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Concurrent Data Structures
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Abstract (Client) View
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Abstract (Client) View

• Operations are considered to be atomic 
• Thread executions are interleaved 
• Executions satisfy sequential specifications

Push(1) Pop(0)Push(0) Pop(1) Empty(true)

• + Reference Implementation: simple to understand 
• -  Low performances

A “simple” implementation: Coarse-grain Locking
• Take a sequential implementation 
• Lock at the beginning, unlock at the end of each method
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Efficient Concurrent Implementations

Allow parallelism between operations 

Fine-grain locking (Lock-free algorithms)
• Check interference and retry 
• Use low-level synchronisation mechanisms (CAS)
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Treiber’s Stack

void Push (int v) {
node *n, *t
node n = new node(v)
do {

node *t = Top
n.next = t

} while (not CAS(&Top, t, n))
}

Top
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Treiber’s Stack

int Pop () {
node *n, *t
do {

node *t = Top
if (t==NULL) return Ø 
n = t.next

} while (not CAS(&Top, t, n))
int result = t.data
free (t)
return result

}

Top

n

result = d
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Efficient Concurrent Implementations

Allow parallelism between operations 

Fine-grain locking (Lock-free algorithms)
• Check interference and retry 
• Use low-level synchronisation mechanisms (CAS)

Consistency ??
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Observational Refinement

Client Client

For every Client,  
Exec (Client [ Impl ]) is included in Exec (Client [ Spec ])

Implementation Specification: 
Atomic Operations
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Push(0) Pop(1)

Push(1) Pop(0) Empty(true)

[Herlihy, Wing, 1990]
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For every 
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Histories
History of a library execution e :  

O1 < O2   iff   Return(O1)  is before  Call(O2) in e 

H(e) = (O, label, <) 
where 

• O = Operations(e) 
• label: O —> M x V x V  
• < is a partial order s.t.

c(push,1) r(push,tt) c(pop,-) c(pop,-) r(pop,1) c(push,2) r(push,tt) r(pop,2) 

push(1)
pop(2)

pop(1) push(2)



Linearizability as a History Inclusion

LC reference concurrent implementation  = 
LS + lock/unlock at beginning/end of each method

Consider an abstract data structure,  
let S be its sequential specification,  

and let LS be a sequential implementation of S,  
i.e., LS satisfies S



Linearizability as a History Inclusion

Thm: L is linearisable wrt S  iff  H(L) is included in H(LS) 

Consider an abstract data structure,  
let S be its sequential specification,  

and let LS be a sequential implementation of S,  
i.e., LS satisfies S

LC reference concurrent implementation  = 
LS + lock/unlock at beginning/end of each method

Lemma:  
H(LS) is the set histories that are linearised to a sequence in S
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History Inclusion  vs  OR  vs  Linearizability

OR vs Linearizability

Coro: L is linearisable w.r.t. S  iff  L refines LS 

• (=>) Given h in H(L1), construct a client Ph that imposes all the 
happen-before constraints of h. 

• (<=) Clients cannot distinguish executions with the same history. 
           (clients and libraries do not share variables)

History Inclusion vs OR
Thm: L1 refines L2  iff  H(L1) is included in H(L2)

since: L is linearisable w.r.t. S  iff  H(L) is included in H(LS)  
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General Approach:
Given a library L and a specification S,  

define a monitor M (+ designated bad states) s.t.  
L is linearisable wrt S iff 

L x M does not reach a bad state
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Issue:
• The computational power of M?  
• Size of M? 
• Ideally, finite-state, polynomial size, but …

         Verifying Linearizability?

General Approach:
Given a library L and a specification S,  

define a monitor M (+ designated bad states) s.t.  
L is linearisable wrt S iff 

L x M does not reach a bad state

• Reuse existing tools for Invariance/Reachability checking   
• Complexity, Decidability
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A Monitor for Linearizability 

• Set of all possible linearizations 
• A linearization is represented as a pair:

Memory of the monitor

Given a specification: a state machine

Actions of the monitor
• Observe calls and returns: call —> pending —> return 
• Guess linearisation points for pending methods in each 

linearisation (store expected return values by the spec.)  
• Checks that returns indeed match the specification 
• Fail if all linearizations violate the specification

• state of the specification 
• set of pending (not yet linearised) methods



Checking Linearizability: Complexity 

• Set of all possible linearizations 
• A linearization is a pair:

Memory
Given a specification: a state machine

• state of the specification 
• set of pending (not yet linearised) methods

Fixed number of threads
• => EXPSPACE algorithm (see also [Alur, McMillan, Peled 96]) 
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• Undecidable problem [B., Emmi, Enea, Hamza 2013] 
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Checking Linearizability: Undecidability 

• Reduction of the reachability problem in 2-counter machines 
• Given a Machine M, build a library LM and a specification SM

There is a computation of M reaching a state qf  
iff  

LM is not linearisable w.r.t. SM

• M has methods Inc(i), Dec(i), Zero(i), and m(q)
• Encoding of a counter: a multi-set of parallel Inc’s and Dec’s 
• SM corresponds to “non acceptable” computations

• Zero(i) occurs when #Inc(i) ≠ #Dec(i) 
• State qf is not reached (do not contain m(qf)

• SM can be a regular language (particular order Inc’s and Dec’s) 
• Checking linearizability => consider all orders
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Fixed Linearisation Points: Treiber Stack

void Push (int v) {
node *n, *t
node n = new node(v)
do {

node *t = Top
n.next = t

} while (not CAS(&Top, t, n))
}

int Pop () {
node *n, *t
do {

node *t = Top
if (t==NULL) return Ø 
n = t.next

} while (not CAS(&Top, t, n))
int result = t.data
free (t)
return result

}



Checking Linearizability: Fixed Linearisation Points 
[B., Emmi, Enea, Hamza 2013]

• No need to guess linearisation points 
• => Monitor keeps track of only one linearisation 
• Linearisation = state of the spec. + set of pending op. 
• Linearisation point => Move the state of the spec. + record 

the expected return value 
• Return => check the value is conform to the spec.
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• => Monitor keeps track of only one linearisation 
• Linearisation = state of the spec. + set of pending op. 
• Linearisation point => Move the state of the spec. + record 

the expected return value 
• Return => check the value is conform to the spec.

• Unbounded number of FS threads, FS spec. : 
• Count the number of pending methods of each type 
• => State reachability in VASS (Petri Nets): EXPSPACE-complete 

• Fixed number of FS threads, FS spec. :  PSPACE-complete

[B., Emmi, Enea, Hamza 2013]
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Checking Linearizability: Common Approaches 

Enumerate executions and linearizations (bug finding) 
e.g. Line-up [Burckhardt et al. 2010] 

e.g., [Vafeiadis, CAV’10], [B., Emmi, Enea, Hamza 2013], 
[Abdulla et al., TACAS 2013]

Fixed linearization points in the code (verif. correctness) 

Scalability issues! 

Fixing linearisation points in not always possible! 
e.g.,  

Helping mechanisms based stacks/queues 
Time-stamping based stack [Dodds, Haas, Kirsch, 2015]
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Implementing a Set
• Operations: Add, Remove, Contains 
• Representation: Sorted linked list

boolean Contains (int: x)
current := Head ;
while current.val < x

current := current.next ;
return current.val = x

Head

2 7

Contains(7)
current := current.next

return(true)

current

Linearize before 
Commit of Remove(7)



Fixed Linearisation Points + Read-Only Methods

• No need to guess linearisation points 
• => Monitor keeps track of only one linearisation 
• Linearisation = state of the spec. + set of pending op. 
• Linearisation point => Move the state of the spec. + record 

the expected return value 
• + Linearize all read-only methods returning false Before 
• + Linearize all read-only methods returning true After 
• Return => check the value is conform to the spec.
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Summary

(1) Upper Bound: Alur, McMillan, Peled 1996 — Lower Bound: Hamza 2015 
(2) B., Emmi, Enea, Hamza, 2013

• Tractable reductions to state state reachability? 
• Avoid reasoning about linearisation points?
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• Correctness of a concurrent library = Linearizability
• Checking linearizability is a complex problem
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• => Stronger correctness criteria  than linearizability  
• => Sound verification approach for linearizability

Special classes of specifications (abstract structures)
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Special classes of behaviours
• Suitable bounding concepts  
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(bugs detection) 
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Focusing on a Class of Concurrent Objects

• Consider a class of specifications including: stack, queue, 
register, mutex.  

• Characterizing the set of concurrent violations: A finite 
number of “bad patterns” (ordered sets of operations that 
should not be embedded in any correct execution) 

• Defining finite-state automata recognising the set 
executions that include one of the “bad patterns” (using a 
data independence assumption) 

• Linear reduction of linearizability checking to state 
reachability problem (using these automata as monitors.)  

• Decidability for an unbounded number of FS threads. 

[B, Emmi, Enea, Hamza, ICALP’15]



Specifying queues and stacks

• u . v : Q  &  u : ENQ*  —>  Enq(x) . u . Deq(x) . v : Q 

• u . v : Q  &  no unmatched Enq in u  —>  u . Emp . v : Q

• u . v : S  &  no unmatched Push in u  —>  
Push(x) . u . Pop(x) . v : S 

• u . v : S  &  no unmatched Push in u  —>      
u . Emp . v : S

Queue

Stack



Order Violation
FIFO violations:

Enq(1)
Deq(1)

ret(Deq(1)) < call(Enq(1))
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Order Violation

ret(Enq(1)) < call(Enq(2))   &   ret(Deq(2)) < call(Deq(1))

FIFO violations:
Enq(1)

Deq(1)

Enq(1) Deq(2)

Deq(1)Enq(1)

ret(Deq(1)) < call(Enq(1))

• Regular Language over Call and Return events 
• Only 3 different data values are needed



Empty Violation

EMP

Push1

Pop1



Empty ViolationIntroduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

EMP

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0 q1 q2

q3

q4

⌃2 ⌃2 ⌃2

⌃2

⌃2

call Push(1)

ret Push(1) call EMP() ret EMP()

ret Push(1)call Pop(1)

14 / 17



Order Violation cont. (stack)Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

Push2 Pop2

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0q

i

q1 q2

q3

q4

⌃3 ⌃3 ⌃3 ⌃3

⌃3

⌃3

call Push(1)

call Push(2)·
ret Push(2) ret Push(1) call Pop(2) ret Pop(2)

ret Push(1)call Pop(1)

15 / 17



Automaton for Empty Violation
Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata
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Automaton for Push-Pop Order Violation
Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

Push2 Pop2

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0q

i

q1 q2

q3

q4

⌃3 ⌃3 ⌃3 ⌃3

⌃3

⌃3

call Push(1)

call Push(2)·
ret Push(2) ret Push(1) call Pop(2) ret Pop(2)

ret Push(1)call Pop(1)

15 / 17



Linearizability to State Reachability

For each S in {Stack, Queue, Mutex, Register},  
there is an automaton A(S) s.t.  

for every data independent concurrent implementation L,  
L is linearisable wrt S  iff  L intersected with A(S) is empty

Thm:

Same complexity as state reachability



Under-approximate Analysis

• Bounding concept for detecting linearizability violations? 
• Should offer good coverage, and scalability

• Interval-length bounded analysis 
• Based on characterising linearizability as history inclusion 
• Monitor uses counters 
• Allows for symbolic encodings  
• Efficient static and dynamic analysis

[B, Emmi, Enea, Hamza, POPL’15]

• Bounded information about computations 
• Useful for efficient bug detection



Linearizability as a History Inclusion (Recall)

Thm: L is linearisable wrt S  iff  H(L) is included in H(LC) 

Consider an abstract data structure,  
let S be its sequential specification,  

and let LS be a sequential implementation of S,  
i.e., LS satisfies S

LC reference concurrent implementation  = 
LS + lock/unlock at beginning/end of each method

Lemma:  
H(LC) is the set histories that are linearised to a sequence in S



Abstracting Histories

h1 ≤ h2  (h1 is weaker than h2)  
iff   

h1  has less constraints than  h2 

Weakening relation



Abstracting Histories

h1 ≤ h2  (h1 is weaker than h2)  
iff   

h1  has less constraints than  h2 

(h1 ≤ h2 and h2 is in H(L))  ==>  h1 is in H(L)
Lemma:

Weakening relation



• Ak(h) ≤ h 
• A0(h) ≤ A1(h) ≤ A2(h) ≤ … ≤ h 
• There is a k s.t. h = Ak(h)

Weakening function Ak, for any given k≥0,  s.t.

Approximation Schema



• Ak(h) ≤ h 
• A0(h) ≤ A1(h) ≤ A2(h) ≤ … ≤ h 
• There is a k s.t. h = Ak(h)

• Given a library L and a specification S  

• Check: Is there an h in H(L) s.t. Ak(h) is not in H(S)? 
• Ak(h) is not in H(S) => h is not in H(S) — Violation!

Approximate History Inclusion Checking, for fixed k≥0

Weakening function Ak, for any given k≥0,  s.t.

Approximation Schema



Prop: For every execution e, H(e) is an interval order

Interval Orders = partial order (O, <) such that
(o1 < o1’  and o2 < o2’)  implies  (o1 < o2’  or  o2 < o1’)

Histories are Interval Orders



Notion of Length

Let h = (O,<) be an Interval Order (history in our case) 

• Past of an operation: past(o) = {o’ : o’ < o} 
• Lemma [Rabinovitch’78]: 
  The set {past(o) : o in O} is linearly ordered 

• The length of the order = number of pasts - 1



• Mapping I : O —> [n]2 where n = length(h) [Greenough ’76] 
• I(o) = [i, j], with i, j ≤ n, such that

i = |{past(o’) : o’ < o}|  and   
j = |{past(o’) : not (o < o’)}| - 1 

Canonical Representation of Interval Orders

push(1)

pop(1) push(2) push(3)

pop(3)

pop(2)
I(push(1)) = [0, 0] 
I(pop(1)) = [1, 1] 
I(push(2)) = [2, 2]
I(push(3) = [3, 3] 
I(pop(3)) = [1, 3] 
I(pop(2)) = [4, 4]

0 1 2 3 4
length = 4



Let Ak maps each h to some h’ ≤ h of length k
=> Keep precise the information about the k last intervals

Bounded Interval-length Approximation

push(1)

pop(1) push(2) push(3)

pop(3)

pop(2)

push(3) pop(2)
push(2)
pop(1)

pop(3)
push(1)

K=2

I(push(1)) = [0, 0] 
I(pop(1)) = [0, 0] 
I(push(2)) = [0, 0]
I(push(3) = [1, 1] 
I(pop(3)) = [0, 1] 
I(pop(2)) = [2, 2]



Counting Representation of Interval Orders

Count the number of occurrences 
of each operation type in each interval

• h = (O, <) an IO with canonical representation I:O—>[k]2 
• Associate a counter with each operation type and interval   
• ∏(h) is the Parikh image of h 
• It represents the multi-set  { [label(o), I(o)] : o in O }

Prop:  Hk(e) is in Hk(L)  iff  ∏(Hk(e)) is in ∏(Hk(L)) 



Reduction to Reachability with Counters

Hk(L) subset of Hk(S) 
iff

∏(Hk(L)) subset of ∏(Hk(S))

• Consider k-bounded-length abstract histories  

• Track histories of L using a finite number of counters

• Use an arithmetic-based representation of  ∏(Hk(S)) 

• ∏(Hk(S)) can be either computed, or given manually 

• Check that ∏(Hk(S)) is an invariant 



Experimental Results: Coverage

 1

 10

 100

 1000

 10000

 100000
Histoires

Violations
Covered w/ k=4
Covered w/ k=3
Covered w/ k=2
Covered w/ k=1
Covered w/ k=0

• Data point: Counts in logarithmic scale over all executions (up to 5 preemptions) on 
Scal’s nonblocking bounded-reordering queue with ≤4 enqueue and ≤4 dequeue

• x-axis: increasing number of executions (1023-2359292)
• White: total number of unique histories over a given set of executions
• Black: violations detected by traditional linearizability checker (e.g., Line-up)

Comparison of violations covered with k ≤ 4



Experimental Results: Runtime Monitoring

 1

 10

 100

 1000
Linearization

Operation Counting

Comparison of runtime overhead  
between Linearization-based monitoring and Operation counting

• Data point: runtime on logarithmic scale, normalised on unmonitored execution time
• Scal’s nonblocking Michael-Scott queue, 10 enqueue and 10 dequeue operations.
• x-axis is ordered by increasing number of operations



Experimental Results: Static Analysis

Library Bug P k m n Time
Michael-Scott Queue B1 (head) 2x2 1 2 2 24.76s
Michael-Scott Queue B1 (tail) 3x1 1 2 3 45.44s
Treiber Stack B2 3x4 1 1 2 52.59s
Treiber Stack B3 (push) 2x2 1 1 2 24.46s
Treiber Stack B3 (pop) 2x2 1 1 2 15.16s
Elimination Stack B4 4x1 0 1 4 317.79s
Elimination Stack B5 3x1 1 1 4 222.04s
Elimination Stack B2 3x4 0 1 2 434.84s
Lock-coupling Set B6 1x2 0 2 2 11.27s
LFDS Queue B7 2x2 1 1 2 77.00s

• Static detection of injected refinement violations with CSeq & CBMC. 
• Program Pij with i and j invocations to the push and pop methods, explore n-round 

round-robin schedules with m loop iterations unrolled, with monitor for Ak.
• Bugs: (B1) non-atomic lock, (B2) ABA bug, (B3) non-atomic CAS operation, (B4) 

misplaced brace, (B5) forgotten assignment, (B6) misplaced



Conclusion

• Linearizability checking is hard/undecidable in general 

• But tractable reductions to state reachability are possible 

• Consider relevant classes of concurrent objects: 

• Consider relevant types executions:
•  Bounding principle based on an abstraction of histories 
•  Monitor: Counter machine 
•  Use symbolic techniques => Static and dynamic analysis 
•  Good coverage, scalable monitoring

•  Covers common structures such as stacks and queues 
•  Finite-state monitor: Linear reduction to state reachability 
•  Decidability for unbounded number of threads



Some future work

• Extend the first approach to other structures, e.g., sets. 
• Specification language+systematic construction of monitors.  
• Combine our approach with providing linearisation policies 

• Extend it to distributed (replicated) data structures  

[Abdulla et al., TACAS’13, SAS’16



Some future work

• Extend the first approach to other structures, e.g., sets. 
• Specification language+systematic construction of monitors.  
• Combine our approach with providing linearisation policies 

• Extend it to distributed (replicated) data structures  
Weaker consistency notions are needed: 

Eventual consistency, causal consistency, etc.

[Abdulla et al., TACAS’13, SAS’16

[B., Enea, Hamza, POPL’14]
•  Eventual consistency —> Reachability, Model-checking 

•  Causal consistency ?
[Recent work for the Read-Write memory/Key-value store] 


