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Prologue



Consider two random objects W and Z and suppose that

L(W ) ≈ L(Z)
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There are many ways of measuring “closeness” depending on what
features one wishes to capture (see e.g. Gibbs and Su 2002).



We will focus on distances of the form

dH(W,Z) = sup
h∈H
|Eh(W )− Eh(Z)|

with H some measure generating class.

This includes

TV (W,Z) = sup
A⊂R
|P (W ∈ A)− P (Z ∈ B)|

W(W,Z) = sup
h∈Lip(1)

|Eh(W )− Eh(Z)|

Kol(W,Z) = sup
z∈Rd

|P (W ≤ z)− P (Z ≤ z)|

and several more.



Even in the simplest cases we can rarely assess dH(W,Z) explicitely.

Objective : provide good/precise/computable bounds

L1 ≤ dH(W,Z) ≤ L2.

The bounds are

Li = Li(H,W,Z, ∗), i = 1, 2



The Chen-Stein method



The Chen-Stein method
Step 1 : an operator
Step 2 : a Stein equation
Step 3 : a transfer principle



Suppose that we dispose of a linear operator f(x) 7→ AZf(x) such
that

W
L
= Z if and only if E [AZf(W )] = 0 (*)

for all functions f ∈ F(AZ) some class of functions.

If (∗) holds we say that (AZ ,F(AZ)) characterizes the law of Z.

Such pairs are not unique.

In the sequel we concentrate on “Stein operators”.



Gaussian operators :

I AZf(x) = f ′(x)− xf(x) (Standard Stein operator)

I AZf(x) = f (m)(x)−Hm(x)f(x) with Hm(·) the mth
Hermite polynomial (Goldstein Reinert 2005)

I AZf(x) = (1 + x2)f ′(x)− (x3− x)f(x) (Ley and Swan 2015)

Poisson operators :

I AZf(x) = λf(x+ 1)− xf(x)

I AZf(x) = Cmλ (x)f(x)− α∆mf(x) with Cmλ (x) the mth
Charlier polynomial and ∆ the forward difference operator
(Goldstein Reinert 2005)



Many operators are now known for many distributions :

Exponential, chi-squared, gamma, Semi-circle, Variance gamma, Mar-
chenko Pastur law, Multinomial, Beta distribution, Geometric, Com-
pound geometric, Binomial, Negative binomial, Multivariate normal,
Elliptical distributions (multivariate), Extreme distributions, Laplace
distribution, Distributions involving hypergeometric functions, Fra-
gility distributions, Half normal distribution, ArcSine distribution,
Rank distribution of random matrices, The Conway-Maxwell-Poisson
distribution, Symmetric α-Stable distributions.

See e.g.

https ://sites.google.com/site/yvikswan/about-stein-s-method

for a list of references.



The Chen-Stein method
Step 1 : an operator
Step 2 : a Stein equation
Step 3 : a transfer principle



Given Z with characterizing (AZ ,F(AZ)) suppose that for all h ∈ H
there exists a unique fh ∈ F(AZ) such that

AZfh(x) = h(x)− Eh(Z)

Let F(Z,H) be the collection of such fh.

We call such equations Stein equations.



The Chen-Stein method
Step 1 : an operator
Step 2 : a Stein equation
Step 3 : a transfer principle



Then

dH(W,Z) = sup
h∈H
|Eh(W )− Eh(Z)|

= sup
f∈F(Z,H)

|E [AZf(W )]|

As discovered by Stein (in Gaussian context) and Chen (in Poisson
context) the quantity on the rhs is a good starting point for assessing
the lhs as long as the pair (AZ ,F(AZ)) is well chosen.



What makes for a good pair (AZ ,F(AZ)) ?

Three criteria :

I F(AZ) needs to be large and easy to describe ;

I The functions in F(Z,H) need to have good properties
(e.g. bounded with bounded derivatives) ;

I The object “EAZf(W )” needs to provide good handles.



In all cases cited these three criterion are met in spectacular fashion.

I After a little thought the operator AZ has a nice form and the
class F(AZ) always ends up explicit.

I Precise bounds are known on the solutions.

I There are an uncanny number of ways to tackle E [AZf(W )]

The literature is immense and outreach of Stein’s method is tenta-
cular.

See, e.g., Stein (1986), Barbour and Chen (2005), Nourdin Peccati
(2011), Chen Goldstein Shao (2011), Ross (2011) or

https ://sites.google.com/site/malliavinstein/home



Comparison of operators



Let Z and W have pair (AZ ,F(AZ)) and (AW ,F(AW )), respec-
tively.

Suppose that
F(Z,H) ⊂ F(AW ).

Then

E [h(W )]− E [h(Z)] = E [AZf(W )]

= E [AZf(W )]−E [AW f(W )]

for all h ∈ H and

dH(W,Z) = sup
f∈F(Z,H)

|E [(AZ −AW )f(W )]| .

Thus assessing the distance between the laws of Z and W boils
down to assessing the difference between their operators.



Comparison of operators
Comparing scores
Comparing Stein kernels



Let X ∼ pX and define

ρX(x) =
p′X(x)

pX(x)
= (log pX(x))′

the score function of X.

Introduce operators of the form

AXf(x) =
(f(x)pX(x))′

pX(x)
= f ′(x) +

p′X(x)

pX(x)
f(x).

Sufficient assumptions on X can be identified under which (AX ,F(AX))
characterizes X (see Stein et al. 2004 or Chatterjee and Shao 2011).



Then using

AZf(x) = f ′(x)− ρZ(x)f(x)

AW f(x) = f ′(x)− ρW (x)f(x)

we get [if reasonable assumptions are satisfied]

dH(W,Z) = sup
f∈F(Z,H)

|E [(AZ −AW )f(W )]|

= sup
f∈F(Z,H)

|E(ρW (W )− ρZ(W ))f(W )|

Need to bound this quantity.



There are two ways of bounding the rhs :

I Technique 1 :

dH(W,Z) ≤ κZ,HE |ρW (W )− ρZ(W )|

with
κ1,Z,H,W = sup

f∈F(Z,H)
‖f‖

I Technique 2 :

dH(W,Z) ≤ κZ,H
√

E (ρW (W )− ρZ(W ))2

with
κ2,Z,H,W =

√
sup

f∈F(Z,H)
|E [f(W )2] |.



There are many ways to bound the constant.

The constants κ1,Z,H,W are the “magic factors” and

κ2,Z,H,W ≤ κ1,Z,H,W

Better bounds can sometimes be obtained.

Proposition (Ley and S. 2013) Take

Z ∼ pZ(x) = ce−d|x|
α
IS(x)

for some α and S scale invariant subset of R. Suppose that W has
support included in S. Then

κZ,H,W ≤
‖h‖∞
21/α

.



The quantity

E |ρW (W )− ρZ(W )| and E (ρW (W )− ρZ(W ))2

have, in many cases, good properties.

I See e.g. Shimizu (1975) and Stein (1986, Lesson 6) and many
others.

I See particularly Johnson and Barron (2004) for a study of

J (W,Z) = E (ρW (W )− ρZ(W ))2

the so-called FID between W and Z.



Comparison of operators
Comparing scores
Comparing Stein kernels



Let X ∼ pX with mean µ and consider τX(x) such that

(τX(x)pX(x))′

pX(x)
= µ− x

(called the Stein kernel/factor/coefficient of X).

Introduce operators of the form

AXf(x) =
(τX(x)f(x)pX(x))′

pX(x)
= τX(x)f ′(x) + (µ− x)f(x)

Sufficient assumptions on X can be identified under which (AX ,F(AX))
characterizes X (see Döbler (2012) or Tudor and Kusuoka (2012,
2014)).



Suppose X and Z have the same mean µ. Then using

AZf(x) = τZ(x)f ′(x) + (µ− x)f(x)

AW f(x) = τW (x)f ′(x) + (µ− x)f(x)

we get [if assumptions are satisfied]

dH(W,Z) = sup
f∈F(Z,H)

|E [(AZ −AW )f(W )]|

= sup
f∈F(Z,H)

∣∣E(τW (W )− τZ(W ))f ′(W )
∣∣

with a similar discussion on the constant depending on

sup
f∈F(Z,H)

‖f ′‖ or
√

sup
f∈F(Z,H)

E [f ′(W )2]



The quantities

E |τW (W )− τZ(W )| and E (τW (W )− τZ(W ))2

have, in certain cases, great properties.

I Several authors use this approach, e.g. Stein (1986, Lesson 6),
Cacoullos et al. (1992), Döbler (2012) or Tudor and Kusuoka
(2012, 2014).

I An important area is in the continuation of the field initiated
by Nourdin and Peccati (2009).

I See also Ledoux, Nourdin and Peccati (2015) for a study of

S(W,Z) = E (τW (W )− τZ(W ))2

the so-called Stein discrepancy between W and Z.



Similar constructions can also be done in the discrete case (see Ley
and S. 2013).

In many cases, however, the score ρ or Stein kernel τ do not bear
good properties.

For example in the exponential, Laplace, α-stable, Kummer-U , Variance-
Gamma, ...

then one needs second order or weirder operators.

Question : does there exist a systematic way of constructing Stein
operators ?



A canonical Stein density approach



A canonical Stein density approach
Setup
Definition
A canonical inverse
Identities
Product rule and Stein equation



Let (X ,B, µ) be a measure space and take a linear operator

D : dom(D) ⊂ X ? → im(D)

such that dom(D) \ {0} 6= ∅.

Example 1 : Df(·) = f ′(·)

Example 2 : Df(·) = ∆+f(·) = f(·+ 1)− f(·)



Assumption (product formula) There exists a linear operator D? :
dom(D?) ⊂ X ? → im(D?) and a constant l := lX ,D such that

D(f(x)g(x+ l)) = g(x)Df(x) + f(x)D?g(x)

for all (f, g) ∈ dom(D)× dom(D?).

Example 1 :
(fg)′ = f ′g + fg′

Example 2 :

∆+(f(x)g(x− 1)) = ∆+f(x)g(x) + f(x)∆−g(x)



A canonical Stein density approach
Setup
Definition
A canonical inverse
Identities
Product rule and Stein equation



Let X have density p with respect to µ.

Definition 1 The (canonical) Stein class F(p) ≡ F(X) for X is the
collection of p-integrable functions f such that

I fp ∈ dom(D),

I D(fp) is integrable, and

I
∫
D(fp)dµ = 0.

Definition 2 The (canonical) Stein operator Tp ≡ TX for p is the
linear operator on F(X) defined as

TXf =
D(fp)

p
.

Note how E[TXf(X)] = 0 for all f ∈ F(X).



A canonical Stein density approach
Setup
Definition
A canonical inverse
Identities
Product rule and Stein equation



Assumption (invertibility) Suppose that there existsD−1 : im(D)→
dom(D) a linear operator such that

D
(
D−1h

)
= h

for all h ∈ im(D) and, for f ∈ dom(D),

D−1 (Df)

is defined up to addition with an element of ker(D).

Example 1 : D−1f(·) =
∫ ·
f

Example 2 : (∆+)−1f(·) =
∑· f



Definition 3 The (canonical) inverse Stein operator is

T −1
p (h) =

D−1(hp)

p

Proposition (Döbler 12, Ley, Reinert, S. 15) Let X have mean
µ and density p with respect to the Lebesgue measure satisfying
[assumptions]. Let

gh =
T −1
X (h− E [h(Z)])

T −1
X (µ− Id)

.

Then
‖gh‖ ≤ ‖h′‖.



A canonical Stein density approach
Setup
Definition
A canonical inverse
Identities
Product rule and Stein equation



In the continuous case : for all f ∈ F(X),

E
[
g′(X)f(X)

]
=

∫
g′(x)f(x)p(x)dx

= −
∫
g(x)

(fp)′(x)

p(x)
p(x)dx

= −E [g(X)TXf(X)]

for all differentiable functions g such that

I
∫

(gfp)′dx = 0, and

I
∫
|g′fp|dx <∞.

We collect all such g in a class dom((·)′ , X, f).



Theorem 1 (Ley, Reinert and S. 2015) For all f ∈ F(X)

E [Dg(X) f(X)] = −E [g(X) TXf(X)]

for all g ∈ dom(D, X, f).

Theorem 2 (Ley, Reinert and S. 2015) For all h with p mean 0

E
[
T −1
X h(X)D?g(X)

]
= −E [g(X)h(X)]

for all g ∈ dom(D, X, T −1
X h).

Theorem 3 (Ley, Reinert and S. 2015) Under reasonable as-
sumptions we can show that these relations characterize the law of
X either by fixing f or by fixing g.



A canonical Stein density approach
Setup
Definition
A canonical inverse
Identities
Product rule and Stein equation



The Stein operator satisfies the product rule

TX(fg(·+ l)) =
D(fg(·+ l)p)

p

= fD?g + g
D(fp)

p

= fD?g + gTXf

so that
TX(fg(·+ l)) = fD?g + gTXf

with f ∈ F(X) and g ∈ dom(D, X, f).



The Stein equation becomes

h− Eh(X) = fD?g + gTXf

whose solution (f, g) is a pair of functions f ∈ F(X) and g ∈
dom(D, X, f).

To solve the Stein equation we can

I fix f ∈ F(X) and choose g accordingly

I fix g ∈
⋂
f∈F(X) dom(D, X, f) and choose f accordingly

I let f and g vary simultaneously.



Note

All the structure of the problem is hidden within the definition of
the classes.

Requiring f ∈ F(X) imposes many conditions if X has a complica-
ted distribution.

For example :

I in the exponential case we need f(0) = 0 ;

I in the Laplace case we need f(x)e−|x| differentiable at 0.

In practice one seeks to construct operators whose expression does
not require any complicated assumptions on the test functions.



Example 1 : for X standard normal,

AX(f, g)(x) = f(x)g′(x) + (f ′(x)− xf(x))g(x)

and there are virtually no conditions on f or g.

I Take g = 1 to get

AX(f) = f ′(x)− xf(x)

with no stringent condition on f

I Take f(x) = Hn(x) then

AX(g) = Hn(x)g′(x)−Hn+1(x)g(x)

with no stringent condition on g.



Example 2 : for X exponential

AX(f, g) = f(x)g′(x) + (f ′(x)− f(x))g(x)

with virtually no conditions on g and f ∈ F(X).

I Take g = 1 and f(x) = f̃(x)− f̃(0) yielding

AX(f) = f̃ ′(x)− f̃(x) + f̃(0)

with virtually no condition on f̃ .

I Take f(x) = x yielding

AX(g) = xg′(x) + (1− x)g(x)

with virtually no condition on g.



Example 3 : for X Laplace

AX(f, g) = f(x)g′(x) + (f ′(x)− sign(x)f(x))g(x)

with virtually no conditions on g and f ∈ F(X).

I Take g = 1 and f(x) = (xf̃(x)e|x|)′

e|x|
yielding

AX(f) = xf̃ ′′(x) + 2f̃ ′ − xf̃

with virtually no condition on f̃ .

I Take f(x) = x yielding

AX(g) = xg′(x) + (1− |x|)g(x)

with virtually no condition on g.



A general comparison result



Let X1 and X2 be two random variables with Stein construction
(Ti,Fi, dom(Di, Xi, f)), i = 1, 2.

Theorem (Ley, Reinert and S. 2015) We have

Eh(X2)− Eh(X1) = E [f(X2) (D?1g(X2)−D?2g(X2))

+ g(X2) (T1f(X2)− T2f(X2))] .

for all (f, g) ∈ F1× dom(D1, X1) such that T1(fg) = h−Eh(X1).

Remarks :

I D?1 and D?2 can be different !

I You can choose to fix g and optimize in f or the other way
around

I You can optimize the constants



Application 1 : Binomial approximation

Let X1 ∼ Bin(n, p) and X2 =
∑n

i=1 Ii with Ii ∼ Bin(1, pi), i =
1, . . . , n, i.i.d. and np =

∑n
i=1 pi.

It is easy to show

τX1(x) = (1− p)x and τIi(x) = (1− pi)x

also a variation on the score yields

ρX1(x) =
np− x
1− p

and ρIi(x) =
pi − x
1− pi

Then (Ehm, 1991)

|Eh(X)− Eh(W )| ≤ min

(
||∆+gh||∞,

2‖gh‖∞
1− p

) n∑
i=1

|pi − p|pi



Application 2 : difference between Student and Gauss

Set X1 = Z standard Gaussian and X2 = Wν a Student t random
variable with ν > 2 degrees of freedom.

We have

τ1 = 1 and τ2(x) =
x2 + ν

ν − 1

as well as

ρ1(x) = −x and ρ2(x) = −x(1 + ν)

x2 + ν

which yields

dTV(Z,Wν) ≤ min

 4

ν − 2
,

√
π

2

−2 + 8
(

ν
1+ν

)(1+ν)/2

(ν − 1)
√
νB(ν/2, 1/2)

 ,



Multivariate extension



Consider

F(x) =

F1(x)
...

Fq(x)

 =

F11(x) . . . F1d(x)
...

. . .
...

Fq1(x) . . . Fqd(x)


and define the differential D = div through

div(F)
not
= ∇∇∇T · F =

div(F1)
...

div(Fq)

 =

∇
T · F1

...
∇T · Fq

 =


d∑
i=1

∂F1i
∂xi

...
d∑
i=1

∂Fqi
∂xi

 .



Then we have the product rule

div(φF) = φ div(F) + F(∇φ).

so that

D? = ∇

and everything follows.



Let X be a d-dimensional random vector with probability density
function (pdf) p : Rd → R with respect to the Lebesgue measure
on Rd. Let Ω ⊂ Rd be the support of p [with assumptions].

Definition 1 The (canonical) Stein class for X is the class F(X)
of all q × d tensor fields F (for some q ≥ 1) for which pF is

I differentiable,

I div(pF) is component-wise integrable on Ω

I
∫

Ω div(pF) = 0.

Definition 2 The (canonical) Stein operator of X is the differential
operator

TX : F(X)→ (Rd)? : F→ TXF =
div(pF)

p
.



Application : multivariate Gaussian operators

Taking F = G∇f with G a symmetric d× d matrix then

AXf =

d∑
i,j=1

∂i(Gij∂jf) +

d∑
i,j=1

Gij∂jf
∂ip

p

= ∇t · (G∇f) +∇f tG∇ log p

In particular, if p is the density of a Nd(0,Σ) random vector then

∇ log p(x) = −Σ−1x

so that, taking G = Σ,

AXf(x) =

d∑
i,j=1

σij∂ijf(x) + (∇f(x))tx.



Many authors have considered different standardizations of TXF :

I Landsman and Neslehova and coauthors (2010 : 2014) in the
context of elliptical distributions ;

I Chatterjee and Meckes (2008) and Reinert and Röllin (2009)
for multivariate normal

I Brown et al. (2006) in the context of the heat equation

I Peccati et al. (2014 : 2015) specifically via Stein matrices

I Artstein et al. (2004 : 2014) with variational considerations in
mind.
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