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Abstract (Client) View

» Operations are considered to be atomic
* [Thread executions are interleaved
» Executions satisfy sequential specitications

Push(1) Pop(0) Empty(true)
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A “simple” implementation: Coarse-grain Locking

e Jake a seqguential iImplementation
* Lock at the beginning, unlock at the end of each method

 + Reference Implementation: simple to understand
- Low performances
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Allow parallelism between operations

Call Return

Push(1) Pop(0) Empty(true)

" Call Return

Fine-grain locking (Lock-free algorithms)

e Check interference and retry
e Use low-level synchronisation mechanisms (CAS)
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=fficient Concurrent Implementations

Allow parallelism between operations

Call Return

Push(1) Pop(0) Empty(true)

" Call Return

Fine-grain locking (Lock-free algorithms)

e Check interference and retry
e Use low-level synchronisation mechanisms (CAS)

Consistency ??



Observational Refinement

Specification:

Implementation Atomic Operations

For every Client,
Exec (Client [ Impl ]) is included in Exec (Client [ Spec ])
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Linearizability  [Herlihy, Wing, 1990]

For every
execution Push(0) Pop(1)
| - 1o
Find § z
Linearisation Points Push(1; Pop(0)  Empty(true)
A : i i - .
Match §
a valid sequence U U >0 - - -

Push(1) Push(0) Pop(0) Pop(1) Empty(true)

Push(0) _ e«

POp('l)
For every

history Y
Push(1) ® Empty(true)

Find a valid compatible total order



lIstories
History of a library execution e
H(e) = (O, label, <)

where

e O = Operations(e)
e label: O —> MxVxV
* < Is a partial order s.1.

01 <02 iff Return(O1) is before Call(O2) in e

c(push,1) r(push,tt) c(pop,-) c(pop,-) r(pop, 1) c(push,?2) r(push,tt) r(pop,2)

pop(2)
oush(1)
pop(1) @ push(2)
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Ls + lock/unlock at beginning/end of each method



Linearizability as a History Inclusion

Consider an abstract data structure,
let S be its sequential specification,
and let Ls be a sequential implementation of S,
.e., Ls satisfies S

Lc reference concurrent implementation =
Ls + lock/unlock at beginning/end of each method

Lemma:
H(Ls) is the set histories that are linearised to a sequence in S

Thm: L is linearisable wrt S iff H(L) is included in H(Ls)
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History Inclusion vs O

History Inclusion vs OR

R vs Linearizabllity

Thm: L1 refines L2 iff H(L1) is included in H(L2)

* (=>) Given hin H(L+), construct a client P, that imposes all the

happen-before constraints of h.

e (<=) Clients cannot distinguish executions with the same history.
(clients and libraries do not share variables)

OR vs Linearizability

Coro: L is linearisable w.r.t. S iff L refines Ls

since: L is linearisable w.r.t. S iff H(L) is included in H(Ls)
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Veritying Linearizability”

Reduction to State Reachability Checking?

e Reuse existing tools for Invariance/Reachability checking
e Complexity, Decidability

General Approach:

Given a library L and a specification S,
define a monitor M (+ designated bad states) s.t.
L is linearisable wrt S iff
L x M does not reach a bad state

Issue:

e The computational power of M?
e Size of M7
e |deally, finite-state, polynomial size, but ...



A Monitor for Linearizability

Given a specification: a state machine

Memory of the monitor

o Set of all possible linearizations
A linearization is represented as a palir:

e state of the specification
e set of pending (not yet linearised) methods

Actions of the monitor

* Observe calls and returns: call —> pending —> return
 (Guess linearisation points for pending methods in each
linearisation (store expected return values by the spec.)

* (Checks that returns indeed match the specification
« Falil if all linearizations violate the specification



Checking Linearizability: Complexity

Given a specification: a state machine

Memory

o Set of all possible linearizations
 Alinearization is a pair:

e state of the specification
e set of pending (not yet linearised) methods

Fixed number of threads

o => EXPSPACE algorithm (see also [Alur, McMillan, Peled 96])
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Given a specification: a state machine

Memory

o Set of all possible linearizations
 Alinearization is a pair:

e state of the specification
e set of pending (not yet linearised) methods

Fixed number of threads
« => EXPSPACE algorithm (see also [Alur, McMillan, Peled 96])
o« EXPSPACE-hard problem [Hamza 2015]
» (Contrasts with State Reachability: PSPACE-complete
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Checking Linearizability: Complexity

Given a specification: a state machine

Memory

o Set of all possible linearizations
 Alinearization is a pair:

e state of the specification
e set of pending (not yet linearised) methods

Unbounded number of threads
e => Unbounded memory

 Undecidable problem [B., Emmi, Enea, Hamza 2013]
* (Contrasts with State Reachability: EXPSPACE-complete
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|ff
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Checking Linearizability: Undecidability

* Reduction of the reachability problem in 2-counter machines
* Given a Machine M, build a library Lm and a specification Sm

There is a computation of M reaching a state Qs
|ff
Lm is not linearisable w.r.t. Sm

M has methods Inc(i), Dec(i), Zero(i), and m(q)
 Encoding of a counter: a multi-set of parallel Inc’s and Dec’s
* Sm corresponds to “non acceptable” computations

* Zero(i) occurs when #Inc(i) = #Dec(i)
» State gris not reached (do not contain m(qy)

 Sm can be a regular language (particular order Inc’s and Dec’s)
e Checking linearizability => consider all orders
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Checking Linearizability: Common Approaches

Enumerate executions and linearizations (bug finding)
e.g. Line-up [Burckhardt et al. 2010]

Fixed linearization points in the code (verif. correctness)

e.q., [Vafeiadis, CAV'10], [B., Emmi, Enea, Hamza 2013],
[Abdulla et al., TACAS 2013]



-ixed Linearisation Points: Treiber Stack

void Push (int v) { int Pop () {
node *n, *t node *n,
node n = new node(v) do {
do { node *t = Top
node *t = Top if (t==NULL) return O
n.next =t n =t.next
} while (not CAS(&Top, t, n)) } while (not CAS(&Top, t, n))
} Int result = t.data

free (t)
return result



Checking Linearizability: Fixed Linearisation Points
|IB., Emmi, Enea, Hamza 2013]

e No need to guess linearisation points

e —> Monitor keeps track of only one linearisation

e | inearisation = state of the spec. + set of pending op.

e | inearisation point => Move the state of the spec. + record
the expected return value

e Return => check the value is conform to the spec.




Checking Linearizability: Fixed Linearisation Points
|IB., Emmi, Enea, Hamza 2013]

e No need to guess linearisation points

e —> Monitor keeps track of only one linearisation

e | inearisation = state of the spec. + set of pending op.

e | inearisation point => Move the state of the spec. + record
the expected return value

e Return => check the value is conform to the spec.

* Fixed number of FS threads, FS spec. : PSPACE-complete

 Unbounded number of FS threads, FS spec. :
* (Count the number of pending methods of each type
 => State reachability in VASS (Petri Nets): EXPSPACE-complete
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Checking Linearizability: Common Approaches

Enumerate executions and linearizas

e.g. Line-up [Burckhardt et a

ions (bug finding)

. 2010]

Scalability issues!

Fixed linearization points in the code (verif. correctness)

e.g., [Vateiadis, CAV'10], [B., Emmi, Enea, Hamza 2013],
[Abdulla et al., TACAS 2013]

Fixing linearisation points in not always possible!

e.q.,

Helping mechanisms based stacks/queues
Time-stamping based stack [Dodds, Haas, Kirsch, 2015]
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boolean Contains (int: x) Head

current := Head ; I

while current.val < x 5 'i\ ......... Jo7 Tl
current ;= current.next ;

return current.val = x /‘/' T

5 current
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Implementing a Set

e Operations: Add, Remove, Contains
e Representation: Sorted linked list

boolean Contains (int: x)
current := Head ;

while current.val < x
current ;= current.next ;

return current.val = x

Contains(7) |

current ;= current.next

Head

I

2

return(true)

[ | e
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Implementing a Set

e Operations: Add, Remove, Contains
e Representation: Sorted linked list

boolean Contains (int: x)
current := Head ;

while current.val < x
current ;= current.next ;

return current.val = x

Contains(7) |

current ;= current.next

Head

I

2

return(true)

[ | e

|

current



Implementing a Set

e Operations: Add, Remove, Contains
e Representation: Sorted linked list

boolean Contains (int: x) Head
current := Head ; I
while current.val < x 5 _
current := current.next ;
return current.val = x
current
“commit”
Remove(7)! &
return(true)
Contains(7) | o |

current ;= current.next




Implementing a Set

e Operations: Add, Remove, Contains
e Representation: Sorted linked list

boolean Contains (int: x) Head
current := Head : I \
while current.val < x 5 1
current ;= current.next ;
return current.val = x
current
“commit”
Remove(7)! s
| | return(true) | inearize before
Contains(7) | o |

current ;= current.next

Commit of Remove(7)



Fixed Linearisation Points + Read-Only Methods

* No need to guess linearisation points

e —> Monitor keeps track of only one linearisation

e | inearisation = state of the spec. + set of pending op.

® | inearisation point => Move the state of the spec. + record
the expected return value

e + Linearize all read-only methods returning false Betore

e + Linearize all read-only methods returning true After

e Return => check the value is conform to the spec.
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Summary

e Correctness of a concurrent library = Linearizability
* Checking linearizability is a complex problem

Fixed Lin. Points S
| Linearizability + tate
Linearizability Read-Only Reachability

Fixed

Nb Threads EXPSPACE-C (1) PSPACE-C (2 PSPACE-C

Unbounded Undecidable ) EXPSPACE-C o) | EXPSPACE-C
Nb of Threads

(1) Upper Bound: Alur, McMillan, Peled 1996 — Lower Bound: Hamza 2015
(2)B., Emmi, Enea, Hamza, 2013

* [ractable reductions to state state reachability?
* Avoid reasoning about linearisation points?



Tractable Linearizability Checking?
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Tractable Linearizability Checking?

Special classes of specifications (abstract structures)

Common structures: stacks, queues, registers, ...

Special classes of behaviours

e Suitable bounding concepts

« Parametrised under-approximation schemas
(bugs detection)

* (Good coverage, scalability?



—ocusing on a Class of Concurrent Objects
B, Emmi, Enea, Hamza, ICALP’15]

e (Consider a class of specifications including: stack, queue,
register, mutex.

 Characterizing the set of concurrent violations: A finite
number of “bad patterns” (ordered sets of operations that
should not be embedded in any correct execution)

 Defining finite-state automata recognising the set
executions that include one of the “bad patterns” (using a
data independence assumption)

 Linear reduction of /inearizability checking to state
reachability problem (using these automata as monitors.)

e Decidability for an unbounded number of FS threads.



Specitying gueues and stacks

Queue

e U.v:Q & u:ENQ* —> Enq(x).u.Deq(x).Vv:Q

e U.Vv:Q & nounmatched Enginu —> u.Emp.v:Q

Stack

e U.VvV:S & nounmatched Pushinu —>
Push(x) . u. Pop(x).Vv:S

e U.VvV:S & nounmatched Pushinu —>
u.Emp.v:S



Order Violation

FIFO violations: Deq(1)
| L

ret(Deqg(1)) < call(Eng(1))
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FIFO violations: Deq(1)
| e Ena()
ret(Deqg(1)) < call(Eng(1)) | |
| Eng(1) | | Deq(2)
1 Eng(1) ‘ Deq(1)
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Order Violation

FIFO violations: Deq(1)
' S Enq(t)
ret(Deqg(1)) < call(Eng(1)) | |
- Enq() lDeq(Z)l
1 Eng(1) ‘ Deq(1)

ret(Eng(1)) < call(Eng(2)) & ret(Deq(?2)) < call(Deqg(1))

* Regular Language over Call and Return events

* Only 3 different data values are needed



—mpty Violation

EMP

Pop1




—mpty Violation

EMP




Order Violation cont. (stack)

Pop,




Automaton for Empty Violation

| EMP |
| PUShl | | Popl |
| | PlIJShl | | | Pop, | |
| Push; | Pop; -
| | Push; | | | | PObl |
Recognized by:
25 25 2, 25
ret Push(1) A call EMP() % ret EMP()
— g0 >© g2 S
call Pop(1 ret Push(1
call Push(1) P(1) (1)

as 25



Automaton for Push-Pop Order Violation

| Push> Pop2

Pu5h1 Popl
PUShl ’Dopl

Recognized by:

23 23 23 23 23
call Push(2)-
& ret Push(2) Aret Push(l)% call Pop(2) % ret Pop(2)
— qi >% >® g2 >
call Push(1) call Pop(1) ret Push(1)

a3 23



Linearizabllity to State Reachability

Thm:

For each S in {Stack, Queue, Mutex, Register},
there is an automaton A(S) s.t.
for every data independent concurrent implementation L,
L is linearisable wrt S iff L intersected with A(S) is empty

Same complexity as state reachability



Under-approximate Analysis
B, Emmi, Enea, Hamza, POPL'15]

e Bounded information about computations
o Useful for efficient bug detection

* Bounding concept for detecting linearizability violations”
e Should offer good coverage, and scalability

e Interval-length bounded analysis

e Based on characterising linearizability as history inclusion
e Monitor uses counters

e Allows for symbolic encodings

e Efficient static and dynamic analysis




Linearizablility as a History Inclusion (Recall)

Consider an abstract data structure,
let S be its sequential specification,
and let Ls be a sequential implementation of S,
.e., Ls satisfies S

Lc reference concurrent implementation =
Ls + lock/unlock at beginning/end of each method

Lemma:
H(Lc) is the set histories that are linearised to a sequence in S

Thm: L is linearisable wrt S iff H(L) is included in H(Lc)



Abstracting Histories

Weakening relation

hi1 = h2 (hiis weaker than hy)
iff
hi has less constraints than hs



Abstracting Histories

Weakening relation

hi1 = h2 (hiis weaker than hy)
iff
hi has less constraints than ho

Lemma:
(hi=hz2and h2is in H(L)) ==> hiisin H(L)



Approximation Schema

Weakening function Ak, for any given k>0, s.t.
e Ax(h) < h
e Ao(h) < Ai(h)<Ash)<...<h
e Thereis a ks.t. h = Ax(h)



Approximation Schema

Weakening function Ak, for any given k>0, s.t.
e Ax(h) < h
e Ao(h) < Ai(h)<Ash)<...<h
e Thereis a ks.t. h = Ax(h)

Approximate History Inclusion Checking, for fixed k>0

e Given a library L and a specification S
e Check: Is there an h in H(L) s.t. Ak(h) is not in H(S)?
e Ax(h)is notin H(S) => his not in H(S) — Violation!



Histories are Interval Orders

Interval Orders = partial order (O, <) such that

(01 <01 and 02 < 02") implies (01 <02 or 02 <o0l’)

’0
*
‘0
*

’0
*
.0
*

‘0
*
‘0
*

Prop: For every execution e, H(e) is an interval order



Notion of Length

Let h = (O,<) be an Interval Order (history in our case)

e Past of an operation: past(o) = {0" : 0" < 0]
e | emma [Rabinovitch’78]:

The set {past(o) : o in O} is linearly ordered

* The length of the order = number of pasts - 1



Canonical Representation of Interval Orders

* Mapping | : O —> [n]2 where n = length(h) [Greenough '76]

e 1(0) = [i, i], wit

push(1)

. Pop(3) .

N1, | £ n, such that
| = |[{past(0’) : 0’ < 0}| and
j = |{past(0’) : not (0 < 0')}| - 1

pop(2)

pop(1) Epush(2)§p

ush(3)§




BSounded Interval-length Approximation

Let Ax maps each h to some h’ = h of length k

=> Keep precise the information about the k last intervals

push(1)

K=2

pop(3)

pop(3)
push(1)

pop(1) —% Push(3)—’P0P(2)

push(2)

épop(1) épush(Z)Epush(3)§

\




Counting Representation of Interval Orders

Count the number of occurrences
of each operation type in each interval

 h=(0, <)an |O with canonical representation |:0—>[k]?

* Associate a counter with each operation type and interval
* T1(h) is the Parikh image of h

* |t represents the multi-set { [label(o), [(0)] :0in O}

Prop: Hu(e) is in H(L) iff T[(Hx(e)) is in TT(Hk(L))



Reduction to Reachability with Counters

Hk(L) subset of Hk(S)
iff
TT(Hk(L)) subset of TT(H«(S))
Consider k-bounded-length abstract histories

Track histories of L using a finite number of counters

Use an arithmetic-based representation of T(H«(S))

TT(HK(S)) can be either computed, or given manually

Check that TT(Hk(S)) is an invariant



—xperimental Results: Coverage

100000

Histoires 1

Violations =
Covered w/ k=4 mm
Covered w/ k=3 =1
10000 | Covered w/ k=2 ——=
Covered w/ k=1 ——
Covered w/ k=0 ——

1000

100

10

Comparison of violations covered with k < 4

- Data point: Counts in logarithmic scale over all executions (up to 5 preemptions) on
Scal’s nonblocking bounded-reordering queue with =4 enqueue and =4 dequeue

* X-axis: increasing number of executions (1023-2359292)
- White: total number of unique histories over a given set of executions

- Black: violations detected by traditional linearizability checker (e.g., Line-up)



-Xperimental Results: Runtime Monitoring

1000
Linearization ]
Operation Counting 3
100
10
| M/J\v\

Comparison of runtime overhead
between Linearization-based monitoring and Operation counting

- Data point: runtime on logarithmic scale, normalised on unmonitored execution time
- Scal’s nonblocking Michael-Scott queue, 10 enqueue and 10 dequeue operations.
+ X-axis is ordered by increasing number of operations



Cxperimental Results: Static Analysis

Library Bug P K m n Time
Michael-Scott Queue B1 (head) 2x2 1 2 2 24.76s
Michael-Scott Queue B1 (tail) 3x1 1 2 3 45.44s
Treiber Stack B2 3x4 1 1 2 52.59s
Treiber Stack B3 (push) 2x2 1 1 2 24.46s
Treiber Stack B3 (pop) 2x2 1 1 2 15.16s
Elimination Stack B4 4x1 O 1 4 317.79s
Elimination Stack B5 3x1 1 1 4 222.04s
Elimination Stack B2 3x4 O 1 2 434.84s
Lock-coupling Set B6 1x2 O 2 2 11.27s
LFDS Queue B7 2x2 1 1 2 77.00s

- Static detection of injected refinement violations with CSeq & CBMC.

- Program Pij with i and j invocations to the push and pop methods, explore n-round
round-robin schedules with m loop iterations unrolled, with monitor for Ak.

-+ Bugs: (B1) non-atomic lock, (B2) ABA bug, (B3) non-atomic CAS operation, (B4)
misplaced brace, (B5) forgotten assignment, (B6) misplaced



Conclusion

e Linearizability checking is hard/undecidable in general
o But tractable reductions to state reachability are possible

e Consider relevant classes of concurrent objects:

e Covers common structures such as stacks and queues
e Finite-state monitor: Linear reduction to state reachability
* Decidability for unbounded number of threads

e Consider relevant types executions:

 Bounding principle based on an abstraction of histories

* Monitor: Counter machine

e Use symbolic techniques => Static and dynamic analysis
* (G00d coverage, scalable monitoring



Some future work

e Extend the first approach to other structures, e.g., sets.
e Specification language+systematic construction of monitors.

e Combine our approach with providing linearisation policies
[Abdulla et al., TACAS'13, SAS'16



Some future work

e Extend the first approach to other structures, e.g., sets.

e Specification language+systematic construction of monitors.

e Combine our approach with providing linearisation policies
[Abdulla et al., TACAS'13, SAS’'16

e Extend it to distributed (replicated) data structures

Weaker consistency notions are needed:
Eventual consistency, causal consistency, etc.

* Eventual consistency —> Reachabillity, Model-checking
|B., Enea, Hamza, POPL'14]

* Causal consistency 7
[Recent work for the Read-Write memory/Key-value store]



