2

1 + w2
2 ≤ c}

for some coefficients −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p, and 0 < c ≤ ∞. This
A is a 2-sparsely convex set. A more complicated example is the set

A = {w ∈ R
p : aj ≤ wj ≤ bj , w

2
k + w2

l ≤ ckl, for all j, k, l = 1, . . . , p}
for some coefficients −∞ ≤ aj ≤ bj ≤ ∞, 0 < ckl ≤ ∞, j, k, l = 1, . . . , p.
This A is a 2-sparsely convex set. Finally, consider the set

A = {w ∈ R
p : ‖(wj)j∈Jk‖2 ≤ tk for all k = 1, . . . , κ},

where {Jk} are subsets of {1, . . . , p} of fixed cardinality s, {tk} are thresholds
in (0,∞), and 1 ≤ κ ≤ Cps is an integer. This A is an s-sparsely convex set.

Fix an integer s > 0, and let Asp(s) denote the class of all s-sparsely
convex sets in R

p. We assume that the following condition is satisfied:

(M.1′′) n−1
∑n

i=1 E[(v
′Xi)

2] ≥ b for all v ∈ S
p−1 with ‖v‖0 ≤ s.

Then we have the following proposition:

Proposition 3.2 (High Dimensional CLT for Sparsely Convex Sets). Sup-
pose that conditions (M.1′′) and (M.2) are satisfied. Then under (E.1), we
have

ρn(Asp(s)) ≤ CD(1)
n , (12)

where the constant C depends only on b and s; while under (E.2), we have

ρn(Asp(s)) ≤ C{D(1)
n +D(2)

n,q}, (13)

where the constant C depends only on b, q, and s.

Remark 3.1 (Dependence on s). In many applications, it may be of in-
terest to consider s-sparsely convex sets with s = sn depending on n and
potentially growing to infinity: s = sn → ∞. It is therefore interesting to
derive the optimal dependence of the constant C in (12) and (13) on s. We
leave this question for future work. �

4. Empirical and Multiplier Bootstrap Theorems

So far we have shown that the probabilities P(SXn ∈ A) can be well
approximated by the probabilities P(SYn ∈ A) under weak conditions for hy-
perrectangles A ∈ Are, simple convex sets A ∈ Asi(a, d), or sparsely convex
sets A ∈ Asp(s). In practice, however, the covariance matrix of SYn is typi-
cally unknown, and direct computation of P(SYn ∈ A) is infeasible. Hence,
in this section, we derive high dimensional bootstrap theorems which allow
us to approximate the probabilities P(SYn ∈ A), and hence P(SXn ∈ A),
by data-dependent techniques. We consider here multiplier and empirical
bootstrap methods (we refer to [32] for various versions of bootstraps).
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4.1. Multiplier bootstrap. We first consider the multiplier bootstrap.
Let e1, . . . , en be a sequence of i.i.d. N(0, 1) random variables that are
independent of Xn

1 = {X1, . . . ,Xn}. Let X̄ := (X̄1, . . . , X̄p)
′ := En[Xi], and

consider the normalized sum:

SeXn := (SeXn1 , . . . , S
eX
np )

′ :=
1√
n

n∑

i=1

ei(Xi − X̄).

We are interested in bounding

ρMB
n (A) := sup

A∈A
|P(SeXn ∈ A | Xn

1 )− P(SYn ∈ A)|

for A = Are, Asp(s), or A ⊂ Asi(a, d).
We begin with the case A ⊂ Asi(a, d). Let

Σ̂ := n−1
n∑

i=1

(Xi − X̄)(Xi − X̄)′, Σ := n−1
n∑

i=1

E[XiX
′
i].

Observe that E[SeXn (SeXn )′ | Xn
1 ] = Σ̂ and E[SYn (S

Y
n )

′] = Σ. For A ⊂
Asi(a, d), define

∆n(A) := sup
A∈A

max
v1,v2∈V(Am(A))

|v′1(Σ̂− Σ)v2|.

Then we have the following theorem for classes of simple convex sets.

Theorem 4.1 (Abstract Multiplier Bootstrap Theorem for Simple Convex
Sets). Let A be a subclass of Asi(a, d) such that condition (M.1′) is satisfied
for every A ∈ A. Then for every constant ∆n > 0, on the event ∆n(A) ≤
∆n, we have

ρMB
n (A) ≤ C

{
∆

1/3
n log2/3(pn) + n−1 log1/2(pn)

}
,

where the constant C depends only on a, b, and d.

Remark 4.1 (Case of hyperrectangles). From the proof of Theorem 4.1, we
have the following bound when A = Are: under (M.1), for every constant
∆n > 0, on the event ∆n,r ≤ ∆n, we have

ρMB
n (Are) ≤ C∆

1/3
n log2/3 p,

where the constant C depends only on b, and ∆n,r is defined by

∆n,r = max
1≤j,k≤p

|Σ̂jk − Σjk|,

where Σ̂jk and Σjk are the (j, k)-th elements of Σ̂ and Σ, respectively. �

Next, we derive more explicit bounds on ρMB
n (A) for A ⊂ Asi(a, d) under

suitable moment conditions as in the previous section. We will consider sets
A ∈ Asi(a, d) that satisfy the following condition:

(S) The set Am = Am(A) satisfies ‖v‖0 ≤ s for all v ∈ V(Am).
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Condition (S) requires that the outward unit normal vectors to the hy-
perplanes forming the m-generated convex set Am = Am(A) are sparse.
Assuming that (S) is satisfied for all A ∈ A ⊂ Asi(a, d) helps to control
∆n(A).

For α ∈ (0, e−1), define

D(1)
n (α) =

(
B2
n(log

5(pn)) log2(1/α)

n

)1/6

, D(2)
n,q(α) =

(
B2
n log

3(pn)

α2/qn1−2/q

)1/3

.

Then we have the following proposition.

Proposition 4.1 (Multiplier Bootstrap for Simple Convex Sets). Let α ∈
(0, e−1) be a constant, and let A be a subclass of Asi(a, d) such that conditions
(S) and (M.1′) are satisfied for every A ∈ A. In addition, suppose that
condition (M.2) is satisfied. Then under (E.1), we have with probability at
least 1− α,

ρMB
n (A) ≤ CD(1)

n (α),

where the constant C depends only on a, b, d and s; while under (E.2), we
have with probability at least 1− α,

ρMB
n (A) ≤ C{D(1)

n (α) +D(1)
n,q(α)},

where the constant C depends only on a, b, d, q, and s.

Remark 4.2 (Bootstrap theorems in a.s. sense). Proposition 4.1 leads to
the following multiplier bootstrap theorem in the a.s. sense. Suppose that
A is a subclass of Asi(a, d) as in Proposition 4.1 and that (M.2) is satisfied.
We allow p = pn → ∞ and Bn → ∞ as n → ∞ but assume that a, b, d, q, s
are all fixed. Then by applying Proposition 4.1 with α = αn = n−1(log n)−2,
together with the Borel-Cantelli lemma (note that

∑∞
n=4 n

−1(log n)−2 <∞),
we have with probability one

ρMB
n (A) =

{
O{D(1)

n } under (E.1)

O{D(1)
n ∨D(2)

n,q(αn)} under (E.2),

and it is routine to verify that D
(1)
n = o(1) if B2

n log
7(pn) = o(n), and

D
(2)
n,q(αn) = o(1) if B2

n(log
3(pn)) log4/q n = o(n1−4/q). Similar conclusions

also follow from other propositions and corollaries below dealing with dif-
ferent classes of sets and approximations based on multiplier and empirical
bootstraps. �

When each Xi obeys a log-concave distribution, we have the following
corollary analogous to Corollary 3.1. In this case, instead of condition (S),
we will assume that A ⊂ Asi(a, d) is such that the cardinality of the set
∪A∈AV(Am(A)) is at most (pn)d.

Corollary 4.1 (Multiplier Bootstrap for Simple Convex Sets with Log-con-
cave Distributions). Let α ∈ (0, e−1) be a constant, and let A be a subclass
of Asi(a, d) such that the cardinality of the set ∪A∈AV(Am(A)) is at most
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(pn)d. Suppose that each Xi obeys a centered log-concave distribution on R
p

and that all the eigenvalues of E[XiX
′
i] are bounded from below by a constant

k1 > 0 and from above by a constant k2 ≥ k1 for every i = 1, . . . , n. Then
with probability at least 1− α,

ρMB
n (A) ≤ Cn−1/6(log5/6(pn)) log1/3(1/α),

where the constant C depends only on a, d, k1, and k2.

When A = Are, we have the following corollary.

Corollary 4.2 (Multiplier Bootstrap for Hyperrectangles). Let α ∈ (0, e−1)
be a constant, and suppose that conditions (M.1) and (M.2) are satisfied.
Then under (E.1), we have with probability at least 1− α,

ρMB
n (Are) ≤ CD(1)

n (α),

where the constant C depends only on b; while under (E.2), we have with
probability at least 1− α,

ρMB
n (Are) ≤ C{D(1)

n (α) +D(1)
n,q(α)},

where the constant C depends only on b and q.

Finally, we derive explicit bounds on ρMB
n (A) in the case where A is the

class of all s-sparsely convex sets: A = Asp(s).

Proposition 4.2 (Multiplier Bootstrap for Sparsely Convex Sets). Let
α ∈ (0, e−1) be a constant. Suppose that conditions (M.1′′) and (M.2) are
satisfied. Then under (E.1), we have with probability at least 1− α,

ρMB
n (Asp(s)) ≤ CD(1)

n (α), (14)

where the constant C depends only on b and s; while under (E.2), we have
with probability at least 1− α,

ρMB
n (Asp(s)) ≤ C{D(1)

n (α) +D(2)
n,q(α)}, (15)

where the constant C depends only on b, s, and q.

4.2. Empirical bootstrap. Here we consider the empirical bootstrap. For
brevity, we only consider the case A = Are. Let X∗

1 , . . . ,X
∗
n be i.i.d.

draws from the empirical distribution of X1, . . . ,Xn. Conditional on X
n
1 =

{X1, . . . ,Xn}, X∗
1 , . . . ,X

∗
n are i.i.d. with mean X̄ = En[Xi]. Consider the

normalized sum:

SX
∗

n := (SX
∗

n1 , . . . , S
X∗

np )
′ :=

1√
n

n∑

i=1

(X∗
i − X̄).

We are interested in bounding

ρEBn (A) := sup
A∈A

|P(SX∗

n ∈ A | Xn
1 )− P(SYn ∈ A)|
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for A = Are. To state the bound, define

L̂n := max
1≤j≤p

n∑

i=1

|Xij − X̄j |3/n,

which is an empirical analog of Ln, and for φ ≥ 1, define

M̂n,X(φ) := n−1
n∑

i=1

max
1≤j≤p

|Xij − X̄j |31
{

max
1≤j≤p

|Xij − X̄j | >
√
n/(4φ log p)

}
,

M̂n,Y (φ) := E

[
max
1≤j≤p

|SeXnj |31
{

max
1≤j≤p

|SeXnj | >
√
n/(4φ log p)

}
| Xn

1

]
,

which are empirical analogs of Mn,X(φ) and Mn,Y (φ), respectively. Let

M̂n(φ) := M̂n,X(φ) + M̂n,Y (φ).

We have the following theorem.

Theorem 4.2 (Abstract Empirical Bootstrap Theorem). For arbitrary pos-
itive constants b, Ln, and Mn, the inequality

ρEBn (Are) ≤ ρMB
n (Are) +K1



(
L
2
n log

7 p

n

)1/6

+
Mn

Ln




holds on the event

{En[(Xij − X̄j)
2] ≥ b for all j = 1, . . . , p} ∩ {L̂n ≤ Ln} ∩ {M̂n(φn) ≤Mn},

where

φn := K2

(
L
2
n log

4 p

n

)−1/6

.

Here K1,K2 > 0 are constants that depend only on b.

As for the multiplier bootstrap case, we next derive explicit bounds on
ρEBn (Are) under suitable moment conditions.

Proposition 4.3 (Empirical Bootstrap for Hyperrectangles). Let α ∈ (0, e−1)
be a constant, and suppose that conditions (M.1) and (M.2) are satisfied. In
addition, suppose that log(1/α) ≤ K log(pn) for some constant K. Then
under (E.1), we have with probability at least 1− α,

ρEBn (Are) ≤ CD(1)
n (α), (16)

where the constant C depends only on b and K; while under (E.2), we have
with probability at least 1− α,

ρEBn (Are) ≤ C{D(1)
n (α) +D(2)

n,q(α)}, (17)

where the constant C depends only on b, q, and K.
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5. Key Lemma

In this section, we state a lemma that plays a key role in the proof of our
high dimensional CLT for hyperrectangles (Theorem 2.1). Define

̺n := sup
y∈Rp,v∈[0,1]

|P
(√
vSXn +

√
1− vSYn ≤ y

)
− P(SYn ≤ y)|,

and recall that Mn(φ) := Mn,X(φ) +Mn,Y (φ) for φ ≥ 1. The lemma below
provides a bound on ̺n.

Lemma 5.1 (Key Lemma). Suppose that there exists some constant b > 0
such that n−1

∑n
i=1 E[X

2
ij ] ≥ b for all j = 1, . . . , p. Then ̺n satisfies the

following inequality for all φ ≥ 1:

̺n .
φ2 log2 p

n1/2

{
φLn̺n + Ln log

1/2 p+ φMn(φ)
}
+

log1/2 p

φ

up to a constant K that depends only on b.

Lemma 5.1 has an immediate corollary. Indeed, define

̺′n := sup
A∈Are,v∈[0,1]

|P(
√
vSXn +

√
1− vSYn ∈ A)− P(SYn ∈ A)|

where Are is the class of all hyperrectangles in R
p. Then we have:

Corollary 5.1. Suppose that there exists some constant b > 0 such that
n−1

∑n
i=1 E[X

2
ij ] ≥ b for all j = 1, . . . , p. Then ̺′n satisfies the following

inequality for all φ ≥ 1:

̺′n .
φ2 log2 p

n1/2

{
φLn̺

′
n + Ln log

1/2 p+ φMn(2φ)
}
+

log1/2 p

φ

up to a constant K ′ that depends only on b.

Appendix A. Anti-concentration inequalities

One of the main ingredients of the proof of Lemma 5.1 (and the proofs of
the other results indeed) is the following anti-concentration inequality due
to Nazarov [30].

Lemma A.1 (Nazarov’s inequality, [30]). Let Y = (Y1, . . . , Yp)
′ be a cen-

tered Gaussian random vector in R
p such that E[Y 2

j ] ≥ b for all j = 1, . . . , p
and some constant b > 0. Then for every y ∈ R

p and a > 0,

P(Y ≤ y + a)− P(Y ≤ y) ≤ Ca
√

log p,

where C is a constant depending only on b.

Remark A.1. This inequality is less sharp than the dimension-free anti-
concentration bound CaE[max1≤j≤p Yj] proved in [20] for the case of max
hyperrectangles. However, the former inequality allows for more general
hyperrectangles than the latter. The difference in sharpness for the case of
max-hyperrectangles arises due to dimension-dependence

√
log p, in partic-

ular the term
√
log p can be much larger than E[max1≤j≤p Yj]. This also
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makes the anti-concentration bound in [20] more relevant for the study of
suprema of Gaussian processes indexed by infinite classes. It is an interest-
ing question whether one could establish a dimension-free anti-concentration
bound similar to that in [20] for classes of hyperrectangles other than max
hyperrectangles. �

Proof of Lemma A.1. Let Σ = E[Y Y ′]; then Y has the same distribution

as Σ1/2Z where Z is a standard Gaussian random vector. Write Σ1/2 =
(σ1, . . . , σp)

′ where each σj is a p-dimensional vector. Note that ‖σj‖ =

(E[Y 2
j ])

1/2 ≥ b1/2. Then

P(Y ≤ y + a) = P(Σ1/2Z ≤ y + a)

= P((σj/‖σj‖)′Z ≤ (yj + a)/‖σj‖ for all j = 1, . . . , p),

and similarly

P(Y ≤ y) = P((σj/‖σj‖)′Z ≤ yj/‖σj‖ for all j = 1, . . . , p).

Since Z is a standard Gaussian random vector, and a/‖σj‖ ≤ a/b1/2 for all
j = 1, . . . , p, the assertion follows from Theorem 20 in [25], whose proof the
authors credit to Nazarov [30]. �

We will use another anti-concentration inequality by [30] in the proofs for
Sections 3 and 4, which is an extension of Theorem 4 in [3].

Lemma A.2. Let A be a p × p symmetric positive definite matrix, and let
γA = N(0, A−1). Then there exists a universal constant C > 0 such that for
every convex set Q ⊂ R

p, and every h1, h2 > 0,

γA(Q
h1 \Q−h2)

h1 + h2
≤ C

√
‖A‖HS ,

where ‖A‖HS is the Hilbert-Schmidt norm of A, Qh = {x ∈ R
p : ρ(x,Q) ≤

h}, Q−h = {x ∈ R
p : B(x, h) ⊂ Q}, B(x, h) = {y ∈ R

p : ‖y − x‖ ≤ h}, and
ρ(x,Q) = infy∈Q ‖y − x‖.

Proof. It is proven in [30] that for every convex set Q ⊂ R
p and every h > 0,

γA(Q
h \Q)

h
≤ C

√
‖A‖HS .

Therefore, the asserted claim follows from the arguments in Proposition 2.5
of [16] or in Section 1.3 of [9]. �

Appendix B. Proof for Section 5

We begin with stating the following variants of Chebyshev’s association
inequality.
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Lemma B.1. Let ϕi : R → [0,∞), i = 1, 2 be non-decreasing functions,
and let ξi, i = 1, 2 be independent real-valued random variables. Then

E[ϕ1(ξ1)]E[ϕ2(ξ1)] ≤ E[ϕ1(ξ1)ϕ2(ξ1)], (18)

E[ϕ1(ξ1)]E[ϕ2(ξ2)] ≤ E[ϕ1(ξ1)ϕ2(ξ1)] + E[ϕ1(ξ2)ϕ2(ξ2)], (19)

E[ϕ1(ξ1)ϕ2(ξ2)] ≤ E[ϕ1(ξ1)ϕ2(ξ1)] + E[ϕ1(ξ2)ϕ2(ξ2)], (20)

where we assume that all the expectations exist and are finite. Moreover,
(20) holds without independence of ξ1 and ξ2.

Proof of Lemma B.1. The inequality (18) is Chebyshev’s association inequal-
ity; see Theorem 2.14 in [12]. Moreover, since ξ1 and ξ2 are independent,
(19) follows from (20). In turn, (20) follows from

E[ϕ1(ξ1)ϕ2(ξ2)] ≤ E[ϕ1(ξ1)ϕ2(ξ2)] + E[ϕ2(ξ1)ϕ1(ξ2)]

≤ E[ϕ1(ξ1)ϕ2(ξ1)] + E[ϕ1(ξ2)ϕ2(ξ2)],

where the first inequality follows from the fact that ϕ2(ξ1)ϕ1(ξ2) ≥ 0, and
the second inequality follows from rearranging the terms in the following
inequality:

E[(ϕ1(ξ1)− ϕ1(ξ2))(ϕ2(ξ1)− ϕ2(ξ2))] ≥ 0,

which follows from monotonicity of ϕ1 and ϕ2. �

Proof of Lemma 5.1. The proof relies on a Slepian-Stein method devel-
oped in [17]. Here the notation . means that the left-hand side is bounded
by the right-hand side up to some constant depending only on b.

We begin with preparing some notation. Let W1, . . . ,Wn be a copy of
Y1, . . . , Yn. Without loss of generality, we may assume that X1, . . . ,Xn,
Y1, . . . , Yn, andW1, . . . ,Wn are independent. Consider S

W
n := n−1/2

∑n
i=1Wi.

Then P(SYn ≤ y) = P(SWn ≤ y), so that

̺n = sup
y∈Rp,v∈[0,1]

|P
(√
vSXn +

√
1− vSYn ≤ y

)
− P(SWn ≤ y)|.

Pick any y ∈ R
p and v ∈ [0, 1]. Let β := φ log p, and define the function

Fβ(w) := β−1 log
(∑p

j=1 exp (β(wj − yj))
)
, w ∈ R

p.

The function Fβ(w) has the following property:

0 ≤ Fβ(w)− max
1≤j≤p

(wj − yj) ≤ β−1 log p = φ−1, for all w ∈ R
p. (21)

Pick a thrice continuously differentiable function g0 : R → [0, 1] whose
derivatives up to the third order are all bounded such that g0(t) = 1 for
t ≤ 0 and g0(t) = 0 for t ≥ 1. Define g(t) := g0(φt), t ∈ R, and

m(w) := g(Fβ(w)), w ∈ R
p.

For brevity of notation, we will use indices to denote partial derivatives of
m; for example, ∂j∂k∂lm = mjkl. The function m(w) has the following



CLT AND BOOTSTRAP IN HIGH DIMENSIONS 17

properties established in Lemmas A.5 and A.6 of [17]: for every j, k, l =
1, . . . , p, there exists a function Ujkl(w) such that

|mjkl(w)| ≤ Ujkl(w), (22)
∑p

j,k,l=1Ujkl(w) . (φ3 + φβ + φβ2) . φβ2, (23)

Ujkl(w) . Ujkl(w + w̃) . Ujkl(w), (24)

where the inequalities (22) and (23) hold for all w ∈ R
p, and the inequality

(24) holds for all w, w̃ ∈ R
p with max1≤j≤p |w̃j |β ≤ 1 (formally, [17] only

considered the case where y = (0, . . . , 0)′ but the extension to y ∈ R
p is

trivial). Moreover, define the functions

h(w, t) := 1

{
−φ−1 − t/β < max

1≤j≤p
(wj − yj) ≤ φ−1 + t/β

}
, w ∈ R

p, t > 0,

(25)

ω(t) :=
1√

t ∧
√
1− t

, t ∈ (0, 1).

The proof consists of two steps. In the first step, we show that

|E[In]| .
φ2 log2 p

n1/2

(
φLn̺n + Ln log

1/2 p+ φMn(φ)
)

(26)

where

In := m(
√
vSXn +

√
1− vSYn )−m(SWn ).

In the second step, we combine this bound with Lemma A.1 to complete the
proof.

Step 1. Define the Slepian interpolant

Z(t) :=
n∑

i=1

Zi(t), t ∈ [0, 1],

where

Zi(t) :=
1√
n

{√
t(
√
vXi +

√
1− vYi) +

√
1− tWi

}
.

Note that Z(1) =
√
vSXn +

√
1− vSYn and Z(0) = SWn , and so

In = m(
√
vSXn +

√
1− vSYn )−m(SWn ) =

∫ 1

0

dm(Z(t))

dt
dt. (27)

Denote by Z(i)(t) the Stein leave-one-out term for Z(t):

Z(i)(t) := Z(t)− Zi(t).

Finally, define

Żi(t) :=
1√
n

{
1√
t
(
√
vXi +

√
1− vYi)−

1√
1− t

Wi

}
.

For brevity of notation, we omit the argument t; that is, we write Z = Z(t),

Zi = Zi(t), Z
(i) = Z(i)(t), and Żi = Żi(t).
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Now, from (27) and Taylor’s theorem, we have

E[In] =
1

2

p∑

j=1

n∑

i=1

∫ 1

0
E[mj(Z)Żij ]dt =

1

2
(I + II + III),

where

I :=

p∑

j=1

n∑

i=1

∫ 1

0
E[mj(Z

(i))Żij ]dt,

II :=

p∑

j,k=1

n∑

i=1

∫ 1

0
E[mjk(Z

(i))ŻijZik]dt,

III :=

p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
(1− τ)E[mjkl(Z

(i) + τZi)ŻijZikZil]dτdt.

By independence of Z(i) from Żij together with E[Żij ] = 0, we have I = 0.

Also, by independence of Z(i) from ŻijZik together with

E[ŻijZik] =
1

n
E
[
(
√
vXij +

√
1− vYij)(

√
vXik +

√
1− vYik)−WijWik

]

=
1

n
E[vXijXik + (1− v)YijYik −WijWik] = 0,

we have II = 0. Therefore, it suffices to bound III.
To this end, let

χi := 1

{
max
1≤j≤p

|Xij | ∨ |Yij | ∨ |Wij | ≤
√
n/(4β)

}
, i = 1, . . . , n

and decompose III as III = III1 + III2, where

III1 :=

p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
(1− τ)E[χimjkl(Z

(i) + τZi)ŻijZikZil]dτdt,

III2 :=

p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
(1− τ)E[(1 − χi)mjkl(Z

(i) + τZi)ŻijZikZil]dτdt.

We shall bound III1 and III2 separately. For III2, we have

|III2| ≤
p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
E[(1− χi)Ujkl(Z

(i) + τZi)|ŻijZikZil|]dτdt

. φβ2
n∑

i=1

∫ 1

0
E[(1− χi) max

1≤j,k,l≤p
|ŻijZikZil|]dt

.
φβ2

n3/2

n∑

i=1

∫ 1

0
ω(t)E[(1− χi) max

1≤j≤p
|Xij |3 ∨ |Yij |3 ∨ |Wij|3]dt, (28)
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where the first and the second inequalities follow from (22) and (23), respec-
tively. Moreover, by letting T =

√
n/(4β) and using the union bound, we

have

1−χi ≤ 1

{
max
1≤j≤p

|Xij | > T
}
+1

{
max
1≤j≤p

|Yij| > T
}
+1

{
max
1≤j≤p

|Wij | > T
}
.

Hence, using the inequality

max
1≤j≤p

|Xij |3 ∨ |Yij|3 ∨ |Wij |3 ≤ max
1≤j≤p

|Xij |3 + max
1≤j≤p

|Yij|3 + max
1≤j≤p

|Wij |3

together with the inequality (20) in Lemma B.1, we conclude that the inte-
gral in (28) is bounded from above up to a universal constant by

E

[
max
1≤j≤p

|Xij |31
{
max
1≤j≤p

|Xij | > T
}]

+ E

[
max
1≤j≤p

|Yij |31
{

max
1≤j≤p

|Yij | > T
}]

since Wi’s have the same distribution as that of Yi’s. Therefore,

|III2| . (Mn,X(φ) +Mn,Y (φ))φβ
2/n1/2 =Mn(φ)φβ

2/n1/2.

To bound III1, recall the definition of h(w, t) in (25). Note thatmjkl(Z
(i)+

τZi) = 0 for all τ ∈ [0, 1] whenever h(Z(i), 1) = 0 and χi = 1. Indeed if

χi = 1, then max1≤j≤p |Zij | ≤ 3/(4β) < 1/β, and so when h(Z(i), 1) = 0

and χi = 1, we have h(Z(i) + τZi, 0) = 0, which in turn implies that either

Fβ(Z
(i) + τZi) ≤ 0 or Fβ(Z

(i) + τZi) ≥ φ−1 because of (21); in both cases,
the assertion follows from the definitions of m and g. Hence

|III1| ≤
p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
E[χi|mjkl(Z

(i) + τZi)ŻijZikZil|]dτdt

.

p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
E[χih(Z

(i), 1)Ujkl(Z
(i) + τZi)|ŻijZikZil|]dτdt

.

p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
E[χih(Z

(i), 1)Ujkl(Z
(i))|ŻijZikZil|]dτdt

.

p∑

j,k,l=1

n∑

i=1

∫ 1

0
E[h(Z(i), 1)Ujkl(Z

(i))]E[|ŻijZikZil|]dt, (29)

where the second inequality follows from (22), the third inequality from

(24), and the fourth inequality from the indepence of Z(i) from ŻijZikZil.
Then we split the integral in (29) by inserting χi + (1 − χi) under the first
expectation sign. We have

p∑

j,k,l=1

n∑

i=1

∫ 1

0
E[(1− χi)h(Z

(i), 1)Ujkl(Z
(i))]E[|ŻijZikZil|]dt

. φβ2
n∑

i=1

∫ 1

0
E[1− χi]E

[
max

1≤j,k,l≤p
|ŻijZikZil|

]
dt .Mn(φ)φβ

2/n1/2,
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where the last inequality follows from the argument similar to that used
to bound III2 with applying (18) and (19) instead of (20) in Lemma B.1.

Moreover, since h(Z(i), 1) = 0 whenever h(Z, 2) = 0 and χi = 1 (which
follows from the same argument as before), we have

p∑

j,k,l=1

n∑

i=1

∫ 1

0
E[χih(Z

(i), 1)Ujkl(Z
(i))]E[|ŻijZikZil|]dt

.

p∑

j,k,l=1

n∑

i=1

∫ 1

0
E[h(Z, 2)Ujkl(Z)]E[|ŻijZikZil|]dt

=

p∑

j,k,l=1

∫ 1

0
E[h(Z, 2)Ujkl(Z)]

n∑

i=1

E[|ŻijZikZil|]dt

. φβ2
∫ 1

0
E[h(Z, 2)] max

1≤j,k,l≤p

n∑

i=1

E[|ŻijZikZil|]dt. (30)

To bound (30), observe that

|ŻijZikZil| .
ω(t)

n3/2

(
|Xij |3 + |Yij |3 + |Wij |3

+ |Xik|3 + |Yik|3 + |Wik|3 + |Xil|3 + |Yil|3 + |Wil|3
)
,

which, together with the facts that E[|Wij |3] = E[|Yij|3] and E[|Yij |3] .

(E[|Yij |2])3/2 = (E[|Xij |2])3/2 ≤ E[|Xij |3], implies that

max
1≤j,k,l≤p

n∑

i=1

E[|ŻijZikZil|] .
ω(t)

n3/2
max
1≤j≤p

n∑

i=1

(E[|Xij |3] + E[|Yij |3]) .
ω(t)

n1/2
Ln.

Meanwhile, observe that

E[h(Z, 2)] = P(Ṽn ≤ I)− P(Ṽn ≤ I),

where

Ṽn =
1√
n

n∑

i=1

(
√
tvXi +

√
t(1− v)Yi +

√
1− tWi)

d
=

1√
n

n∑

i=1

(
√
tvXi +

√
1− tvYi),

and I = y − φ−1 − 2β−1, I = y + φ−1 + 2β−1; here the notation
d
= denotes

equality in distribution, and I and I are vectors in R
p (recall the rules

of summation of vectors and scalars defined in Section 1.1). Now by the
definition of ̺n,

P(Ṽn ≤ I) ≤ P(SYn ≤ I) + ̺n, P(Ṽn ≤ I) ≥ P(SYn ≤ I)− ̺n,
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and by Lemma A.1,

P(SYn ≤ I)− P(SYn ≤ I) . φ−1 log1/2 p

since β−1 . φ−1 and E[(SYnj)
2] = E[(SXnj)

2] = n−1
∑n

i=1 E[X
2
ij ] ≥ b for all

j = 1, . . . , p. Hence

E[h(Z, 2)] . ̺n + φ−1 log1/2 p.

By these bounds, together with the fact that
∫ 1
0 ω(t)dt . 1, we conclude

that

(30) .
φβ2Ln

n1/2
(̺n + φ−1 log1/2 p) .

φ2 log2 p

n1/2
(φLn̺n + Ln log

1/2 p),

where we have used β = φ log p. The desired assertion (26) then follows.

Step 2. We are now in position to finish the proof. Let

Vn :=
√
vSXn +

√
1− vSYn .

Then we have

P(Vn ≤ y − φ−1) ≤ P(Fβ(Vn) ≤ 0) ≤ E[m(Vn)]

≤ P(Fβ(S
W
n ) ≤ φ−1) + (E[m(Vn)]− E[m(SWn )])

≤ P(SWn ≤ y + φ−1) + E[In]
≤ P(SWn ≤ y − φ−1) + Cφ−1 log1/2 p+ E[In],

where the first three lines follow from the properties of Fβ(w) and g(t) (recall
that m(w) = g(Fβ(w))), and the last inequality follows from Lemma A.1.
Here the constant C depends only on b. Likewise we have

P(Vn ≤ y − φ−1) ≥ P(SWn ≤ y − φ−1)− Cφ−1 log1/2 p+ E[In].
The conclusion of the lemma follows from combining these inequalities with
the bound on |E[In]| derived in Step 1. �

Proof of Corollary 5.1. Pick any hyperrectangle

A = {w ∈ R
p : wj ∈ [aj , bj ] for all j = 1, . . . , p}.

For i = 1, . . . , n, consider the random vectors X̃i and Ỹi in R
2p defined

by X̃ij = Xij and Ỹij = Yij for j = 1, . . . , p, and X̃ij = −Xi,j−p and

Ỹij = −Yi,j−p for j = p+ 1, . . . , 2p. Then

P(SXn ∈ A) = P(SX̃n ≤ y), P(SYn ∈ A) = P(SỸn ≤ y),

where the vector y ∈ R
2p is defined by yj = bj for j = 1, . . . , p and yj =

−aj−p for j = p+1, . . . , 2p, and SX̃n and SỸn are defined as SXn and SYn with

Xi’s and Yi’s replaced by X̃i’s and Ỹi’s. Hence the corollary follows from

applying Lemma 5.1 to X̃1, . . . , X̃n and Ỹ1, . . . , Ỹn. �
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Appendix C. Proofs for Section 2

Proof of Theorem 2.1. The proof relies on Lemma 5.1 and its Corollary
5.1. Let K ′ denote a constant from the conclusion of Corollary 5.1. This
constant depends only on b. Set K2 := 1/(K ′ ∨ 1) in (7), so that

φn =
1

K ′ ∨ 1

(
L
2
n log

4 p

n

)−1/6

.

Without loss of generality, we may assume that φn ≥ 2; otherwise, the
assertion of the theorem holds trivially by setting K1 = 2(K ′ ∨ 1).

Then applying Corollary 5.1 with φ = φn/2, we have

̺′n ≤ ̺′n
8(K ′ ∨ 1)2

+
3(K ′ ∨ 1)2L

1/3
n log7/6 p

n1/6
+

Mn(φn)

8(K ′ ∨ 1)2Ln
.

Since 8(K ′ ∨ 1)2 > 1, solving this inequality for ̺′n and observing that
ρn(Are) ≤ ̺′n leads to the desired assertion. �

Before proving Proposition 2.1, we shall verify the following elementary
inequality.

Lemma C.1. Let ξ be a non-negative random variable such that P(ξ >

x) ≤ Ae−x/B for all x ≥ 0 and for some constants A,B > 0. Then for every

t ≥ 0, E[ξ31{ξ > t}] ≤ 6A(t+B)3e−t/B .

Proof of Lemma C.1. Observe that

E[ξ31{ξ > t}] = 3

∫ t

0
P(ξ > t)x2dx+ 3

∫ ∞

t
P(ξ > x)x2dx

= P(ξ > t)t3 + 3

∫ ∞

t
P(ξ > x)x2dx.

Since P(ξ > x) ≤ Ae−x/B , using integration by parts, we have
∫ ∞

t
P(ξ > s)x2dx ≤ A(Bt2 + 2B2t+ 2B3)e−t/B ,

which leads to

E[ξ31{ξ > t}] ≤ A(t3 + 3Bt2 + 6B2t+ 6B3)e−t/B ≤ 6A(t+B)3e−t/B ,

completing the proof. �

Proof of Proposition 2.1. The proof relies on application of Theorem
2.1. Without loss of generality, we may assume that

B2
n log

7(pn)

n
≤ c := min{(c1/2)3, (K2/2)

6}, (31)

where K2 appears in (7) and c1 > 0 is a constant that depends only on b
(c1 will be defined later), since otherwise we can make the assertions trivial
by setting C large enough.
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Now by Theorem 2.1, we have

ρn(Are) ≤ K1



(
L
2
n log

7 p

n

)1/6

+
Mn,X(φn) +Mn,Y (φn)

Ln


 ,

where φn = K2{n−1L
2
n log

4 p}−1/6, and Ln is any constant such that Ln ≥
Ln. Recall that

Ln = max
1≤j≤p

n∑

i=1

E[|Xij |3]/n,

Mn,X(φn) = n−1
n∑

i=1

E

[
max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | >
√
n/(4φ log p)

}]
,

and Mn,Y (φn) is defined similarly with Xij ’s replaced by Yij’s.

It remains to choose a suitable constant Ln such that Ln ≥ Ln and bound
Mn,X(φn) and Mn,Y (φn). To this end, we consider cases (E.1) and (E.2)
separately. In what follows, the notation . means that the left-hand side is
bounded by the right-hand side up to a positive constant that depends only
on b under case (E.1), and on b and q under case (E.2).

Case (E.1). Set Ln := Bn. By condition (M.2), we have Ln ≤ Bn = Ln.
Observe that (E.1) implies that ‖Xij‖ψ1 ≤ Bn for all i and j. In addition,
since each Yij is Gaussian and E[Y 2

ij] = E[X2
ij ], ‖Yij‖ψ1 ≤ C1Bn for all i and

j and some universal constant C1 > 0. Hence by Lemma 2.2.2 in [42], we
have for some universal constant C2 > 0, ‖max1≤j≤pXij‖ψ1 ≤ C2Bn log p
and ‖max1≤j≤p Yij‖ψ1 ≤ C2Bn log p. Together with Markov’s inequality,
this implies that for every t > 0,

P

(
max
1≤j≤p

|Xij | > t

)
≤ 2 exp

(
− t

C2Bn log p

)
.

Applying Lemma C.1, we have

Mn,X(φn) . (
√
n/(φn log p) +Bn log p)

3 exp

(
−

√
n

4C2φnBn log
2 p

)
.

Here
√
n

4C2φnBn log
2 p

=
c1n

1/3

B
2/3
n log4/3 p

(
c1 :=

1

4K2C2

)

≥ c1c
−1/3 log(pn) ≥ 2 log(pn). (by (31)).

Moreover, by (31) and φ−1
n = K−1

2 {n−1B2
n log

4 p}1/6 ≤ c1/6/K2 ≤ 1, we

have (
√
n/(φn log p) +Bn log p)

3 . n3/2, which implies that

Mn,X(φn) . n3/2 exp(−2 log(pn)) ≤ n−1/2.

The same reasoning also gives Mn,Y (φn) . n−1/2. The conclusion of the

proposition in this case now follows from the fact that n−1/2B−1
n ≤ D

(1)
n .
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Case (E.2). Without loss of generality, in addition to (31), we may
assume that

Bn log
3/2 p

n1/2−1/q
≤ (K2/2)

3/2. (32)

Set

Ln :=

{
Bn +

B2
n

n1/2−2/q log1/2 p

}
.

Then Ln ≤ Bn ≤ Ln. As the map x 7→ x1/3 is sub-linear, {n−1L
2
n log

7 p}1/6 ≤
D

(1)
n +D

(2)
n,q ≤ K2, so that φ−1

n = K−1
2 {n−1L

2
n log

4 p}1/6 ≤ 1.
Note that for any real-valued random variable Z and any t > 0, E[|Z|31(|Z| >

t)] ≤ E[|Z|3(|Z|/t)q−31(|Z| > t)] ≤ t3−qE[|Z|q]. Hence

Mn,X(φn) .
Bq
nφ

q−3
n logq−3 p

nq/2−3/2
.

Here using the bound L
−1
n ≤ B−2

n n1/2−2/q log1/2 p, we have that φn .

n1/3−2/(3q)B
−2/3
n (log p)−1/2, so that

Mn,X(φn) .
B
q/3+2
n (log p)q/2−3/2

nq/6+1/6−2/q
,

which implies that Mn,X(φn)/Ln . D
(2)
n,q. Meanwhile, as in the previous

case, we have Mn,Y (φn) . n−1/2, which leads to the desired conclusion in
this case. �

Appendix D. Proofs for Section 3

Proof of Proposition 3.1. Here C denotes a generic positive constant
that depends only on a, b, and d if (E.1′) is satisfied, and on a, b, d, and q
if (E.2′) is satisfied; the value of C may change from place to place. Pick
any A ∈ A ⊂ Asi(a, d). Let Am = Am(A) be an approximating m-generated
convex set as in condition (C). By assumption, Am ⊂ A ⊂ Am,ǫ, so that by
letting

ρ := |P(SXn ∈ Am)− P(SYn ∈ Am)| ∨ |P(SXn ∈ Am,ǫ)− P(SYn ∈ Am,ǫ)|,

we have P(SXn ∈ A) ≤ P(SXn ∈ Am,ǫ) ≤ P(SYn ∈ Am,ǫ)+ρ. Here observe that
(v′SYn )v∈V(Am) is a Gaussian random vector with dimension Card(V(Am)) =
m ≤ (pn)d such that, by condition (M.1′), the variance of each coordinate
is bounded from below by b. Hence by Lemma A.1, we have

P(SYn ∈ Am,ǫ) = P{v′SYn ≤ SAm(v) + ǫ for all v ∈ V(Am)}
≤ P{v′SYn ≤ SAm(v) for all v ∈ V(Am)}+ Cǫ log1/2m

= P(SYn ∈ Am) + Cǫ log1/2(pn),
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so that

P(SXn ∈ A) ≤ P(SYn ∈ Am) + Cǫ log1/2(pn) + ρ

≤ P(SYn ∈ A) + Cǫ log1/2(pn) + ρ. (by Am ⊂ A)

Likewise we have P(SXn ∈ A) ≥ P(SYn ∈ A) − Cǫ log1/2(pn) − ρ, by which
we conclude

|P(SXn ∈ A)− P(SYn ∈ A)| ≤ Cǫ log1/2(pn) + ρ.

Recalling that ǫ = a/n and Bn ≥ 1, we have ǫ log1/2(pn) ≤ CD
(1)
n . Hence

the assertions of the proposition follow if we prove

ρ ≤
{
CD

(1)
n if (E.1′) is satisfied,

C{D(1)
n +D

(2)
n,q} if (E.2′) is satisfied.

However, this follows from application of Proposition 2.1 to X̃1, . . . , X̃n in-
stead of X1, . . . ,Xn. �

Proof of Corollary 3.1. Since Xi is a centered random vector with a log-
concave distribution in R

p, Borell’s inequality [see 11, Lemma 3.1] implies

that ‖v′Xi‖ψ1 ≤ c(E[(v′Xi)
2])1/2 for all v ∈ R

p for some universal constant
c > 0 [see 28, Appendix III]; hence if the maximal eigenvalue of each E[XiX

′
i]

is bounded by a constant k2, then every simple convex setA ∈ Asi(a, d) obeys
conditions (M.2′) and (E.1′) with Bn replaced by a constant that depends
only on c and k2. Besides if the minimal eigenvalue of each E[XiX

′
i] is

bounded from below by a constant k1, then every simple convex set A ∈
Asi(a, d) obeys condition (M.1′) with b replaced by a positive constant that
depends only on k1. Hence the conclusion of the corollary follows from
application of Proposition 3.1. �

Proof of Proposition 3.2. Here C denotes a positive constant that de-
pends only on b and s if condition (E.1) is satisfied, and on b, s, and q if
condition (E.2) is satisfied; the value of C may change from place to place.
Without loss of generality, we may assume that B2

n ≤ n since otherwise the
assertions are trivial.

Let R := pn5/2 and V R := {w ∈ R
p : max1≤j≤p |wj| > R}. Fix any A ∈

Asp(s). Then A = Ǎ∪ (A∩V R) for some s-sparsely convex set Ǎ ⊂ R
p such

that supw∈Ǎmax1≤j≤p |wj| ≤ R. Now observe that by Markov’s inequality,

P

(
max
i,j

|Xij | > pn2
)

≤ E[maxi,j |Xij |]
pn2

≤
E[
∑

i,j |Xij |]
pn2

≤ max
i,j

E[|Xij |]/n ≤ CBn/n ≤ C/n1/2,

where maxi,j stands for max1≤i≤nmax1≤j≤p. Hence

P
(
SXn ∈ V R

)
≤ C/n1/2,
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and similarly,

P
(
SYn ∈ V R

)
≤ C/n1/2.

So,

|P(SXn ∈ A)− P(SYn ∈ A)| ≤ |P(SXn ∈ Ǎ)− P(SYn ∈ Ǎ)|+C/n1/2.

Therefore it suffices to consider the case where the sets A ∈ Asp(s) are such
that

sup
w∈A

max
1≤j≤p

|wj | ≤ R. (33)

Further, let ε = n−1, and define Asp
1 (s) as the class of all sets A ∈ Asp(s)

satisfying (33) and containing a ball with radius ε and center at, say, wA.
Also define Asp

2 (s) as the class of all sets A ⊂ Asp(s) satisfying (33) and
containing no ball of radius ε. We bound ρn(Asp

1 (s)) and ρn(Asp
2 (s)) sepa-

rately in two steps. In both cases, we rely on the following lemma, whose
proof is given after the proof of this proposition.

Lemma D.1. Let A be an s-sparsely convex set with a sparse representation

A = ∩Qq=1Aq for some Q ≤ ps. Assume that A contains the origin, that

supw∈A ‖w‖ ≤ R, and that all sets Aq satisfy −Aq ⊂ µAq for some µ ≥ 1.
Then for any γ > e/8, there exists ǫ0 = ǫ0(γ) > 0 such that for any 0 < ǫ <
ǫ0, the set A admits an approximation with precision Rǫ by an m-generated
convex set Am where

m ≤ Q
(
γ

√
µ+ 1

ǫ
log

1

ǫ

)s2
.

Moreover, the set Am can be chosen to satisfy

‖v‖0 ≤ s for all v ∈ V(Am). (34)

Therefore, since Q ≤ ps, if R ≤ (pn)d0 and µ ≤ (pn)d0 for some constant
d0 ≥ 1, then the set A satisfies condition (C) with a = 1 and d depending only
on s and d0, and the approximating m-generated convex set Am satisfying
(34).

Step 1. Here we bound ρn(Asp
1 (s)). Pick any s-sparsely convex set

A ∈ Asp
1 (s) with a sparse representation A = ∩Qq=1Aq for some Q ≤ ps.

Below we verify conditions (C), (M.1′), (M.2′), and (E.1′) (or (E.2′)) for
this set A. Consider the set B := A − wA := {w ∈ R

p : w + wA ∈ A}.
The set B contains a ball with radius ε and center at the origin, satisfies
the inequality ‖w‖ ≤ 2p1/2R for all w ∈ B, and has a sparse representation

B = ∩Qq=1Bq where Bq = Aq − wA. Clearly, each Bq satisfies −Bq ⊂ µBq

with µ = 2p1/2R/ε = 2p3/2n7/2. Therefore, applying Lemma D.1 to the set
B and noting that A = B + wA and Q ≤ ps, we see that the set A satisfies
condition (C) with a = 1 and d depending only on s, and an approximating
m-generated convex set Am such that ‖v‖0 ≤ s for all v ∈ V(Am).

Further, since we have ‖v‖0 ≤ s for all v ∈ V(Am), the fact that the set
A satisfies condition (M.1′) follows immediately from (M.1′′).
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Next, we verify that the set A satisfies condition (M.2′). For v ∈ V(Am),
let J(v) be the set consisting of positions of non-zero elements of v, so that
Card(J(v)) ≤ s. Using the inequality (

∑
j∈J(v) |aj |)2+k ≤ s1+k

∑
j∈J(v) |aj |2+k

for a = (a1, . . . , ap)
′ ∈ R

p (which follows from Hölder’s inequality), we have

n−1
n∑

i=1

E[|v′Xi|2+k] ≤ n−1
n∑

i=1

E
[( ∑

j∈J(v)

|Xij |
)2+k]

≤ s1+kn−1
n∑

i=1

E
[ ∑

j∈J(v)

|Xij |2+k
]
≤ s2+kBk

n ≤ (B′
n)
k

for k = 1 or 2, where B′
n = s3Bn, so that the set A satisfies condition (M.2′)

with Bn replaced by s3Bn.
Finally, we verify that the set A satisfies condition (E.1′) when (E.1) is

satisfied, or (E.2′) when (E.2) is satisfied. When (E.1) is satisfied, we have
‖Xij‖ψ1 ≤ Bn, so that ‖v′Xi‖ψ1 ≤∑j∈J(v) ‖Xij‖ψ1 ≤ sBn showing that the

set A satisfies (E.1′) with Bn replaced by sBn.
When (E.2) is satisfied, as E[maxv∈V(Am) |v′Xi|q] ≤ sqE[max1≤j≤p |Xij |q],

the set A satisfies (E.2′) with Bn replaced by sBn.
Thus, all sets A ∈ Asp

1 (s) satisfy conditions (C), (M.1′), (M.2′), and (E.1′)
(or (E.2′)), and so applying Proposition 3.1 shows that the assertions (12)
and (13) hold with ρn(Asp(s)) replaced by ρn(Asp

1 (s)).

Step 2. Here we bound ρn(Asp
2 (s)). Fix any s-sparsely convex set A ∈

Asp
2 (s) with a sparse representation A = ∩Qq=1Aq for some Q ≤ ps. We

consider two cases separately. First, suppose that at least one Aq does not
contain a ball with radius ε. Then under condition (M.1′′), Lemma A.2
implies that P(SYn ∈ Aq) ≤ Cε = C/n (since the Hilbert-Schmidt norm
is equal to the square-root of the sum of squares of the eigenvalues of the
matrix, under our condition (M.1′′), the constant C in the bound Cε above
depends only on b and s). In addition, under conditions (M.1′′) and (M.2),
the Berry-Esseen theorem [see 23, Theorem 1.3] implies that

∣∣P(SXn ∈ Aq)− P(SYn ∈ Aq)
∣∣ ≤ CBn/n

1/2.

Since A ⊂ Aq, both P(SXn ∈ A) and P(SYn ∈ A) are bounded from above by

CBn/n
1/2, and so is absolute value of their difference. This completes the

proof in this case.
Second, suppose that each Aq contains a ball with radius ε (possibly

depending on q). Then applying Lemma D.1 to each Aq separately shows

that for m ≤ (pn)d with d depending only on s, we can construct an m-
generated convex sets Amq such that

Amq ⊂ Aq ⊂ Am,1/nq

and ‖v‖0 ≤ s for all v ∈ V(Amq ). The set A0 = ∩Qq=1A
m,1/n
q trivially satisfies

condition (C) with a = 0 and d depending only on s. In addition, it follows
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from the same arguments as those used in Step 1 that the set A0 satisfies
conditions (M.1′), (M.2′), (E.1′) (if (E.1) is satisfied), and (E.2′) (if (E.2) is
satisfied). Therefore, by applying Proposition 3.1, we conclude that |P(SXn ∈
A0)−P(SYn ∈ A0)| is bounded from above by the quantities on the right-hand
sides of (10) and (11) depending on whether (E.1) or (E.2) is satisfied. Also,

observe that A ⊂ A0 and that ∩Qq=1A
m,−ε
q is empty because ∩Qq=1A

m
q ⊂ A

and A contains no balls with radius ε. This implies that P(SYn ∈ A0) ≤
C(log1/2(pn))/n by Lemma A.1 and condition (M.1′′). Since A ⊂ A0, both
P(SXn ∈ A) and P(SYn ∈ A) are bounded from above by the quantities on
the right-hand sides of (12) and (13) depending on whether (E.1) or (E.2)
is satisfied, and so is their difference. This completes the proof in this case.
�

Here we prove Lemma D.1 used in the proof of Proposition 3.2.

Proof of Lemma D.1. For convex sets P1 and P2 containing the origin and
such that P1 ⊂ P2, define

dBM (P1, P2) := inf{ǫ > 0 : P2 ⊂ (1 + ǫ)P1}.
It is immediate to verify that the function dBM has the following useful
property: for any convex sets P1, P2, P3, and P4 containing the origin and
such that P1 ⊂ P2 and P3 ⊂ P4,

dBM (P1 ∩ P3, P2 ∩ P4) ≤ dBM (P1 ∩ P2) ∨ dBM (P3 ∩ P4). (35)

Let A = ∩Qq=1Aq be a sparse representation of A as appeared in the
statement of the lemma. Fix any Aq. By assumption, the indicator func-
tion w 7→ I(w ∈ Aq) depends only on sq ≤ s elements of its argument
w = (w1, . . . , wp). Since A contains the origin, Aq contains the origin as
well. Therefore, applying Corollary 1.5 in [4] as if Aq was a set in R

sq

shows that one can construct a polytope Pq ⊂ R
p with at most (γ((µ +

1)/ǫ)1/2 log(1/ǫ))sq vertices such that

Pq ⊂ Aq ⊂ (1 + ǫ)Pq

and such that for all v ∈ V(Pq), non-zero elements of v correspond to some
of the main components of Aq. Since we need at most sq vertices to form a
face of the polytope Pq, the polytope Pq has

mq ≤
(
γ

√
µ+ 1

ǫ
log

1

ǫ

)s2q
≤
(
γ

√
µ+ 1

ǫ
log

1

ǫ

)s2
(36)

faces. Now observe that Pq is an mq-generated convex set. Thus, we have
constructed an mq-generated convex set Pq such that Pq ⊂ Aq ⊂ (1 +
ǫ)Pq and all vectors in V(Pq) having at most s non-zero elements. Hence
dBM (Pq, Aq) ≤ ǫ, which, together with (35), implies that

dBM (∩Qq=1Pq,∩
Q
q=1Aq) ≤ ǫ.
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Therefore, defining Am = ∩Qq=1Pq, we obtain from A = ∩Qq=1Aq that

Am ⊂ A ⊂ (1 + ǫ)Am ⊂ Am,Rǫ,

where the last assertion follows from the assumption that supw∈A ‖w‖ ≤
R. Since Am is an m-generated convex set with m ≤ ∑Q

q=1mq, the first

claim of the lemma now follows from (36). The second claim (34) holds by
construction of Am, and the final claim is trivial. �

Appendix E. Proofs for Section 4

E.1. Maximal inequalities. Here we collect some useful maximal inequal-
ities that will be used in the proofs for Section 4.

Lemma E.1. Let X1, . . . ,Xn be independent centered random vectors in R
p

with p ≥ 2. Define Z := max1≤j≤p |
∑n

i=1Xij |, M := max1≤i≤nmax1≤j≤p |Xij |
and σ2 := max1≤j≤p

∑n
i=1 E[X

2
ij ]. Then

E[Z] ≤ K(σ
√

log p+
√

E[M2] log p).

where K is a universal constant.

Proof. See Lemma 8 in [20]. �

Lemma E.2. Assume the setting of Lemma E.1. (i) For every η > 0, β ∈
(0, 1] and t > 0,

P{Z ≥ (1 + η)E[Z] + t} ≤ exp{−t2/(3σ2)}+ 3exp{−(t/(K‖M‖ψβ
))β},

where K = K(η, β) is a constant depending only on η, β.
(ii) For every η > 0, s ≥ 1 and t > 0,

P{Z ≥ (1 + η)E[Z] + t} ≤ exp{−t2/(3σ2)}+K ′E[M s]/ts,

where K ′ = K ′(η, s) is a constant depending only on η, s.

Proof. See Theorem 4 in [1] for case (i) and Theorem 2 in [2] for case (ii).
See also [22]. �

Lemma E.3. Let X1, . . . ,Xn be independent random vectors in R
p with

p ≥ 2 such that Xij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , p. Define
Z := max1≤j≤p

∑n
i=1Xij and M := max1≤i≤nmax1≤j≤pXij . Then

E[Z] ≤ K

(
max
1≤j≤p

E[
∑n

i=1Xij ] + E[M ] log p

)
,

where K is a universal constant.

Proof. See Lemma 9 in [20]. �

Lemma E.4. Assume the setting of Lemma E.3. (i) For every η > 0, β ∈
(0, 1] and t > 0,

P{Z ≥ (1 + η)E[Z] + t} ≤ 3 exp{−(t/(K‖M‖ψβ
))β},
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where K = K(η, β) is a constant depending only on η, β. (ii) For every
η > 0, s ≥ 1 and t > 0,

P{Z ≥ (1 + η)E[Z] + t} ≤ K ′E[M s]/ts,

where K ′ = K ′(η, s) is a constant depending only on η, s.

The proof of Lemma E.4 relies on the following lemma, which follows from
Theorem 10 in [27].

Lemma E.5. Assume the setting of Lemma E.3. Suppose that there exists
a constant B such that M ≤ B. Then for every η, t > 0,

P

{
Z ≥ (1 + η)E[Z] +B

(
2

3
+

1

η

)
t

}
≤ e−t.

Proof of Lemma E.5. By homogeneity, we may assume that B = 1. Then
by Theorem 10 in [27], for every λ > 0,

log E[exp(λ(Z − E[Z]))] ≤ ϕ(λ)E[Z],

where ϕ(λ) = eλ − λ− 1. Hence by Markov’s inequality, with a = E[Z],

P{Z − E[Z] ≥ t} ≤ e−λt+aϕ(λ).

The right-hand side is minimized at λ = log(1+t/a), at which −λt+aϕ(λ) =
−aq(t/a) where q(t) = (1 + t) log(1 + t) − t. It is routine to verify that
q(t) ≥ t2/(2(1 + t/3)), so that

P{Z − E[Z] ≥ t} ≤ e
− t2

2(a+t/3) .

Solving t2/(2(a + t/3)) = s gives t = s/3 +
√
s2/9 + 2as ≤ 2s/3 +

√
2as.

Therefore, we have

P{Z ≥ E[Z] +
√
2as + 2s/3} ≤ e−s.

The conclusion follows from the inequality
√
2as ≤ ηa+ η−1s. �

Proof of Lemma E.4. The proof is a modification of that of Theorem 4 in
[1] (or Theorem 2 in [2]). We begin with noting that we may assume that
(1 + η)8E[M ] ≤ t/4, since otherwise we can make the lemma trivial by
setting K or K ′ large enough. Take

ρ = 8E[M ], Yij =

{
Xij , if max1≤j≤pXij ≤ ρ,

0, otherwise

Define

W1 = max
1≤j≤p

n∑

i=1

Yij , W2 = max
1≤j≤p

n∑

i=1

(Xij − Yij).

Then

P{Z ≥ (1 + η)E[Z] + t} ≤ P{W1 ≥ (1 + η)E[Z] + 3t/4}+ P(W2 ≥ t/4)

≤ P{W1 ≥ (1 + η)E[W1]− (1 + η)E[W2] + 3t/4}+ P(W2 ≥ t/4).
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Observe that

P

{
max

1≤m≤n
max
1≤j≤p

m∑

i=1

(Xij − Yij) > 0

}
≤ P(M > ρ) ≤ 1/8,

so that by the Hoffmann-Jørgensen inequality [see 26, Proposition 6.8], we
have

E[W2] ≤ 8E[M ] ≤ t/(4(1 + η)).

Hence

P{Z ≥ (1 + η)E[Z] + t} ≤ P{W1 ≥ (1 + η)E[W1] + t/2} +P(W2 ≥ t/4).

By Lemma E.5, the first term on the right-hand side is bounded by e−ct/ρ

where c depends only on η. We bound the second term separately in cases
(i) and (ii). Below C1, C2, . . . are constants that depend only on η, β, s.

Case (i). By Theorem 6.21 in [26] (note that a version of their theorem
applies to nonnegative random vectors) and the fact that E[W2] ≤ 8E[M ],

‖W2‖ψβ
≤ C1(E[W2] + ‖M‖ψβ

) ≤ C2‖M‖ψβ
,

which implies that P(W2 ≥ t/4) ≤ 2 exp{−(t/(C3‖M‖ψβ
))β}. Since ρ ≤

C4‖M‖ψβ
, we conclude that

e−ct/ρ + P(W2 ≥ t/4) ≤ 3 exp{−(t/(C5‖M‖ψβ
))β}.

Case (ii). By Theorem 6.20 in [26] (note that a version of their theorem
applies to nonnegative random vectors) and the fact that E[W2] ≤ 8E[M ],

(E[W s
2 ])

1/s ≤ C6(E[W2] + (E[M s])1/s) ≤ C7(E[M
s])1/s.

The conclusion follows from Markov’s inequality together with the simple
fact that e−t/t−s → 0 as t → ∞. �

E.2. Proofs for Section 4.

Proof of Theorem 4.1. In this proof, C is a positive constant that depends
only on a, b, and d but its value may change at each appearance. Fix any
A ∈ A ⊂ Asi(a, d). Let Am = Am(A) be an approximating m-generated
convex set as in (C). By assumption, Am ⊂ A ⊂ Am,ǫ. Let

ρ := max
{
|P(SeXn ∈ Am | Xn

1 )− P(SYn ∈ Am)|,

|P(SeXn ∈ Am,ǫ | Xn
1 )− P(SYn ∈ Am,ǫ)|

}
.

As in the proof of Proposition 3.1, we have

|P(SeXn ∈ A | Xn
1 )− P(SYn ∈ A)|

≤ Cǫ log1/2(pn) + ρ ≤ Cn−1 log1/2(pn) + ρ,

so that the problem reduces to proving that under (M.1), the inequality

ρMB
n (Are) ≤ C∆

1/3
n log2/3 p (37)
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holds on the event ∆n,r ≤ ∆n, where ∆n,r := max1≤j,k≤p |Σ̂jk − Σjk| with
Σ̂jk and Σjk denoting the (j, k)-th elements Σ̂ and Σ, respectively.

To this end, we first show that

̺MB
n := sup

y∈Rp
|P(SeXn ≤ y | Xn

1 )− P(SYn ≤ y)| ≤ C∆1/3
n,r log

2/3 p. (38)

To show (38), fix any y = (y1, . . . , yp)
′ ∈ R

p. As in the proof of Lemma 5.1,
for β > 0, define

Fβ(w) := β−1 log
(∑p

j=1 exp(β(wj − yj))
)
, w ∈ R

p.

Note that conditional onXn
1 , S

eX
n is a centered Gaussian random vector with

covariance matrix Σ̂. Then a small modification of the proof of Theorem 1
in [20] implies that for every g ∈ C2(R) with ‖g′‖∞ ∨ ‖g′′‖∞ <∞, we have

|E[g(Fβ(SeXn )) | Xn
1 ]− E[g(Fβ(S

Y
n ))]| ≤ (‖g′′‖∞/2 + β‖g′‖∞)∆n,r.

Hence, as in Step 2 of the proof of Lemma 5.1, we obtain with φ = β/ log p
that

|P(SeXn ≤ y − φ−1 | Xn
1 )− P(SYn ≤ y − φ−1)|

≤ C{φ−1 log1/2 p+ (φ2 + βφ)∆n,r}.
Substituting β = φ log p, optimizing the resulting expression with respect
to φ, and noting that y ∈ R

p is arbitrary lead to (38). Finally (37) follows

from the fact that the inequality ̺MB
n ≤ C∆

1/3
n log2/3 p holds on the event

∆n,r ≤ ∆n, and applying the same argument as that used in the proof of
Corollary 5.1. �

Proof of Proposition 4.1. In this proof, c and C are positive constants
that depend only on a, b, d, and s under (E.1), and on a, b, d, s, and q under
(E.2); their values may vary from place to place. For brevity of notation,
we implicitly assume here that i is varying over {1, . . . , n}, and j and k are
varying over {1, . . . , p}. Finally, without loss of generality, we will assume
that

B2
n log

5(pn) log2(1/α) ≤ n (39)

since otherwise the assertions are trivial.
We shall apply Theorem 4.1 to prove the proposition. Observe that since

n−1 log1/2(pn) ≤ CD
(1)
n (α), it suffices to construct an appropriate ∆n such

that P(∆n(A) > ∆n) ≤ α and to bound ∆
1/3
n log2/3(pn).

We begin with noting that since (S) holds for all A ∈ A, ∆n(A) ≤ C∆n,r

where ∆n,r = max1≤j,k≤p |Σ̂jk − Σjk|. As Σ̂ − Σ = n−1
∑n

i=1(XiX
′
i −

E[XiX
′
i])− X̄X̄ ′, we have ∆n,r ≤ ∆

(1)
n,r + {∆(2)

n,r}2, where

∆(1)
n,r := max

1≤j,k≤p

∣∣∣∣∣n
−1

n∑

i=1

(XijXik − E[XijXik])

∣∣∣∣∣ , ∆
(2)
n,r := max

1≤j≤p
|X̄j |.
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The desired assertions then follow from the bounds on ∆
(1)
n,r and ∆

(2)
n,r derived

separately for (E.1) and (E.2) cases below.

Case (E.1). Observe that by Hölder’s inequality and (M.2),

σ2n := max
j,k

n∑

i=1

E
[
(XijXik − E[XijXik])

2
]
≤ max

j,k

n∑

i=1

E[|XijXik|2] ≤ nB2
n.

In addition, by (E.1),

‖max
i,j,k

|XijXik|‖ψ1/2
= ‖max

i,j
|Xij |2‖ψ1/2

= ‖max
i,j

|Xij |‖2ψ1
≤ CB2

n log
2(pn),

so that for Mn := maxi,j,k |XijXik − E[XijXik]|, we have

‖Mn‖ψ1/2
≤ C{‖max

i,j,k
|XijXik|‖ψ1/2

+max
i,j,k

E[|XijXik|]}

≤ C{B2
n log

2(pn) +B2
n} ≤ CB2

n log
2(pn),

which also implies that (E[M2
n])

1/2 ≤ CB2
n log

2(pn). Hence by Lemma E.1,
we have

E[∆(1)
n,r] ≤ Cn−1{

√
σ2n log p+

√
E[M2

n] log p}
≤ C{(n−1B2

n log p)
1/2 + n−1B2

n log
3(pn)} ≤ C{n−1B2

n log(pn)}1/2,

where the last inequality follows from (39). Applying Lemma E.2 (i) with
β = 1/2 and η = 1, we conclude that for every t > 0,

P
{
∆(1)
n,r > C{n−1B2

n log(pn)}1/2 + t
}

≤ exp{−nt2/(3B2
n)}+ 3exp{−c

√
nt/(Bn log(pn))}.

Choosing t = C{n−1B2
n log(pn) log

2(1/α)}1/2 for sufficiently large C > 0,
the right-hand side of this inequality is bounded by

α/4 + 3 exp{−cC1/2n1/4 log1/2(1/α)/(B1/2
n log3/4(pn))} ≤ α/2,

where the last inequality follows from (39). Therefore

P{{∆(1)
n,r log

2(pn)}1/3 > CD(1)
n (α)} ≤ α/2.

It is routine to verify that the same inequality holds with ∆
(1)
n,r replaced by

{∆(2)
n,r}2. This leads to the conclusion of the proposition under (E.1).

Case (E.2). Define σ2n and Mn by the same expressions as those in the
previous case; then σ2n ≤ nB2

n. For Mn, we have

E[M q/2
n ] ≤ C{E[max

i,j,k
|XijXik|q/2] + max

i,j,k
(E[|XijXik|])q/2}

≤ C{E[max
i,j,k

|XijXik|q/2]} = CE[max
i,j

|Xij |q] ≤ CnBq
n,
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which also implies that (E[M2
n])

1/2 ≤ Cn2/qB2
n. Hence by Lemma E.1, we

have

E[∆(1)
n,r] ≤ Cn−1{

√
σ2n log p+

√
E[M2

n] log p}
≤ C{(n−1B2

n log p)
1/2 + n−1+2/qB2

n log p}.

Applying Lemma E.2 (ii) with s = q/2 and η = 1, we have for every t > 0,

P
{
∆(1)
n,r > C{(n−1B2

n log p)
1/2 + n−1+2/qB2

n log p}+ t
}

≤ exp{−nt2/(3B2
n)}+ ct−q/2n1−q/2Bq

n.

Choosing

t = C{{n−1B2
n(log(pn)) log

2(1/α)}1/2 + n−1+2/qα−2/qB2
n}

for sufficiently large C > 0, we conclude that

P{{∆(1)
n,r log

2(pn)}1/3 > C{D(1)
n (α) +D(2)

n,q(α)}} ≤ α/2.

It is routine to verify that the same inequality holds with ∆
(1)
n,r replaced by

{∆(2)
n,r}2. This leads to the conclusion of the proposition under (E.2). �

Proof of Corollary 4.1. Here C is understood to be a positive constant
that depends only on a, d, k1 and k2; the value of C may change from place
to place. To prove this corollary, we apply Theorem 4.1, to which end we
have to verify condition (M.1′) for all A ∈ A and derive a suitable bound on
∆n(A). Condition (M.1′) for all A ∈ A follows from the fact that the mini-
mum eigenvalue of E[XiX

′
i] is bounded from below by k1. By log-concavity of

the distributions of Xi, we have ‖v′Xi‖ψ1 ≤ C(E[(v′Xi)
2])1/2 ≤ C for all v ∈

R
p with ‖v‖ = 1 (see the proof of Corollary 3.1). For all i = 1, . . . , n, let X̌i

be a random vector whose elements are given by v′Xi, v ∈ ∪A∈AV(Am(A));
the dimension of X̌i, denoted by p̌, is at most (pn)d, and‖X̌ij‖ψ1 ≤ C for all

j = 1, . . . , p̌. Then ∆n(A) coincides with ∆n,r with Xi replaced by X̌i, that
is,

∆n(A) = max
1≤j,k≤p̌

∣∣∣∣∣n
−1

n∑

i=1

(X̌ijX̌ik − E[X̌ijX̌ik])− En[X̌ij ]En[X̌ik]

∣∣∣∣∣ .

Noting that log p̌ ≤ d log(pn), by the same argument as that used in the
proof of Proposition 4.1 case (E.1), we can find a constant ∆n such that
P(∆n(A) > ∆n) ≤ α and

{∆n log
2(pn)}1/3 ≤ C{n−1(log5(pn)) log2(1/α)}1/6.

Here without loss of generality we assume that (log5(pn)) log2(1/α) ≤ n.
The desired assertion then follows. �
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Proof of Corollary 4.2. Any hyperrectangle A ∈ Are satisfies conditions
(C) and (S) with a = 0, d = 1, and s = 1. In addition, it follows from (M.1)
that any hyperrectangle A ∈ Are satisfies (M.1′). Therefore, the asserted
claims follow from Proposition 4.1. �

Proof of Proposition 4.2. In this proof, let C be a positive constant
depending only on b and s under (E.1), and on b, q, and s under (E.2);
the value of C may change from place to place. Moreover, without loss of
generality, we will assume that

B2
n(log

5(pn)) log2(1/α) ≤ n

since otherwise the assertions are trivial.
Let ∆n,r := max1≤j,k≤p |Σ̂jk − Σjk|, and

∆n =





(
B2

n(log(pn)) log
2(1/α)

n

)1/2
if (E.1) is satisfied

(
B2

n(log(pn)) log
2(1/α)

n

)1/2
+ B2

n log p

α2/qn1−q/2 if (E.2) is satisfied.

Then by the proof of Proposition 4.1, in either case where (E.1) or (E.2) is
satisfied, there exists a positive constant C1 depending only on b, s, q (C1

depends on q only in the case where (E.2) is satisfied) such that

P(∆n,r > C1∆n) ≤ α/2.

We may further assume that C1∆n ≤ b/2, since otherwise the assertions are
trivial.

As in the proof of Proposition 3.2, let R = pn5/2 and V R = {w ∈ R
p :

max1≤j≤p |wj | > R}. Fix any A ∈ Asp(s). Then A = Ǎ∪ (A∩V R) for some

s-sparsely convex set Ǎ with supw∈Ǎmax1≤j≤p |wj | ≤ R. As in Proposition

3.2, P(SYn ∈ V R) ≤ C/n1/2. Moreover, conditional on Xn
1 , S

eX
nj is Gaussian

with mean zero and variance En[(Xij − X̄j)
2] = Σ̂jj, so that

P(SeXn ∈ V R | Xn
1 ) = P( max

1≤j≤p
|SeXnj | > R | Xn

1 )

≤
E[max1≤j≤p |SeXnj | | Xn

1 ]

R
≤
C(log p)1/2 max1≤j≤p Σ̂

1/2
jj

R
,

which is bounded by C/n1/2 on the event ∆n,r ≤ C1∆n. Hence on the event

∆n,r ≤ C1∆n,

|P(SeXn ∈ A | Xn
1 )− P(SYn ∈ A)|

≤ |P(SeXn ∈ Ǎ | Xn
1 )− P(SYn ∈ Ǎ)|+ C/n1/2,

so that it suffices to consider the case where the sets A ∈ Asp(s) are such
that supw∈Amax1≤j≤p |wj| ≤ R.

Further, let ε = n−1, and define the subclasses Asp
1 (s) and Asp

2 (s) of
Asp(s) as in the proof of Proposition 3.2. For all A ∈ Asp

1 (s), we can verify
conditions (C), (S), (M.1′), (M.2′), (E.1′) (if (E.1) is satisfied), and condition
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(E.2′) (if (E.2) is satisfied) as in the proof of Proposition 3.2 (where (S) is ver-
ified implicitly). Therefore, by Proposition 4.1 applied with α/2 instead of α,
the bounds (14) and (15) with ρMB

n (Asp(s)) replaced by ρMB
n (Asp

1 (s)) hold
with probability at least 1−α/2. Hence, it remains to bound ρMB

n (Asp
2 (s)).

Fix any A ∈ Asp
2 (s) with a sparse representation A = ∩Qq=1Aq for some

Q ≤ ps. As in the proof of Proposition 3.2, we separately consider two cases.
First, suppose that at least one of Aq does not contain a ball of radius ε;

then by condition (M.1′′) and Lemma A.2, P(SYn ∈ Aq) ≤ Cε. Moreover,
since SeXn is Gaussian conditional on Xn

1 , by condition (M.1′′) and Lemma
A.2, we have, on the event ∆n,r ≤ C1∆n, P(S

eX
n ∈ Aq | Xn

1 ) ≤ Cε since

C1∆n ≤ b/2. Since A ⊂ Aq, we conclude that on the event ∆n,r ≤ C1∆n,
|P(SeXn ∈ A | Xn

1 )− P(SYn ∈ A)| ≤ Cε = C/n.
Second, suppose that each Aq contains a ball with radius ε. Then by

applying Lemma D.1 to each Aq, for m ≤ (pn)d with d depending only on
s, we can construct an m-generated convex set Amq such that Amq ⊂ Aq ⊂
A
m,1/n
q with ‖v‖0 ≤ s for all v ∈ V(Amq ). Let A0 = ∩Qq=1A

m,1/n
q ; then A ⊂ A0

and ∩Qq=1A
m,−ε
q is empty. By the latter fact, together with condition (M.1′′)

and Lemma A.1, we have P(SYn ∈ A0) ≤ C(log1/2(pn))/n. Moreover, since
SeXn is Gaussian conditional on Xn

1 , by condition (M.1′′) and Lemma A.1,

the inequality P(SeXn ∈ A0 | Xn
1 ) ≤ C(log1/2(pn))/n holds on the event

∆n,r ≤ C1∆n since C1∆n ≤ b/2. Since A ⊂ A0, we conclude that on the

event ∆n,r ≤ C1∆n, |P(SeXn ∈ A | Xn
1 ) − P(SYn ∈ A)| ≤ C(log1/2(pn))/n.

This completes the proof since P(∆n,r > C1∆n) ≤ α/2. �

Proof of Theorem 4.2. By the triangle inequality, ρEBn (Are) ≤ ρMB
n (Are)+

̺EBn (Are), where

̺EBn (Are) := sup
A∈Are

|P(SX∗

n ∈ A | Xn
1 )− P(SeXn ∈ A | Xn

1 )|.

Also conditional on Xn
1 , X

∗
1 − X̄, . . . ,X∗

n − X̄ are i.i.d. with zero mean and

covariance matrix Σ̂. In addition, conditional on Xn
1 , S

eX
n

d
=
∑n

i=1 Y
∗
i /

√
n,

where Y ∗
1 , . . . , Y

∗
n are i.i.d. centered Gaussian random vectors with the same

covariance matrix Σ̂. Hence the conclusion of the theorem follows from
applying Theorem 2.1 conditional on Xn

1 (with Ln and Mn(φn) in Theo-

rem 2.1 substituted by L̂n and M̂n(φn)) to bound ̺EBn (Are) on the event

{En[(Xij − X̄j)
2] ≥ b for all 1 ≤ j ≤ p} ∩ {L̂n ≤ Ln} ∩ {M̂n(φn) ≤Mn}. �

Proof of Proposition 4.3. Here c, C are constants depending only on b
and K under (E.1), and on b, q, and K under (E.2); their values may change
from place to place. We first note that, for sufficiently small c > 0, we may
assume that

B2
n log

7(pn) ≤ cn, (40)
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since otherwise we can make the assertion of the lemma trivial by setting
C sufficiently large. To prove the proposition, we will apply Theorem 4.2
separately under (E.1) and under (E.2).

Case (E.1). With (40) in mind, by the proof of Proposition 4.1, we see
that P(∆n,r > b/2) ≤ α/6, so that with probability larger than 1 − α/6,
b/2 ≤ En[(Xij − X̄j)

2] ≤ CBn for all j = 1, . . . , p. We turn to bounding

L̂n. Using the inequality |a − b|3 ≤ 4(|a|3 + |b|3) together with Jensen’s
inequality, we have

L̂n ≤ 4( max
1≤j≤p

En[|Xij |3] + max
1≤j≤p

|X̄j |3) ≤ 8 max
1≤j≤p

En[|Xij |3].

By Lemma E.3,

E[ max
1≤j≤p

En[|Xij |3]] ≤ C{Ln + n−1E[ max
1≤i≤n

max
1≤j≤p

|Xij |3] log p}

≤ C{Bn + n−1B3
n log

4(pn)}.

Note that ‖|Xij |3‖ψ1/3
≤ ‖Xij‖3ψ1

≤ B3
n, so that applying Lemma E.4 (i)

with β = 1/3, we have for every t > 0,

P{L̂n ≥ C{Bn + n−1B3
n log

4(pn) + n−1B3
nt

3}} ≤ 3e−t.

Taking t = log(18/α) ≤ C log(pn), we conclude that, with Ln = CBn (recall

(40)), P(L̂n > Ln) ≤ α/6.

Next, consider M̂n,X(φn). Observe that

max
1≤j≤p

|Xij − X̄j | ≤ 2 max
1≤i≤n

max
1≤j≤p

|Xij |,

so that

P{M̂n,X(φn) > 0} ≤ P{max
i,j

|Xij | >
√
n/(8φn log p)}.

Since ‖Xij‖ψ1 ≤ Bn, the right-hand side is bounded by

2(pn) exp{−
√
n/(8Bnφn log p)}.

Observe that

Bnφn log p ≤ Cn1/6B2/3
n log1/3 p,

so that using (40), we conclude that P{M̂n,X(φn) > 0} ≤ α/6.

To bound M̂n,Y (φn), observe that conditional on X1, . . . ,Xn, ‖SeXnj ‖ψ2 ≤
CB

1/2
n for all j = 1, . . . , p on the event max1≤j≤p En[(Xij − X̄j)

2] ≤ CBn,
which holds with probability larger than 1 − α/6. Hence, employing the

same argument as that used to bound M̂n,X(φn), we conclude that

P{M̂n,Y (φn) > 0} ≤ α/6 + α/6 = α/3,

which implies that

P{M̂n(φn) = 0} > 1− (α/6 + α/3) = 1− α/2.
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Taking these together, by Theorem 4.2, with probability larger than 1−
(α/6 + α/6 + α/2) = 1− 5α/6, we have

ρEBn (Are) ≤ ρMB
n (Are) + C{n−1B2

n log
7(pn)}1/6.

The final conclusion follows from Proposition 4.1.

Case (E.2). In this case, in addition to (40), we may assume that

B2
n log

3(pn)

α2/qn1−2/q
≤ c ≤ 1 (41)

for sufficiently small c > 0, since otherwise the assertion of the proposition
is trivial by setting C sufficiently large. Then as in the previous case, by
the proof of Proposition 4.1, with probability larger than 1 − α/6, b/2 ≤
En[(Xij − X̄j)

2] ≤ CBn for all j = 1, . . . , p.

To bound L̂n, recall that L̂n ≤ 8max1≤j≤p En[|Xij |3], and by Lemma E.3,

E[ max
1≤j≤p

En[|Xij |3]] ≤ C(Bn +B3
nn

−1+3/q log p).

Hence by applying Lemma E.4 (ii) with s = q/3, we have for every t > 0,

P{L̂n ≥ C(Bn+B
3
nn

−1+3/q log p)+n−1t} ≤ Ct−q/3E[max
i,j

|Xij |q] ≤ Ct−q/3nBq
n.

Solving Ct−q/3nBq
n = α/6, we conclude that P(L̂n ≥ Ln) ≤ α/6 where

Ln = C(Bn +B3
nn

−1+3/qα−3/q log p).

Next, consider M̂n,X(φn). As in the previous case,

P{M̂n,X(φn) > 0} ≤ P{max
i,j

|Xij | >
√
n/(8φn log p)}.

Since the right-hand side is nondecreasing in φn, and

φn ≤ cB−1
n n1/2−1/qα1/q(log p)−1,

we have (by choosing the constant C in Ln large enough)

P{max
i,j

|Xij | >
√
n/(8φn log p)}

≤ nmax
i

P{max
j

|Xij | > CBnn
1/qα−1/q} ≤ α/6.

For M̂n,Y (φn), we make use of the argument in the previous case, and con-
clude that

P{M̂n,Y (φn) > 0} ≤ α/2.

The rest of the proof is the same as in the previous case. Note that
(
L
2
n log

7(pn)

n

)1/6

≤ C

[(
B2
n log

7(pn)

n

)1/6

+

(
B2
n log

3(pn)

α2/qn1−2/q

)1/2
]
,

and because of (41), the second term inside the bracket on the right-hand
side is at most (

B2
n log

3(pn)

α2/qn1−2/q

)1/3

.
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This completes the proof in this case. �
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