APPROXIMATE COMPUTATION OF
EXPECTATIONS:
A CANONICAL STEIN’S DENSITY APPROACH

Christophe Ley, Gesine Reinert and Yvik Swan*
Université de Liege, Belgium

May 22, 2015

Université
de Ligge .




PROLOGUE



Consider two random objects W and Z and suppose that
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There are many ways of measuring “closeness”’ depending on what
features one wishes to capture (see e.g. Gibbs and Su 2002).



We will focus on distances of the form

dy (W, Z) = sup |ER(W) — Eh(Z)|
heH

with H some measure generating class.

This includes

TV(W,Z) = sup|P(W € A)— P(Z € B)|
ACR
WW.Z) = sup [ER(W)—Eh(Z)
heLip(1)
Kol(W,Z) = sup |P(W <z)—P(Z<2z)|
z€R4

and several more.



Even in the simplest cases we can rarely assess dy (W, Z) explicitely.
Objective : provide good/precise/computable bounds

L1 < dyu(W,Z) < L.
The bounds are

Li:Li(H’W7zv*)a Z:1>2



THE CHEN-STEIN METHOD



THE CHEN-STEIN METHOD
Step 1 : an operator



Suppose that we dispose of a linear operator f(z) — Az f(x) such
that

W £ Zif and only if E[Azf(W)] =0 (*)

for all functions f € F(Ayz) some class of functions.
If () holds we say that (Az, F(Az)) characterizes the law of Z.
Such pairs are not unique.

In the sequel we concentrate on “Stein operators”.



Gaussian operators :
» Az f(x) = f'(x) — xf(z) (Standard Stein operator)
» Azf(x) = f")(z) — Hp(x)f(x) with H,,(-) the mth
Hermite polynomial (Goldstein Reinert 2005)
» Azf(z) = (1 +22)f(z) — (22 — 2) f(z) (Ley and Swan 2015)

Poisson operators :
> Azf(x) = AMf(z+1) —zf(z)
» Azf(z) = OV (x) f(x) — aA™ f(x) with CY'(z) the mth
Charlier polynomial and A the forward difference operator
(Goldstein Reinert 2005)



Many operators are now known for many distributions :

Exponential, chi-squared, gamma, Semi-circle, Variance gamma, Mar-
chenko Pastur law, Multinomial, Beta distribution, Geometric, Com-

pound geometric, Binomial, Negative binomial, Multivariate normal,

Elliptical distributions (multivariate), Extreme distributions, Laplace

distribution, Distributions involving hypergeometric functions, Fra-

gility distributions, Half normal distribution, ArcSine distribution,

Rank distribution of random matrices, The Conway-Maxwell-Poisson

distribution, Symmetric a-Stable distributions.

See e.g.
https ://sites.google.com /site/yvikswan /about-stein-s-method

for a list of references.



THE CHEN-STEIN METHOD

Step 2 : a Stein equation



Given Z with characterizing (Az, F(Az)) suppose that for all b € H
there exists a unique f, € F(Az) such that

Az fu(w) = h(z) — ER(Z)
Let F(Z,H) be the collection of such fj,.

We call such equations Stein equations.



THE CHEN-STEIN METHOD

Step 3 : a transfer principle



Then

Ax(W.Z) = sup [ER(W) ~ EA(Z)

= sup [E[Azf(W)]|
JeEF(ZH)

As discovered by Stein (in Gaussian context) and Chen (in Poisson
context) the quantity on the rhs is a good starting point for assessing
the lhs as long as the pair (Az, F(Az)) is well chosen.



What makes for a good pair (Az, F(Az))?

Three criteria :

» F(Ayz) needs to be large and easy to describe;

» The functions in F(Z,H) need to have good properties
(e.g. bounded with bounded derivatives) ;

» The object “EAzf(W)" needs to provide good handles.



In all cases cited these three criterion are met in spectacular fashion.

» After a little thought the operator Az has a nice form and the
class F(Az) always ends up explicit.

» Precise bounds are known on the solutions.

» There are an uncanny number of ways to tackle E [Az f(W)]

The literature is immense and outreach of Stein’s method is tenta-
cular.

See, e.g., Stein (1986), Barbour and Chen (2005), Nourdin Peccati
(2011), Chen Goldstein Shao (2011), Ross (2011) or

https ://sites.google.com/site/malliavinstein /home



COMPARISON OF OPERATORS



Let Z and W have pair (Az, F(Az)) and (Aw, F(Aw)), respec-
tively.

Suppose that
F(Z,H) C F(Aw).

Then

E[rW)] -E[n(Z)] = E[Azf(W)]
= E[Azf(W)]-E [Aw f(W)]

for all h € H and

du(W,2) = fei‘éé’m E[(Az — Aw)f(W)]].

Thus assessing the distance between the laws of Z and W boils
down to assessing the difference between their operators.



COMPARISON OF OPERATORS
Comparing scores



Let X ~ px and define

the score function of X.

Introduce operators of the form

(f@px (@) _

px ()

Ax f(r) =

Sufficient assumptions on X can be identified under which (Ax, F(Ax))
characterizes X (see Stein et al. 2004 or Chatterjee and Shao 2011).



Then using

Azf(z) = f'(2)
Awf(z) = f'(2)

z(z)f(x
w (@) f(x)

we get [if reasonable assumptions are satisfied|

~—

—p
—p

dy(W,Z) = fejsg(lgm E[(Az — Aw) f(W)]]
= sup [E(pw (W) — pz(W))f(W)]
feEF(ZH)

Need to bound this quantity.



There are two ways of bounding the rhs :

» Technique 1 :
dn(W, Z) < kznE [pw (W) — pz(W)

with

R1,ZHwW = Sup (hal
JEF(ZH)

» Technique 2 :

dn(W, Z) < rzu\JE (ow (W) = pz(W))?

with

K2,2,H,W :\/ sup |E[f(W)2]].
feEF(ZH)



There are many ways to bound the constant.
The constants k1,77 w are the “magic factors” and
K2, ZHW < K1,ZHW
Better bounds can sometimes be obtained.
Proposition (Ley and S. 2013) Take
Z ~py(x) = cem U Ig(z)

for some « and S scale invariant subset of R. Suppose that W has
support included in S. Then

1]
921l/a *

KzHWw <



The quantity
E |ow (W) = pz(W)| and E (pw (W) = pz(W))’

have, in many cases, good properties.

» See e.g. Shimizu (1975) and Stein (1986, Lesson 6) and many
others.

» See particularly Johnson and Barron (2004) for a study of
T(W.2) = E(pw (W) = pz(W))*

the so-called FID between W and Z.



COMPARISON OF OPERATORS

Comparing Stein kernels



Let X ~ px with mean p and consider 7x (z) such that

(rx (z)px(x))’ S
px ()
(called the Stein kernel/factor/coefficient of X).

Introduce operators of the form

Ao o) = PELEBEN. — 1 (0) )+ (0= 10

Sufficient assumptions on X can be identified under which (Ax, F(Ax))
characterizes X (see Dobler (2012) or Tudor and Kusuoka (2012,
2014)).



Suppose X and Z have the same mean p. Then using

Azf(z) = 7z(a)f () + (n—2)f(2)
Aw f(z) = mw(@)f (@) + (1 —2)f(2)

we get [if assumptions are satisfied|

du(W,2) = fejs;(lgm E[(Az — Aw) f(W)]|
= sup [E(rw (W) —72(W))f' (W)
fEF(ZH)

with a similar discussion on the constant depending on

sup ||l or\/ sup B [f/(W)?]
) fe

feF(ZH F(ZH)



The quantities
E |7 (W) — 72(W)| and E (ry (W) — 72(W))?

have, in certain cases, great properties.

» Several authors use this approach, e.g. Stein (1986, Lesson 6),
Cacoullos et al. (1992), Dobler (2012) or Tudor and Kusuoka
(2012, 2014).

> An important area is in the continuation of the field initiated
by Nourdin and Peccati (2009).

» See also Ledoux, Nourdin and Peccati (2015) for a study of
S(W.Z) =E (rw(W) — 2(W))*

the so-called Stein discrepancy between W and Z.



Similar constructions can also be done in the discrete case (see Ley
and S. 2013).

In many cases, however, the score p or Stein kernel 7 do not bear
good properties.

For example in the exponential, Laplace, a-stable, Kummer-U, Variance-
Gamma, ...

then one needs second order or weirder operators.

Question : does there exist a systematic way of constructing Stein
operators ?



A CANONICAL STEIN DENSITY APPROACH



A CANONICAL STEIN DENSITY APPROACH
Setup



Let (X, B, i) be a measure space and take a linear operator
D : dom(D) C X* — im(D)

such that dom(D) \ {0} # 0.

Example 1 : Df(-) = /(")

Example 2 : Df () = ATf(:) = f(-+1) — f(*)



Assumption (product formula) There exists a linear operator D* :
dom(D*) C X* — im(D*) and a constant [ := lx p such that

D(f(z)g(z +1)) = g(z)Df(x) + f(x)D"g(x)

for all (f,g) € dom(D) x dom(D*).

Example 1 :
(f9) =fg+fd
Example 2 :

AT(f(z)g(z — 1)) = AY f(z)g(z) + f(2) A7 g(x)



A CANONICAL STEIN DENSITY APPROACH

Definition



Let X have density p with respect to .

Definition 1 The (canonical) Stein class F(p) = F(X) for X is the
collection of p-integrable functions f such that

» fp € dom(D),
» D(fp) is integrable, and

> [D(fp)dp = 0.

Definition 2 The (canonical) Stein operator T, = Tx for p is the
linear operator on F(X) defined as

D(fp)
P
Note how E[Tx f(X)] =0 for all f € F(X).

Txf=



A CANONICAL STEIN DENSITY APPROACH

A canonical inverse



Assumption (invertibility) Suppose that there exists D! : im(D) —
dom(D) a linear operator such that

D(D'h) =h
for all h € im(D) and, for f € dom(D),
D~ (Df)
is defined up to addition with an element of ker(D).

Example 1 : D71f(-)= [ f

Example 2 : (AT)"1f()=Y"f



Definition 3 The (canonical) inverse Stein operator is

Proposition (Débler 12, Ley, Reinert, S. 15) Let X have mean
i and density p with respect to the Lebesgue measure satisfying
[assumptions]. Let

= T =ER2)
" T (- 1d)

Then
lgnll < |-



A CANONICAL STEIN DENSITY APPROACH

Identities



In the continuous case : for all f € F(X),
B[] = [ @@

NG O
- /g<> LB (@)

= —Elg(X)Txf(X)]

for all differentiable functions g such that
» [(g9fp)'dz =0, and
> f lg' fpldx < .
We collect all such g in a class dom((-), X, f).



Theorem 1 (Ley, Reinert and S. 2015) For all f € F(X)
E[Dg(X) f(X)] = —E[g(X) Tx f(X)]
for all g € dom(D, X, f).
Theorem 2 (Ley, Reinert and S. 2015) For all & with p mean 0
E [T 'h(X) D*g(X)] = ~E [9(X) h(X)]
for all g € dom(D, X, T 'h).

Theorem 3 (Ley, Reinert and S. 2015) Under reasonable as-
sumptions we can show that these relations characterize the law of
X either by fixing f or by fixing g.



A CANONICAL STEIN DENSITY APPROACH

Product rule and Stein equation



The Stein operator satisfies the product rule

Tx(fo(-+1) = D(fg(;rl)m

_ fD*nggD(;‘p)

= [fD*g+gTxf

so that
Tx(fg(-+1)) = fD*g+gTx f

with f € F(X) and g € dom(D, X, f).



The Stein equation becomes
h—Eh(X) = fD*g+ gTx f

whose solution (f,g) is a pair of functions f € F(X) and g €
dom(D, X, f).

To solve the Stein equation we can
» fix f € F(X) and choose g accordingly
> fix g € per(x) dom(D, X, f) and choose f accordingly
» let f and g vary simultaneously.



Note

All the structure of the problem is hidden within the definition of
the classes.

Requiring f € F(X) imposes many conditions if X has a complica-
ted distribution.

For example :
» in the exponential case we need f(0) =0;

» in the Laplace case we need f(z)e~1?! differentiable at 0.

In practice one seeks to construct operators whose expression does
not require any complicated assumptions on the test functions.



Example 1 : for X standard normal,

Ax(f,9)(@) = f(2)d () + (f'(z) — 2f(z))g(x)
and there are virtually no conditions on f or g.

> Take g =1 to get

Ax(f) = f'(z) — 2 f(2)

with no stringent condition on f
» Take f(x) = H,(x) then

Ax(g9) = Hn(2)g'(z) — Hnya(2)g()

with no stringent condition on g.



Example 2 : for X exponential

Ax(f,9) = f(2)g'(z) + (f'(z) - f(z))g(x)

with virtually no conditions on g and f € F(X).

» Take g =1 and f(z) = f(zx) — f(0) yielding
Ax(f) = f'(z) = f(x) + f(0)

with virtually no condition on f

» Take f(z) = x yielding

Ax(g9) = zg'(z) + (1 — x)g(z)

with virtually no condition on g.



Example 3 : for X Laplace
Ax(f,9) = f(z)g'(z) + (f'(z) — sign(z) f (z))g(x)
with virtually no conditions on g and f € F(X).
» Take g =1 and f(z) = % yielding
Ax(f) =z f"(x) +2f —af

with virtually no condition on f.

» Take f(z) = x yielding

Ax(9) = zg'(x) + (1 — |z[)g(x)

with virtually no condition on g.



A GENERAL COMPARISON RESULT



Let X; and X5 be two random variables with Stein construction
(7;>E>d0m(,DlaXla f))r 1= 172

Theorem (Ley, Reinert and S. 2015) We have

En(Xz2) —En(Xy) = E[f(Xz2)(Dig(Xz2) — D3g(X2))
+ 9(X2) (TLf(X2) — T2f(X2))] .

for all (f,g) € F1 x dom(D1, X1) such that T1(fg) = h —Eh(X1).

Remarks :
» D7 and D3 can be different !

» You can choose to fix g and optimize in f or the other way
around

> You can optimize the constants



Application 1 : Binomial approximation

Let X; ~ Bin(n,p) and Xy = > 1" | I; with I; ~ Bin(1,p;), i =
1,...,n, iid. and np =>"" | pi.

It is easy to show
7, (#) = (1 —p)z and 77,(x) = (1 — pi)z

also a variation on the score yields

np —x

D
pxi(a) = " and pr (@)

:pz’—ﬂc
1 —p;

Then (Ehm, 1991)

: 2/|gnllo )
|ER(X) — ER(W)| < min <|A+gh”ooa g f”p ) > " |pi — plps
=1



Application 2 : difference between Student and Gauss

Set X = Z standard Gaussian and X5 = W, a Student ¢ random
variable with v > 2 degrees of freedom.

We have )
<+ v
71 =1 and mp(z) = I
as well as a )
(1l +v
p1(x) = —z and pa(x) = B
which yields

>(1+u)/2

—2+8(L
4 T 14+v
< mi o

drv(Z,W,) < min ,,_2’\5(”_1)ﬁ3(u/2,1/2> ’



MULTIVARIATE EXTENSION



Consider

Fi(x) Fip(x)

Fy(x) Fp(x)
and define the differential D = div through

div(F) 2 v7 . F =

div(Fy) vT.F,

div(F1) vl Fy

Fig(x)

qu.(x)

d

OFy;
> Ba;
=1




Then we have the product rule
div(¢F) = ¢div(F) + F(Vo).
so that

D*

I
<

and everything follows.



Let X be a d-dimensional random vector with probability density
function (pdf) p : R? — R with respect to the Lebesgue measure
on R%. Let Q C R? be the support of p [with assumptions].

Definition 1 The (canonical) Stein class for X is the class F(X)
of all ¢ x d tensor fields F (for some ¢ > 1) for which pF is

» differentiable,

» div(pF) is component-wise integrable on 2
> [ div(pF) = 0.

Definition 2 The (canonical) Stein operator of X is the differential
operator

diV(pF).

Tx : F(X) = (RY*: F - TxF =



Application : multivariate Gaussian operators

Taking F = GV f with G a symmetric d X d matrix then

d
Axf = 0;(Gi0;f) + Z Gi;0; f
7,7=1 i,7=1
=V'- (GVf)+ Vf'GViogp
In particular, if p is the density of a Ny(0,X) random vector then
Viegp(z) = -% 1z
so that, taking G = %,

AXf Z Uljal]f f( )) xz.

3,j=1



Many authors have considered different standardizations of Tx F' :

>

Landsman and Neslehova and coauthors (2010 : 2014) in the
context of elliptical distributions;

Chatterjee and Meckes (2008) and Reinert and Réllin (2009)
for multivariate normal

Brown et al. (2006) in the context of the heat equation
Peccati et al. (2014 : 2015) specifically via Stein matrices

Artstein et al. (2004 : 2014) with variational considerations in
mind.
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