Solving Deductive Games

Antonín Kučera (a joint work with Miroslav Klimoš)

FI MU Brno Czech Republic

- 2 players: codemaker + codebreaker
- codemakers selects a secret code
- codebreaker strives to reveal the code through experiments
- experiments provide **partial information** about the code
- the goal is to synthesize a **strategy** for the codebreaker s.t.
 - the secret code is eventually discovered;
 - the worst (or average) number of experiments is minimized.

Example 1: Mastermind

Mastermind

Known results

- Knuth (1976): 5 guesses in the worst case, 4.478 on average
- Irving (1978): 4.369 guesses on average
- Neuwirth (1982): 4.364 guesses on average
- Koyama& Lai (1993): 4.36 guesses on average (this is **optimal**)

Example 2: Counterfeit Coin Problem

Counterfeit Coin Problem

- *n* coins + balance scale
- All coins except one have the same weight
- Identify the odd-weight coin

Known results

- Dyson (1946): w weighings are sufficient iff 3 ≤ N ≤ (3^w − 3)/2
- The average number of weighings has not been analyzed in greater detail
- Guy, Nowakowski (1995): an overview of existing variants and results

- Information leakage in security systems
 - Steel (2006), Bond & Zielinski (2003): API-level attacks in ATM hardware security modules
- String Matching Games
 - Erdös & Rényi (1963): Results on asymptotic worst-case complexity
 - Goodrich (2009), Gagneur et al. (2011): Applications in genetics

- Design a generic formalism for modeling deductive games.
- Invent algorithms for synthesizing **optimal** worst/average case strategies.
- Implement a working software tool.

Formal model

 $\mathcal{G} = (X, \varphi_0, \Sigma, F, T)$

- X is a finite set of propositional variables,
- $\varphi_0 \in form(X)$ is a satisfiable initial constraint,
- Σ is a finite set of **parameters**,
- $F \subseteq X^{\Sigma}$ is a set of **attributes** with pairwise disjoint images,
- *T* is a finite set of parameterized experiments of the form (k, P, Φ) where
 - $k \in \mathbb{N}$ is the number of parameters,
 - $P \subseteq \Sigma^k$ is a set of **instances**,
 - Φ is a finite subset of form(X ∪ {f(\$j) | f ∈ F, 1 ≤ j ≤ k}) whose elements are called **outcomes**.

Example – CCP with 4 coins

- $X = \{x_1, x_2, x_3, x_4, y\}$,
- $\varphi_0 = \text{EXACTLY}_1(x_1, x_2, x_3, x_4)$,
- $\Sigma = \{coin_1, coin_2, coin_3, coin_4\},\$
- $F = \{d\}$ where $d(coin_i) = x_i$ for every $1 \le i \le 4$,

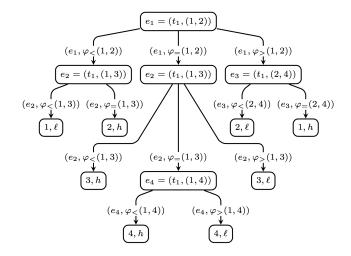
•
$$T = \{ (2, \Sigma^{\langle 2 \rangle}, \{\varphi_{<}, \varphi_{=}, \varphi_{>}\}), (4, \Sigma^{\langle 4 \rangle}, \{\psi_{<}, \psi_{=}, \psi_{>}\}) \}, \text{ and}$$

 $\varphi_{<} = (d(\$1) \land \neg y) \lor (d(\$2) \land y)$
 $\varphi_{=} = \neg d(\$1) \land \neg d(\$2)$
 $\varphi_{>} = (d(\$1) \land y) \lor (d(\$2) \land \neg y)$
 $\psi_{<} = ((d(\$1) \lor d(\$2)) \land \neg y) \lor ((d(\$3) \lor d(\$4)) \land y)$
 $\psi_{=} = \neg d(\$1) \land \neg d(\$2) \land \neg d(\$3) \land \neg d(\$4)$
 $\psi_{>} = ((d(\$1) \lor d(\$2)) \land y) \lor ((d(\$3) \lor d(\$4)) \land \neg y)$

Example – Mastermind with n pegs and m colors

- $X = \{x_{i,j} \mid 1 \le i \le n, 1 \le j \le m\}$
- φ_0 says that each peg has precisely one color
- $\Sigma = \{ color_1, \ldots, color_m \}$
- $F = \{peg_1, \dots, peg_n\}$
- T contains just one experiment with "many" outcomes

Decision tree for a simple strategy (CCP with 4 coins)



Consider CCP with 60 coins

- There are more than 10^{63} ways of instantiating the weighing of 20 + 20 coins.
- If we spent 1 ns with processing each instance, we need more than 10⁴⁶ years to go over all of them (the estimated age of our Universe is about 10⁹ years).
- Cobra can analyze CCP with more than 60 coins...

When assembling the next experiment, we exploit symmetries.

- **Phase 1:** Generate a list of experiments by "intelligent backtracking".
- **Phase 2:** Go over the list and try to identify and eliminate "symmetric" experiments (here we employ tools for checking graph isomorphism).
- **Phase 3:** Evaluate all experiments, select the most promising one (here we employ SAT solvers).

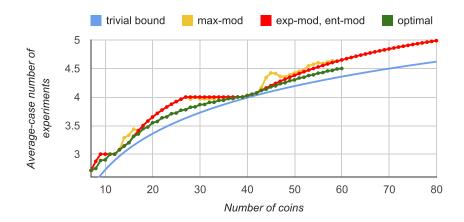
- command-line tool written in C++ $\,$
- takes game specification (language based on Python)
- two modes:
 - compute the complexity of a given ranking strategy
 - compute worst/average-case optimal strategy

Game specification example (CCP)

```
n = 4
xvars = ["x1", "x2", "x3", "x4"]
VARIABLES(xvars + ["y"])
CONSTRAINT("Exactly-1(%s)" % ",".join(xvars))
ALPHABET(xvars)
MAPPING("X", xvars)
```

```
for m in range(1, n//2 + 1):
EXPERIMENT("weighing" + str(m), 2*m)
PARAMS_DISTINCT(range(1, 2*m + 1))
OUTCOME("lighter", "((%s) & !y) | ((%s) & y)" ...
OUTCOME("heavier", "((%s) & y) | ((%s) & !y)" ...
OUTCOME("same", "!(%s)" % params(1, 2*m))
```

Results I



Average-case							
Size	MM	MM+col	MM+pos				
2x8	3.67187	3.64062	2				
3x6	3.19444	3.18981	3				
4x4	2.78516	2.74609	2.78516				
Worst-case							
Size	MM	MM+col	MM+pos				
2x8	5	5	2				
3x6	4	4	3				
4x4	3	3	3				

Two phases of symmetry breaking

- Phase 1: Generate parameters
 - Generate one-by-one, investigate parameter prefixes
 - A prefix can be completely *dominated by* another prefix under some conditions
- Phase 2: Eliminate symmetric experiments

Two phases of symmetry breaking

- Phase 1: Generate parameters
 - Generate one-by-one, investigate parameter prefixes
 - A prefix can be completely *dominated by* another prefix under some conditions
- Phase 2: Eliminate symmetric experiments

CCP 26		CCP 39		CCP 50	
$(\approx 10^{26} \text{ exp.})$		$(\approx 10^{46} \text{ exp.})$		$(\approx 10^{64} \text{ exp.})$	
Phase 1	Phase 2	Phase 1	Phase 2	Phase 1	Phase 2
13.0	13.0	19.0	19.0	25.0	25.0
4,365.0	861.7	26,638.7	3,318.0	83,625.0	8,591.0
603.0	36.4	2,263.0	88.1	5,733.4	172.2
76.3	4.2	214.7	7.2	405.1	10.4
-	-	-	-	153.2	4.1

- Formal model based on propositional logic
- Generic tool to analyze deductive games
- Main advantage: versatility
- Next challenge: push the boundaries of what is feasible