
Verification of parameterized shared-memory
asynchronous systems

Joint work with: M. Fortin, S. LaTorre, I. Walukiewicz

Anca Muscholl
LaBRI, Bordeaux University

IAS, TU Munich

Model: asynchronous, shared memory

… …

…
… …

Reg

…

leader

contributors

Hague, 2011 Esparza, Ganty, Majumdar, 2013
Durand-Gasselin, Esparza, Ganty, Majumdar, 2015

Model: asynchronous, shared memory

… …

…
… …

Reg

…

leader D

contributors C

Register: lock-free reads/writes

Esparza, Ganty, Majumdar, 2013
Durand-Gasselin, Esparza, Ganty, Majumdar,2015Hague, 2011

(C,D)-systems

… …

…
… … …… … … … …

Leader and contributors are pushdown processes.

Contributors do not have identities.

With locks: a unique contributor can be distinguished.

With only one contributor: leader+contributor can simulate a Turing machine.

Without locks and with an arbitrary number of contributors: the model becomes
surprisingly manageable.

Register: lock-free reads/writes

 Parametrization as powerful abstraction (Kahlon, 2008)

(C,D)-systems

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

where

Multiset semantics of (C,D)-systems

leadercontributor

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

where

t

g

s1
...

si
...

sn

t′

g′

s1
...

si
...

sn

t′

g′′

s′1
...

si
...

sn

t′

g′′′

s′1
...

s′i
...

sn

a

b

c

2

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

C,D may be infinite-state

Transition systems C and D need not to be finite.

In our case they are given by pushdown systems:

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

AC = ⟨P,ΣC ,ΓC , δ, pinit, A
C
init⟩ AD = ⟨Q,ΣD,ΓD,∆, qinit, A

D
init⟩ .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

AC = ⟨P,ΣC ,ΓC , δ, pinit, A
C
init⟩ AD = ⟨Q,ΣD,ΓD,∆, qinit, A

D
init⟩ .

So S = {qα : q ∈ P,α ∈ Γ∗
C}

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

leadercontributor

… …

…
… … …… … … … …

Every contributor proposes a value

Leader chooses one of these values

The rest of the protocol uses the
chosen value

Leader eventually decides on a value

If the leader decides on a value, 
contributors use only this value

On runs where only one value is used i.o. 
the protocol is correct

Example of system: Example of properties:
(for every n, for every run)

Example properties:
(for every n, for every run)

… …

…
… … …… … … … …

Contributors proposes values.

Leader chooses one of these values.

The rest of the protocol uses the

chosen value.

Example of a system:

reachability

Leader eventually decides on a value

If the leader decides on a value, 

contributors use only this value.

On runs where only one value is used i.o. 

the protocol is correct

There is a run where the leader has decided on some value and afterwards a
contributor uses a different value.

Example properties:
(for every n, for every run)

… …

…
… … …… … … … …

Example of a system:

reachability

Leader eventually decides on a value

If the leader decides on a value, 

contributors use only this value.

On runs where only one value is used i.o. 

the protocol is correctsafety

There is a maximal run where the leader does not decide on any value.

Contributors proposes values.

Leader chooses one of these values.

The rest of the protocol uses the

chosen value.

Example properties:
(for every n, for every run)

… …

…
… … …… … … … …

Example of a system:

reachability

safe run

repeated reachability

Leader eventually decides on a value

If the leader decides on a value, 

contributors use only this value.

On runs where only one value is used i.o. 

the protocol is correct

Contributors proposes values.

Leader chooses one of these values.

The rest of the protocol uses the

chosen value.

(C,D)-systems

Reachability

Repeated reachability

Safety

Verification of properties

PSPACE-complete for pushdowns

Almost always decidable

Hierarchical (C,D)-systems

PSPACE-complete for pushdowns

NEXPTIME-complete for pushdowns

PSPACE-complete if only about infinite runs

C-stutter-expanding properties

Nexpctime-Comple

(C,D)-systems

Reachability

Repeated reachability

Safety

Verification of properties

PSPACE-complete for pushdowns

Almost always decidable

Hierarchical (C,D)-systems

PSPACE-complete for pushdowns

NEXPTIME-complete for pushdowns

PSPACE-complete if only about infinite runs

C-stutter-expanding properties

Nexpctime-Comple

We are interested in the complexity of

deciding these properties when

C, D are pushdown systems.

(C,D)-systems

Reachability

Repeated reachability

Safety

Verification of properties

PSPACE-complete for pushdowns

Almost always decidable

Hierarchical (C,D)-systems

PSPACE-complete for pushdowns

NEXPTIME-complete for pushdowns

PSPACE-complete if only about infinite runs

C-stutter-expanding properties

Nexpctime-Comple

Reachability in (C,D)-systems

Fact
When C and D are pushdown systems and n is known, the problem is undecidable.

… …

…
… … …… … … … …

Given a leader D from some class of systems D and a contributor C from some
class C, is there some integer n such that D, together with n copies of C, writes a
particular value into the register along some run?

Reachability in (C,D)-systems

Thm [Hague, Esparza et al. 2013]

When C and D are pushdown systems then the reachability problem is decidable
(PSPACE-complete). If C is finite-state systems, the problem is NP-complete.

… …

…
… … …… … … … …

Given a leader D from some class of systems D and a contributor C from some
class C, is there some integer n such that D, together with n copies of C, writes a
particular value into the register along some run?

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

Accumulator semantics

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

B
a−→ B′ in δ if s a−→ s′ in δ and B′ = B ∪ {s′}, for some s, s′ ∈ S.

(B, t, g)
w(h)−−−→(B, t′, h) if t w(h)−−−→ t′ in ∆ ,

(B, t, g)
r(h)−−→(B, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(B, t, g)
w̄(h)−−−→(B′, t, h) if B w̄(h)−−−→ B′ in δ ,

(B, t, g)
r̄(h)−−→(B′, t, h) if B r̄(h)−−→ B′ in δ and h = g .

AC = ⟨P,ΣC ,ΓC , δ, pinit, A
C
init⟩ AD = ⟨Q,ΣD,ΓD,∆, qinit, A

D
init⟩ .

So S = {qα : q ∈ P,α ∈ Γ∗
C}

A1,1, A1,1, A1,2, A1,2, . . . , A1,2n , A1,2n , . . . , A2n,2n A2n,2n ($$)2
n ⋄ .

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

B
a−→ B′ in δ if s a−→ s′ in δ and B′ = B ∪ {s′}, for some s, s′ ∈ S.

(B, t, g)
w(h)−−−→(B, t′, h) if t w(h)−−−→ t′ in ∆ ,

(B, t, g)
r(h)−−→(B, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(B, t, g)
w̄(h)−−−→(B′, t, h) if B w̄(h)−−−→ B′ in δ ,

(B, t, g)
r̄(h)−−→(B′, t, h) if B r̄(h)−−→ B′ in δ and h = g .

AC = ⟨P,ΣC ,ΓC , δ, pinit, A
C
init⟩ AD = ⟨Q,ΣD,ΓD,∆, qinit, A

D
init⟩ .

So S = {qα : q ∈ P,α ∈ Γ∗
C}

A1,1, A1,1, A1,2, A1,2, . . . , A1,2n , A1,2n , . . . , A2n,2n A2n,2n ($$)2
n ⋄ .

1

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

B
a−→ B′ in δ if s a−→ s′ in δ and B′ = B ∪ {s′}, for some s, s′ ∈ S.

(B, t, g)
w(h)−−−→(B, t′, h) if t w(h)−−−→ t′ in ∆ ,

(B, t, g)
r(h)−−→(B, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(B, t, g)
w̄(h)−−−→(B′, t, h) if B w̄(h)−−−→ B′ in δ ,

(B, t, g)
r̄(h)−−→(B′, t, h) if B r̄(h)−−→ B′ in δ and h = g .

B ⊆ S

AC = ⟨P,ΣC ,ΓC , δ, pinit, A
C
init⟩ AD = ⟨Q,ΣD,ΓD,∆, qinit, A

D
init⟩ .

So S = {qα : q ∈ P,α ∈ Γ∗
C}

1

t

g

s1
...

si
...

sn

t′

g′

s1
...

si
...

sn

t′

g′′

s′1
...

si
...

sn

t′

g′′′

s′1
...

s′i
...

sn

a

b

c

2

t

g

s1
...

si
...

sn

t′

g′

s1
...

si
...

sn

t′

g′′

s′1
...

si
...

sn

s′1

t′

g′′′

s′1
...

s′i
...

sn

s′1

s′i

a

b

c

2

Multiset

Accumulator

… …

…
… … …… … … … …

Let C and D be both effectively closed under synchronized product with finite-state
systems.

If C has a decidable reachability problem and D has effective downward closure, the
reachability for (C,D)-systems is decidable.

Thm [La Torre, M., Walukiewicz 2015]

C is effectively closed under synchronized product with finite-state systems:

given M from C and a finite automaton A, the synchronized product of M and A
belongs to C and can be effectively constructed.

D has effective downward closure:

given M from D, the finite automaton accepting all (scattered) subwords

of traces of M can be constructed effectively.

Let C and D be both effectively closed under synchronized product with finite-state
systems.

If C has a decidable reachability problem and D has effective downward closure, then
reachability for (C,D)-systems is decidable.

Thm

Effective downward closure:

❖ pushdown automata [Courcelle 1991]

❖ Petri nets [Habermehl et al. 2010]

❖ stacked counter automata [Zetzsche 2015]

❖ higher-order pushdown wo / with collapse  

[Hague, Kochems, Ong 2016] [Clemente, Parys, Salvati, Walukiewicz 2016]

Theorem applies to

leader: pushdown automata, Petri nets, decidable subclasses of multi-stack,
stacked counter automata.

contributors: any of the above, lossy channel systems,

hierarchical composition of (C,D)-systems.

… …

…
… … …

… … … … …

S. La Torre and A. Muscholl and I. Walukiewicz 3

Figure 2 Example of a hierarchical composition of (C, D)-systems, Pi are process types and

Ri are R/W registers. P0 is the leader D of a (C, D)-system whose contributors are themselves

(C, D)-systems each one with leader from P1 and contributors from P2.

references therein). Our hierarchical composition of (C, D)-systems is quite di�erent from
the models studied there. Namely, each process shares a finite memory with its children
processes and its parent process: all the interactions with the network neighbours are through
asynchronous accesses to such memories. As processes, we allow several classes of systems,
not just finite-state systems. On the other side, in our model there is no notion of global
transitions.

Organization of the paper. In Section 2, we give some basic definitions and introduce the notion
of (C, D)-system. In Section 3, the accumulator semantics is introduced and shown equivalent
to the standard semantics of (C, D)-systems. In Section 4, we give two constructions that
allow to decompose the semantics of (C, D)-systems into the parts concerning respectively
the leader and the contributors. In Section 5, these constructions are used to give a decision
algorithm that shows the main result of the paper. In Section 6, we use our approach to
study the computational complexity of the reachability for (C, D)-systems for the classes of
finite automata and pushdown automata. We conclude in Section 7 with a few remarks.

2 Preliminaries

We first define the parametrized systems that we consider, and their reachability problem.
These systems consist of one instance of a leader process D, and an arbitrary number of
instances of a contributor process C. Both C and D can be arbitrary, potentially infinite,
transition systems. One can think of them as transition systems generated by, for example,
pushdown automata, Petri nets, or lossy channel systems. Our decidability result will refer
to the closure properties of classes of transition systems over which C and D range.

A transition system is a graph with states and labelled edges. The labels of edges are
called actions. There may be infinitely many states in a transition system, but we will assume
that the set of actions is finite. A transition system will come with an initial state. A trace
is a sequence of actions labelling a path starting in the initial state. A word v is a subword
of u if it can be obtained form u by erasing letters.

The synchronized product of two transition systems is a system whose state set is the
product of the state sets of the two systems, and whose transitions are defined according
to the rule: for actions common to the two systems the transition should be synchronized,

leader and each subtree (C,D)-system is contributorP0

Hierarchical composition of
(C,D)-systems

(C,D)-systems

Reachability

Repeated reachability

Safety

Verification of properties

PSPACE-complete for pushdowns

Almost always decidable

Hierarchical (C,D)-systems

PSPACE-complete for pushdowns

NEXPTIME-complete for pushdowns

PSPACE-complete if only about infinite runs

C-stutter-expanding properties

Nexpctime-Comple

… …

…
… … …… … … … …

Repeated reachability in (C,D)-systems

Thm [Durand-Gasselin, Esparza, Ganty, Majumdar 2015]

When C and D are pushdown systems: the repeated reachability problem is PSPACE-
hard and in NEXPTIME.

Given a leader D from some class of systems D and a contributor C from some
class C, is there some integer n such that D, together with n copies of C, writes a
particular value into the register infinitely often along some run?

… …

…
… … …… … … … …

Thm [Fortin, M., Walukiewicz 2016]

When C and D are pushdown systems: the repeated reachability problem is PSPACE-
complete.

Repeated reachability in (C,D)-systems
Given a leader D from some class of systems D and a contributor C from some
class C, is there some integer n such that D, together with n copies of C, writes a
particular value into the register infinitely often along some run?

NEXPTIME (Esparza et al.): reduce the problem to C = NFA of exponential size by
bounding the stack

C1, C2

C1, C2 C1, C2

C1 C1
C2 C2 split C into C1 and C2

C:

The (C,D)-system has a live run iff there is some Büchi trace s.t. uv!

❖ leader pushdown has effective stack height 1 after each and
same (state, top of stack)

❖ multiset of contributor states is the same after each

uvk

uvk

Trace of D

v1 new(h1)v2 new(h2) · · · vk new(hk)vk+1

is omega-supported if for every there exists a loop of C1  j  k

such that vi = projection of ui on alphabet of D for every i

u1 new(h1)u2 · · ·uj new(hj)w(hj) · · · vk new(hk)uk+1

Separate leader D and contributor C according to the first writes of C:

Trace of D

new(h2)

new(h1)

new(h3)

new(h4)

omega-supported

For each j: contributor run rho(j) supporting new(hj).

Use (2n+1) copies of rho(j) to support all n reads of hj in the loop.

(C,D)-systems

Reachability

Repeated reachability

Safety

Verification of properties

PSPACE-complete for pushdowns

Almost always decidable

Hierarchical (C,D)-systems

PSPACE-complete for pushdowns

NEXPTIME-complete for pushdowns

PSPACE-complete if only about infinite runs

C-stutter-expanding properties

Nexpctime-Comple

… …

…
… … …… … … … …

Safety in (C,D)-systems

Thm
When C and D are pushdown systems then the safety problem is NEXPTIME-
complete.

Given a leader D from some class of systems D and a contributor C from some
class C, is there some integer n such that D, together with n copies of C, does not
write a particular value into the register along some maximal run?

Thm
If C and D are pushdown systems the safety problem is NEXPTIME-complete.

Thm
Let C and D be pushdown systems.

Knowing if there is some infinite safe run is PSPACE-complete.

Knowing if there is some maximal finite safe run is NEXPTIME-complete.

Thm

IfC is finite-state systems and D is pushdown systems the problems are NP-complete.

Set semantics

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

B
a−→ B′ in δ if s a−→ s′ in δ and B′ = B ∪ {s′}, for some s, s′ ∈ S.

(B, t, g)
w(h)−−−→(B, t′, h) if t w(h)−−−→ t′ in ∆ ,

(B, t, g)
r(h)−−→(B, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(B, t, g)
w̄(h)−−−→(B′, t, h) if B w̄(h)−−−→ B′ in δ ,

(B, t, g)
r̄(h)−−→(B′, t, h) if B r̄(h)−−→ B′ in δ and h = g .

B ⊆ S

AC = ⟨P,ΣC ,ΓC , δ, pinit, A
C
init⟩ AD = ⟨Q,ΣD,ΓD,∆, qinit, A

D
init⟩ .

So S = {qα : q ∈ P,α ∈ Γ∗
C}

1

The (C,D)-system has a finite, maximal run ending in configuration (M,t,g) in the
multiset semantics iff it has a finite, maximal run ending in (B,t,g) in the set
semantics, with B = support(M).

Marie Fortin, Anca Muscholl, and Igor Walukiewicz 9

Final step. As in the case of reachability, we show that DŸ can be replaced by a finite-state
system representing its downward closure, since adding some transitions of the leader does
not a�ect the support of contributors. This finite-state system will be synchronized with the
contributor automata witnessing support, yielding the Pspace algorithm.

I Lemma 11. Let v = v
1

‹(h
1

) · · · v
m

‹(h
m

)v
m+1

be Ê-supported from p
1

, . . . , p
m

, and let
v

j

ı v
j

for every j. Assume that v = v
1

‹(h
1

) · · · v
m

‹(h
m

)v
m+1

satisfies last(v) = last(v).
Then v is also Ê-supported from p

1

, . . . , p
m

.

I Theorem 12. The repeated reachability problem for (C, D)-systems is Pspace-complete
when C and D range over pushdown systems.

5 Max-safe problem

We show in this section that the max-safe problem is NP-complete when C ranges over
finite-state systems and D ranges over pushdown systems, and Nexptime-complete when
both C and D range over pushdown systems (Theorem 4).

We start by introducing a set semantics of (C, D)-systems, that replaces multisets by sets.
This semantics is suitable for the reachability and max-safe problems (but not for liveness).
We show that the max-safe problem is NP-complete when contributors are finite-state. Then
we consider the case of contributors given by a pushdown automaton. As for liveness we
can reduce this case to the case when contributors are finite-state. This gives a Nexptime

algorithm.

Set semantics. As a first step we will introduce the set semantics of (C, D)-systems that is
equivalent to the multiset semantics of Section 2 when only finite traces are considered. The
idea is that since the number of contributors is arbitrary, we can always add contributors
that copy all the actions of a given contributor. So once a state of C is reached, we can
assume that we have arbitrarily many copies of C in that state. In consequence, we can
replace multisets by sets. A very similar semantics has already been used in [21, 10]. Here
we need to be a bit finer in order to handle deadlocks.

Consider a (C, D)-system with the notations as in Eq. (1) on page 3:

C = ÈS, ”, sinitÍ D = ÈT, �, tinitÍ .

Instead of multisets M œ NS , we use sets B ™ S. As for multisets we lift the transitions
from elements to sets of elements:

B
a≠æ BÕ in ” if s

a≠æ sÕ in ”, and BÕ is either B fi {sÕ} or (B fi {sÕ}) \ {s}
for some s œ B.

The intuition is that B
a≠æ B fi {sÕ} represents the case where some contributors in state s

take the transition, and B
a≠æ (B fi {sÕ}) \ {s} corresponds to the case where all contributors

in state s take the transition. The transitions in the set semantics are essentially the same
as for the multiset case:

(B, t, g) w(h)≠≠≠æ(B, tÕ, h) if t
w(h)≠≠≠æ tÕ in �

(B, t, g) r(h)≠≠≠æ(B, tÕ, h) if t
r(h)≠≠≠æ tÕ in � and h = g

(B, t, g) w(h)≠≠≠æ(BÕ, t, h) if B
w(h)≠≠≠æ BÕ in ”

(B, t, g) r(h)≠≠≠æ(BÕ, t, h) if B
r(h)≠≠≠æ BÕ in ” and h = g

Marie Fortin, Anca Muscholl, and Igor Walukiewicz 9

Final step. As in the case of reachability, we show that DŸ can be replaced by a finite-state
system representing its downward closure, since adding some transitions of the leader does
not a�ect the support of contributors. This finite-state system will be synchronized with the
contributor automata witnessing support, yielding the Pspace algorithm.

I Lemma 11. Let v = v
1

‹(h
1

) · · · v
m

‹(h
m

)v
m+1

be Ê-supported from p
1

, . . . , p
m

, and let
v

j

ı v
j

for every j. Assume that v = v
1

‹(h
1

) · · · v
m

‹(h
m

)v
m+1

satisfies last(v) = last(v).
Then v is also Ê-supported from p

1

, . . . , p
m

.

I Theorem 12. The repeated reachability problem for (C, D)-systems is Pspace-complete
when C and D range over pushdown systems.

5 Max-safe problem

We show in this section that the max-safe problem is NP-complete when C ranges over
finite-state systems and D ranges over pushdown systems, and Nexptime-complete when
both C and D range over pushdown systems (Theorem 4).

We start by introducing a set semantics of (C, D)-systems, that replaces multisets by sets.
This semantics is suitable for the reachability and max-safe problems (but not for liveness).
We show that the max-safe problem is NP-complete when contributors are finite-state. Then
we consider the case of contributors given by a pushdown automaton. As for liveness we
can reduce this case to the case when contributors are finite-state. This gives a Nexptime

algorithm.

Set semantics. As a first step we will introduce the set semantics of (C, D)-systems that is
equivalent to the multiset semantics of Section 2 when only finite traces are considered. The
idea is that since the number of contributors is arbitrary, we can always add contributors
that copy all the actions of a given contributor. So once a state of C is reached, we can
assume that we have arbitrarily many copies of C in that state. In consequence, we can
replace multisets by sets. A very similar semantics has already been used in [21, 10]. Here
we need to be a bit finer in order to handle deadlocks.

Consider a (C, D)-system with the notations as in Eq. (1) on page 3:

C = ÈS, ”, sinitÍ D = ÈT, �, tinitÍ .

Instead of multisets M œ NS , we use sets B ™ S. As for multisets we lift the transitions
from elements to sets of elements:

B
a≠æ BÕ in ” if s

a≠æ sÕ in ”, and BÕ is either B fi {sÕ} or (B fi {sÕ}) \ {s}
for some s œ B.

The intuition is that B
a≠æ B fi {sÕ} represents the case where some contributors in state s

take the transition, and B
a≠æ (B fi {sÕ}) \ {s} corresponds to the case where all contributors

in state s take the transition. The transitions in the set semantics are essentially the same
as for the multiset case:

(B, t, g) w(h)≠≠≠æ(B, tÕ, h) if t
w(h)≠≠≠æ tÕ in �

(B, t, g) r(h)≠≠≠æ(B, tÕ, h) if t
r(h)≠≠≠æ tÕ in � and h = g

(B, t, g) w(h)≠≠≠æ(BÕ, t, h) if B
w(h)≠≠≠æ BÕ in ”

(B, t, g) r(h)≠≠≠æ(BÕ, t, h) if B
r(h)≠≠≠æ BÕ in ” and h = g

Prop
When C and D are pushdown systems, the existence of a maximal finite safe run is
NEXPTIME-hard.

Reduction from tiling problem:

Find a tiling with symbols from Σ of a 2nx2n square.

The tiling should respect neighborhood relations H,V⊆ΣxΣ.

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

AC = ⟨P,ΣC ,ΓC , δ, pinit, A
C
init⟩ AD = ⟨Q,ΣD,ΓD,∆, qinit, A

D
init⟩ .

So S = {qα : q ∈ P,α ∈ Γ∗
C}

A1,1, A1,1, A1,2, A1,2, . . . , A1,2n , A1,2n , . . . , A2n,2n A2n,2n ($$)2
n ⋄ .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

Leader writes:

and checks the horizontal dependencies.

Prop
When C and D are the class of pushdown systems then the existence of a maximal
finite safe run is NEXPTIME-hard.

Reduction from tiling problem:

Find a tiling with symbols from Σ of an 2nx2n square.

The tiling should respect neighborhood relations H,V⊆ΣxΣ.

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

C = ⟨S, δ ⊆ S × ΣC × S, sinit⟩ D = ⟨T,∆ ⊆ T × ΣD × T, tinit⟩ .

G: a finite set of register values

A configuration is (M, t, g), where M ∈ NS , t ∈ T , g ∈ G.

M
a−→ M ′ in δ if s a−→ s′ in δ and M ′ = M − [s] + [s′], for some s, s′ ∈ S.

(M, t, g)
w(h)−−−→(M, t′, h) if t w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−→(M, t′, h) if t r(h)−−→ t′ in ∆ and h = g ,

(M, t, g)
w̄(h)−−−→(M ′, t, h) if M w̄(h)−−−→ M ′ in δ ,

(M, t, g)
r̄(h)−−→(M ′, t, h) if M r̄(h)−−→ M ′ in δ and h = g .

AC = ⟨P,ΣC ,ΓC , δ, pinit, A
C
init⟩ AD = ⟨Q,ΣD,ΓD,∆, qinit, A

D
init⟩ .

So S = {qα : q ∈ P,α ∈ Γ∗
C}

A1,1, A1,1, A1,2, A1,2, . . . , A1,2n , A1,2n , . . . , A2n,2n A2n,2n ($$)2
n ⋄ .

Given a leader D from some class of systems D and contributors from some
class C, is there some value n such that D||C1|| . . . ||Cn write some particular
value into the register?

1

Leader writes:

and checks the horizontal dependencies.

Contributors check vertical dependencies, using counting.

Leader ensures that

every vertical dependency is checked by some contributor, and

inconsistencies lead to write an error value in the register

(C,D)-systems

Reachability

Repeated reachability

Safety

Verification of properties

PSPACE-complete for pushdowns

Almost always decidable

Hierarchical (C,D)-systems

PSPACE-complete for pushdowns

NEXPTIME-complete for pushdowns

PSPACE-complete if only about infinite runs

C-stutter-expanding properties

NEXPTIME-complete

… …

…
… … …… … … … …

A trace is a sequence of register operations during a run.

Maximal trace comes from a maximal run (finite or infinite).

A property of traces is P⊆(ΣD∪ΣC)∞

A property is C-stutter-expanding if it is closed under replicating contributor actions.

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

1

Verification of properties of (C,D)-systems
Given a C-stuttering-expanding property P. Given a leader D from some class of
systems D and a contributor C from some class C, is there some integer n such
that D, together with n copies of C, has a maximal trace in P?

All previously considered properties are special instances:

 reachability: P is the set of traces containing the special action.

 repeated reachability: P is the set of traces containing the special action infinitely often.

 safety: P is the set of traces without the special action.

Verification of properties of (C,D)-systems
Given a C-stuttering-expanding property P. Given a leader D from some class of
systems D and a contributor C from some class C, is there some integer n such
that D, together with n copies of C, has a maximal trace in P?

Rem: Verification of arbitrary regular properties is undecidable, as with a property
we can require that there is only one copy of a contributor.

Thm
When C and D are pushdown systems then the verification of regular properties of
(C,D)-systems is NEXPTIME-complete.

A property of traces is P⊆(ΣD∪ΣC)∞.

A property is C-stutter-expanding if it is closed under replicating actions of contributors.

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

1

Verification of properties of (C,D)-systems
Given a C-stuttering-expanding property P. Given a leader D from some class of
systems D and a contributor C from some class C, is there some integer n such
that D, together with n copies of C, has a maximal trace in P?

A property of traces is P⊆(ΣD∪ΣC)∞.

A property is C-stutter-expanding if it is closed under duplicating actions of contributors.

If x w̄(g) y ∈ P then x w̄(g)w̄(g) y ∈ P

1

The verification of C-stutter-expanding properties of (C,D)-systems reduces
to the verification of properties over leader actions.

Leader can keep a local copy of the register and simulate contributor actions:
action-requests from contributors are acknowledged by leader, information
flows through the register.

(C,D)-systems of pushdown process have very good algorithmic properties

Verification of C-stutter-expanding properties is decidable in NEXPTIME

For some relevant subclasses it is PSPACE.

NEXPTIME-hardness shows that they can exhibit a quite nontrivial behavior.
… …

…
… … …… … … … …

Changing from one to arbitrary many contributors turns the problem from
undecidable to manageable.

Conclusion

