Verification of parameterized shared-memory
asynchronous systems

Anca Muscholl

LaBRI, Bordeaux University
IAS, TU Munich

Joint work with: M. Fortin, S. LaTorre, |. Walukiewicz

Model: asynchronous, shared memory

Esparza, Ganty, Majumdar, 2013

gL Durand-Gasselin, Esparza, Ganty, Majumdar, 2015

leader

contributors

Model: asynchronous, shared memory
Esparza, Ganty, Majumdar, 2013

S, 20 Durand-Gasselin, Esparza, Ganty, Majumdar,2015
leader D
. D)-system
free readS/\NmeS : G,) sysieris
K- |
cter: \0©
RV/ I

contributors C

! (C,D)-systems

* |_eader and contributors are pushdown processes.

* Contributors do not have identities.

* With locks: a unique contributor can be distinguished.

* With only one contributor: leader+contributor can simulate a Turing machine.

* Without locks and with an arbitrary number of contributors: the model becomes
surprisingly manageable.

[Parametrization as powerful abstraction (Kahlon, 2008)]

Multiset semantics of (C,D)-systems

C:<S,5§SXZCXS,Sm,’t> DZ<T,A§T><ZD><T,tin,'t>.

contributor leader

(. a finite set of register values

A configuration is (M, t,g), where M ¢ N° t € T, g € G.

(M, t,9) 2 (0t) if ¢ 2 ¢ in A

(M,t,q) ﬂ(M,t’,h) if ¢ 2 inAand h =g,
(M, t,9) 2 (M ¢, b) it M 2 i

(M,t,g) ﬂ(M’,t,h) ifMﬂM’incSandh:g.
where

M35 Ming ifsSsindand M =M — [s] + [s'], forsome s,s" € S.

(M, £, q) 20, ¢ 1) if ¢ 2 ¢ in A

(M, ¢, 9) 25 (0a, ¢, B) it " v inAandh =g,

(3, 1, g) 225 (0 4, B) it M 2N i,

(M, ¢, g) 28 (M, 4, B) it M2 M ingandh=g.
where

M3 Mindg ifsSsindand M =M — [s] +[s'], forsome s,s" € S.

a
t t/ t/ t/
g g/ g// g///
b
S1 S1 51 S1
C /

C,D may be infinite-state

C'=(5,0CSx3c xS, st D=(T'ACTxXpxT, tpi -

contributor leader

Transition systems C and D need not to be finite.
In our case they are given by pushdown systems:

AC — <P7 EC) FC) 57 Pinits Agit> AD — <Q7 ED) FDa A) dinit, A/%it> .

SoS={gqa:q€ Pacl}}

Example of system:

* Every contributor proposes a value
* Leader chooses one of these values

* The rest of the protocol uses the
chosen value

Example of properties:
(for every n, for every run)

* |_eader eventually decides on a value

* |If the leader decides on a value,
contributors use only this value

* On runs where only one value is used i.o.
the protocol is correct

!

g

Example properties:
(for every n, for every run)

Example of a system:

* Contributors proposes values. .
Rrop * |eader eventually decides on a value

* Leader chooses one of these values. .

—p * |f the leader decides on a value,

* The rest of the protocol uses the . .

contributors use only this value.

chosen value.

* On runs where only one value is used i.o.

the protocol is correct

reachability [—

There is a run where the leader has decided on some value and afterwards a
contributor uses a different value.

!

i e

Example properties:

Example of a system: (for every n, for every run)

* Contributors proposes values. .

Rrop — * |_eader eventually decides on a value
* Leader chooses one of these values. .
— * |f the leader decides on a value,
* The rest of the protocol uses the . .
contributors use only this value.
chosen value.

* On runs where only one value is used i.o.

safety the protocol is correct

reachability —

There is a maximal run where the leader does not decide on any value.

!

. i

Example properties:
Example of a system: (for every n, for every run)

* Gontributors proposes values.

—> * | eader eventually decides on a value

* Leader chooses one of these values.
— * |f the leader decides on a value,

* The rest of the protocol uses the
contributors use only this value.

chosen value. | |
¥ * On runs where only one value is used i.o.

safe run|—

the protocol is correct

reachability —

repeated reachability |—

1 Reachability |

g ' Repeated reachability |
(C,D)-syst@
- Safety

. [Verification of properties

1 Reachability |

g ' Repeated reachability |
(C,D)-syst@
f
\ Safety
\ Verification of properties |

We are interested in the complexity of
deciding these properties when
C, D are pushdown systems.

e —

PSPACE-complete for pushdowns

/—[Reachability § Almost always decidable

Hierarchical (C,D)-systems

g ' Repeated reachability |-
(C,D)-syst@
- Safety

. [Verification of properties

.

Reachability in (C,D)-systems
Given a leader D from some class of systems @ and a contributor C from some

class (, is there some integer n such that D, together with n copies of C, writes a
particular value into the register along some run?

Fact

When (and @ are pushdown systems and n is known, the problem is undecidable.

D e

Reachability in (C,D)-systems
Given a leader D from some class of systems @ and a contributor C from some

class (, is there some integer n such that D, together with n copies of C, writes a
particular value into the register along some run?

Thm [Hague, Esparza et al. 2013]

When (and O are pushdown systems then the reachability problem is decidable
(PSPACE-complete). If Cis finite-state systems, the problem is NP-complete.

Accumulator semantics

(B.t,g) 2% (B¢ h) it ¢ 2" ¢ in A BCS
(B,t,9g) ﬂ(B,t’,h) if ¢ 2y in Aand h =g,

(B, t.g) 2% (B ¢, h) it B2 Bing,

(B,t,9) " (B’ 1, h) it B " B'insand h = g.

B34 B'ing ifs3sindand B = BU{s'}, forsome s, s’ € S.

w(h)

(M,t,g) —=(M,t', h) ift —t'in A,

(M,t,q) T(—h)>(M,t’,h) if ¢ T, o inAand h =g,
(B0 b) 2t) it M 2" Min g,

(M, £, g) (0, ¢, 1) it M 2 M insandh=g.

M3 Minsg ifs3sindand M =M — [s] + [§], forsome s, s’ € S.

Multiset t

S1

Accumulator

t t
/! 1244
g g
b ,
S1 S1
C
Si s’
Sn Sn
t/ t/ t/
/ /! 143
g g g
S1 51 S1
Sn, Sn C Sn
/ /
S1 S1

D e

Thm [La Torre, M., Walukiewicz 2015]

Let C and @ be both effectively closed under synchronized product with finite-state

systems.
If C'has a decidable reachability problem and @ has effective downward closure, the

reachability for (C,D)-systems is decidable.

Thm

Let C and @ be both effectively closed under synchronized product with finite-state

systems.
If C' has a decidable reachability problem and @ has effective downward closure, then

reachability for (C,D)-systems is decidable.

C is effectively closed under synchronized product with finite-state systems:
given M from (and a finite automaton A, the synchronized product of M and A

belongs to (' and can be effectively constructed.

D has effective downward closure:
given M from @, the finite automaton accepting all (scattered) subwords

of traces of M can be constructed effectively.

Effective downward closure:

+ pushdown automata [Courcelle 1991]
« Petri nets [Habermehl et al. 2010]
+ stacked counter automata [Zetzsche 2015]
+ higher-order pushdown wo / with collapse
[Hague, Kochems, Ong 2016] [Clemente, Parys, Salvati, Walukiewicz 2016]

Theorem applies to

leader: pushdown automata, Petri nets, decidable subclasses of multi-stack,
stacked counter automata.

contributors: any of the above, lossy channel systems,
hierarchical composition of (C,D)-systems.

Hierarchical composition of
(C,D)-systems

leader Fy and each subtree (C,D)-system is contributor

PSPACE-complete for pushdowns
/—[Reachability § Almost always decidable

Hierarchical (C,D)-systems

. | Repeated reachability |. PSPACE-complete for pushdowns
(C,D)-syst@
r
- Safety

. [Verification of properties

!

D e

Repeated reachability in (C,D)-systems
Given a leader D from some class of systems @ and a contributor C from some

class (, is there some integer n such that D, together with n copies of C, writes a
particular value into the register infinitely often along some run?

Thm [Durand-Gasselin, Esparza, Ganty, Majumdar 2015]

When (C and @ are pushdown systems: the repeated reachability problem is PSPACE-
hard and in NEXPTIME.

!

.

Repeated reachability in (C,D)-systems
Given a leader D from some class of systems @ and a contributor C from some

class (, is there some integer n such that D, together with n copies of C, writes a
particular value into the register infinitely often along some run?

Thm [Fortin, M., Walukiewicz 2016]

When (C and @ are pushdown systems: the repeated reachability problem is PSPACE-
complete.

NEXPTIME (Esparza et al.): reduce the problem to ' = NFA of exponential size by
bounding the stack

G2
&

CZ/ \ C2 split C into C1 and C2

oA \ C1

C1,02/ \:1,02

The (C,D)-system has a live run iff there is some Biichi trace uv™ s.t.

k

+ |leader pushdown has effective stack height 1 after each uv™ and

same (state, top of stack)

» multiset of contributor states is the same after each uv”

Separate leader D and contributor C according to the first writes of C:

Trace of D

v1 new(hq)vo new(hs) - - - v new(hy)vgr1

is omega-supported if for every 1 < 7 < £ there exists a loop of C

uy new(hy)ug - - - u;new(h;) w(h;) - - - v new(hg) ug41

such that wv; = projection of u; on alphabet of D for every i

new(h4)
Trace of D

omega-supported
new(h3)

new(h1)

new(h2)

For each j: contributor run rho(j) supporting new(#)).

Use (2n+1) copies of rho(j) to support all n reads of 4j in the loop.

PSPACE-complete for pushdowns
/—[Reachability § Almost always decidable

Hierarchical (C,D)-systems

. | Repeated reachability |. PSPACE-complete for pushdowns

NEXPTIME-complete for pushdowns
- Safety

PSPACE-complete if only about infinite runs

. [Verification of properties

A e

Safety in (C,D)-systems

Given a leader D from some class of systems @ and a contributor C from some
class (, is there some integer n such that D, together with n copies of C, does not
write a particular value into the register along some maximal run?

Thm

When (C and @ are pushdown systems then the safety problem is NEXPTIME-
complete.

Thm
If ¢ and ® are pushdown systems the safety problem is NEXPTIME-complete.

Thm

Let ¢ and ® be pushdown systems.

Knowing if there is some infinite safe run is PSPACE-complete.
Knowing if there is some maximal finite safe run is NEXPTIME-complete.

Thm

IfC is finite-state systems and @ is pushdown systems the problems are NP-complete.

Set semantics

(B,t,9) M(B,t’,h) if ¢ My in A BCS
(B7t7g) L(%(Batlah) 1fti(£)$t/ inAandh:g
(B,t,9) M(B’,t, h) if B 2", Brin s

(B.t.g) "5(B't,h) it B B in§and h =g

B3 B iné ifs= s ind, and B iseither BU{s'} or (BU{s'})\ {s}

for some s € B.

The (C,D)-system has a finite, maximal run ending in configuration (M,t,g) in the
multiset semantics iff it has a finite, maximal run ending in (B,t,g) in the set
semantics, with B = support(M).

Prop

When ¢ and © are pushdown systems, the existence of a maximal finite safe run is
NEXPTIME-hard.

Reduction from tiling problem:
Find a tiling with symbols from 2 of a 2"x2" square.
The tiling should respect neighborhood relations H,Vc2x2.

Leader writes: A11,A411,A12,A12,...,A19n, A1 20, ..., Agn on Agn on ($$)% o .

and checks the horizontal dependencies.

Prop

When ¢ and © are the class of pushdown systems then the existence of a maximal
finite safe run is NEXPTIME-hard.

Reduction from tiling problem:
Find a tiling with symbols from 2 of an 2"x2" square.
The tiling should respect neighborhood relations H,Vc2x2.

| v
Leader writes: A11,A411,A12,A12,...,A19n, A1 20, ..., Agn on Agn on ($$)% o .

and checks the horizontal dependencies.

Contributors check vertical dependencies, using counting.

Leader ensures that

= every vertical dependency is checked by some contributor, and
= Inconsistencies lead to write an error value in the register

PSPACE-complete for pushdowns
/—[Reachability Almost always decidable

Hierarchical (C,D)-systems

g | Repeated reachability |. PSPACE-complete for pushdowns
(C,D)-system>
NEXPTIME-complete for pushdowns
\ Safety
PSPACE-complete if only about infinite runs
C-stutter-expanding properties
N Verification of properties

NEXPTIME-complete

!

.

A trace is a sequence of register operations during a run.
Maximal trace comes from a maximal run (finite or infinite).

A property of traces is PC(Z,u3 ()~
A property is C-stutter-expanding if it is closed under replicating contributor actions.

If zw(g)ye P then xw(g)w(g)ye P

Verification of properties of (C,D)-systems

Given a C-stuttering-expanding property P. Given a leader D from some class of
systems @ and a contributor C from some class (, is there some integer n such

that D, together with n copies of C, has a maximal trace in P?

Verification of properties of (C,D)-systems

Given a C-stuttering-expanding property P. Given a leader D from some class of
systems @ and a contributor C from some class (, is there some integer n such

that D, together with n copies of C, has a maximal trace in P?

All previously considered properties are special instances:

= reachability: P is the set of traces containing the special action.

= repeated reachability: P is the set of traces containing the special action infinitely often.
= safety: P is the set of traces without the special action.

Verification of properties of (C,D)-systems
Given a C-stuttering-expanding property P. Given a leader D from some class of

systems @ and a contributor C from some class (, is there some integer n such
that D, together with n copies of C, has a maximal trace in P?

A property of traces is PC(Z,uZ)™
A property is C-stutter-expanding if it is closed under replicating actions of contributors.
It zwlg)yeP then zw(g)w(g)ye P

Rem: Verification of arbitrary regular properties is undecidable, as with a property
we can require that there is only one copy of a contributor.

Thm

When ¢ and ® are pushdown systems then the verification of regular properties of
(C,D)-systems is NEXPTIME-complete.

A property of traces is PC(Z,u3)™
A property is C-stutter-expanding if it is closed under duplicating actions of contributors.
f zalg)yeP then zualg)n(g)ye P

The verification of C-stutter-expanding properties of (C,D)-systems reduces
to the verification of properties over leader actions.

Leader can keep a local copy of the register and simulate contributor actions:
action-requests from contributors are acknowledged by leader, information
flows through the register.

Conclusion

!

b e

Changing from one to arbitrary many contributors turns the problem from
undecidable to manageable.

(C,D)-systems of pushdown process have very good algorithmic properties

» Verification of C-stutter-expanding properties is decidable in NEXPTIME
» For some relevant subclasses it is PSPACE.

NEXPTIME-hardness shows that they can exhibit a quite nontrivial behavior.

