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What is Apache SPARK?

SPARK is a more recent platform for large-scale data parallel
processing.
To reduce I/O overhead, SPARK is memory-based.

I Keep intermediate results in memory;
I Recompute results upon faults.
I Google MAPREDUCE is disk-based.

To avoid unnecessary computation, SPARK is lazy.
I Computation is performed when necessary.
I Think of lazy evaluation in purely functional languages such as

Haskell.
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Why Apache SPARK? I

SPARK is still under (very) active development.
It has lots of applications.

I Go to databricks for more information.

It is an easy-to-use distributed computing environment.

Many distributed programs are developed and executed.
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Why Apache SPARK? II

Programming in SPARK is so simple that novice programmers are
writing distributed SPARK programs.

Concurrent programs are easy to have tricky bugs.
I believe this is a good opportunity for verification!

I We can make impacts on SPARK development.
I We can verify distributed SPARK programs.
I We can contribute to big data researches.
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SPARK Architecture

Spark SQL Spark Streaming MLlib GraphX
core Spark

EC2, Hadoop YARN HDFS, Hive

SPARK runs on top of distributed process/data clusters.
I EC2, Hadoop YARN manage distributed processes.
I HDFS, Hive manage distributed data.

Core Spark provides basic APIs for distributed data processing.
On top of core Spark, four libraries are available:

I Spark SQL: database queries
I Spark Streaming: streaming data processing
I MLlib: machine learning library
I GraphX: pregel-like graph library
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SPARK Programming Model I

A distributed collection of data items is a Resilient Distributed
Dataset (RDD).

A SPARK program creates an RDD from raw data stored in the
underlying distributed file system.

A SPARK program computes by processing data items in RDDs.
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SPARK Programming Model II

An RDD can be changed into another RDD through transformation.

Data in an RDD can be collected through actions.

Typically, a SPARK program performs a sequence of
transformations then followed by an action on an RDD.

RDD0 RDD1 · · · RDDn Result
T0 T1 Tn−1 A
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Distributed Data Processing I

An RDD consists of several partitions.
A partition is a basic block of data items.

I It is stored in a worker node of the underlying cluster.
I Computation on a partition is local.

RDD Part0 Part1 · · · Partn
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Distributed Data Processing II

A transformation is hence performed locally and distributively.

RDD Part0 Part1 · · · Partn

RDD′ Part′0 Part′1 · · · Part′n

T T T
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Distributed Data Processing III

An action however requires local computation followed by
communication with the master node.

RDD Part0 Part1 · · · Partn

Sub0 Sub1 · · · Subn

Result
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Distributed Data Processing IV

In practice, data flow can be complicated.

SPARK takes care of job scheduling, message passing, and even
fault tolerance automatically.

Programmers only specify local computation.

RDD00

RDD01

RDD1 RDD2

RDD10

RDD11

RDD3

RDD4 Result

Bow-Yaw Wang (Academia Sinica) Verification Problems in SPARK Programs Automata, Logic, and Games 12 / 58



Abstract Functional Model for SPARK I

We are interested in functional behaviors of SPARK programs.

To simplify our discussion, an abstract functional model for
SPARK will be used.

Our abstract model ignores implementation details (performance,
fault tolerance, etc) but focuses on functional behaviors.
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Abstract Functional Model for SPARK II

A partition is modeled by a list.

For instance, a partition of data items 0, 1, 2 is modeled by the list
[0, 1, 2].

In general, a partition consisting of data items of the type α is
modeled by a list of the type [α].

Define

type Partition α = [α]
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Abstract Functional Model for SPARK III

An RDD is a sequence of partitions.

Hence an RDD is modeled by a list of partitions.

That is, an RDD consisting of data items of the type α is modeled
by a list of the type [Partition α].

Similarly, define

type RDD α = [Partition α]
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Abstract Functional Model for SPARK IV

A transformation transforms an RDD into another RDD.

Consider the transformation map as an example.

Given a function from α to β, map transforms an RDD whose data
items are of the type α to another RDD whose data items are of
the type β.

That is, we have

[RDD α].map :: (α→ β) → RDD β

The functional specification of map is straightforward for
functional programmers.

I Exercise!
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Abstract Functional Model for SPARK V

An action returns a result by collecting data items in an RDD.

Consider the action reduce as an example.

Given a function from (α × α) to α, reduce reduces an RDD
whose data items are of the type α to a value of the type α.

That is,

[RDD α].reduce :: (α × α → α) → α

Again, the functional specification is straightforward.
I Another exercise!
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Abstract Functional Model for SPARK VI

We have the functional specification of SPARK transformations
and actions.

Our specification is in Haskell and Scala.

We uses the executable specification to develop a distributed
randomized graph coloring SPARK program.
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Word Counts I

Writing distributed programs is easy in SPARK.

Consider the SPARK program for word counts from its tutorial.

val textFile = sc.textFile("README.md")
val wordCounts =

textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((a, b) => a + b)
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Word Counts II

val textFile = sc.textFile("README.md")
val wordCounts =

textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((a, b) => a + b)

sc.textFile reads a text file and returns an RDD whose data
items are strings.

flatMap, map, and reduceByKey are transformations.
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Word Counts III

val textFile = sc.textFile("README.md")
val wordCounts =

textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((a, b) => a + b)

Let us read the code by types in our functional specification.

textFile :: String → RDD String

[RDD α].flatMap :: (α → [β]) → RDD β

textFile is an RDD of strings. Each string is a line in the file.

flatMap maps a line to a list of strings and then flattens all lists.

We have an RDD of strings. Each string is a word in the file.
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Word Counts IV

val textFile = sc.textFile("README.md")
val wordCounts =

textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((a, b) => a + b)

For each string in the RDD, we map it to a pair of the string and 1.

[RDD α].map :: (α→ β) → RDD β

[RDD (α × β)].reduceByKey :: (β × β → β) →
RDD (α × β)

For each string appeared in a pair, we reduce the associated
integers by summation.
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Word Counts V

val textFile = sc.textFile("README.md")
val wordCounts =

textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((a, b) => a + b)

Finally, we have

wordCounts :: RDD (String × Int)

Each string is associated with exactly an integer.

The associated integer is the number of occurrences of the string
in the file.
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Lazy Evaluation

Notice that a sequence of transformations are performed in word
counts without any action.
By lazy evaluation, SPARK will not perform any computation.

I SPARK returns immediately after the program is entered.

The computation will be carried out only when concrete values
are needed.
For example, we can count the number of words by

wordCounts.reduce(((_, u), (_, v)) => ("", u+v))
._2 // (a, b)._2 = b

Or, we can ask SPARK to compute an array of data items by

wordCounts.collect()
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More SPARK Libraries

Several libraries are built on top of core SPARK.
The SPARK GraphX library is a framework for implementing
distributed graph algorithms.
In GraphX, a graph is represented by two RDDs:

I a vertex RDD contains vertices;
I an edge RDD contains edges.

It also has a pregel-like interface for distributed iterative
computation over graphs.
We have interns to implement a handful of distributed graphs
algorithms in GraphX during this summer.

I Correctness?
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All Look Good

val textFile = sc.textFile("README.md")
val wordCounts =

textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((a, b) => a + b)

wordCounts.reduce(((_, u), (_, v)) => ("", u+v))
._2

Observe that SPARK programmers only specify local computation
in transformations and actions.
It is easy to write distributed SPARK programs.
So what can go wrong?
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Peeking Under the Hood

Similar to MAPREDUCE, concurrency makes computation
non-deterministic.

RDD Part0 Part1 · · · Partn

Sub0 Sub1 · · · Subn

Result
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Requirements of Local Computation I

Due to concurrency and efficiency, SPARK computation is
inherently non-deterministic.

What we look for is deterministic outcomes.

That is, the results will be the same for all non-deterministic
computation.
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Requirements of Local Computation II

To ensure deterministic outcomes, SPARK requires certain
algebraic properties on local computation.

For instance, the documentation of the action reduce says:

“Reduces the elements of this RDD using the specified
commutative and associative binary operator.”

In the word counts example, the binary operator is both
associative and commutative.

I (( , u), ( , v)) => ("", u+v)
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Algebraic Properties I

Let ⊕ :: α × α → α be a binary operator.

⊕ is associative if for every x, y, z

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z).

⊕ is commutative if for every x, y

x ⊕ y = y ⊕ x.

0 is a neutral element of ⊕ if for every x

x ⊕ 0 = 0 ⊕ x = x.

These algebraic properties are required for various SPARK actions.
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Algebraic Properties II

More generally, consider any universally quantified equations
over functions and constants.

t ::= x | c | f (t, . . . , t)
∀x. t = t

Distributive law

∀x, y, z. x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z)

Idempotent unary function

∀x. f (f (x)) = f (x)

Can we prove such algebraic properties hold for SPARK operators?
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SPARK Operators in Practice I

Abstractly, algebraic properties are easy to specify.

Their concrete interpretations necessarily depend on SPARK

operators in practice.
We divide SPARK operators into three classes:

I numerical operators;
I abstract data operators;
I arbitrary user-defined operators.
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SPARK Operators in Practice II

Algebraic properties over numerical SPARK operators are
straightforward to interpret.

They are just different from mathematical operators.

Mathematical addition and multiplication are both associative
and commutative.

SPARK programs rarely use exact mathematical addition and
multiplication.

For bounded integers, are + and * still associative and
commutative?

For floating-point numbers, are + and * still associative and
commutative?
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SPARK Operators in Practice III

Abstract data types are employed in SPARK programs.

Their operations are often used in transformations and actions.

Consider the union operator U for the data type Set[α].

We know the set-theoretic union ∪ is associative and
commutative.

Do we really have, say, A U B = B U A?

Probably not. The concrete data structure for A U B is likely to be
different from B U A.

What do we mean (and show) that U is commutative?
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SPARK Operators in Practice IV

For user-defined SPARK operators, interpretations of algebraic
properties are even less clear.

They may not correspond to any abstract objects.

What do we mean (and show) that such operators satisfy certain
algebraic properties?

Bow-Yaw Wang (Academia Sinica) Verification Problems in SPARK Programs Automata, Logic, and Games 36 / 58



Classical Techniques for Abstract Data Types I

When we prove the correctness of data type implementations,
similar problems arise.

Let U be an implementation of the set-theoretic union ∪.

How do we show that U is correct?

Tony Hoare came up with a solution back in 1972.
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Classical Techniques for Abstract Data Types II

Let A be a representation function mapping any concrete set S to an
abstract set S.

To show U is correct, it is to show

A(A U B) = A(A) ∪ A(B)

for every concrete sets A and B.
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Classical Techniques for Abstract Data Types III

The representation function lifts concrete structures to abstract
objects.

Using a representation function, it is clear how to verify algebraic
properties.

For example, U is commutative if for every A and B

A(A U B) = A(B U A).
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Classical Techniques for Abstract Data Types IV

In other words, we can prove algebraic properties of SPARK

operators after establishing correctness of abstract data types.

This looks good on paper.
But it is an overkill.

I We only want to show algebraic properties, not correct data type
implementations.

What about arbitrary user-defined SPARK operators?
I Representation functions can be obscure.
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Interpretations of Algebraic Properties Revisited I

To find a simpler solution, let us take another look at algebraic
properties.

Let U be an implementation of the set-theoretic union ∪.

Since the concrete structure of A U B is different from those of B
U A, we have

A U B 6= B U A.

We interpret the equality = too narrowly.
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Interpretations of Algebraic Properties Revisited II

Define the binary relation ≈ over concrete structures:

≈ = {(S,T) : S and T denote the same set.}

Then we have for every A and B

A U B ≈ B U A.

This is the intended interpretation of algebraic properties.
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Interpretations of Algebraic Properties Revisited III

Our interpretation in fact coincides with Hoare’s formulation.

The binary relation ≈ can simply be

≈ = {(S,T) : A(S) = A(T)}.

Then
for every A and B A U B ≈ B U A

is a paraphrase of

for every A and B A(A U B) = A(B U A).

This particular definition of ≈ is fine but unsatisfactory.
I It needs the representation function A.
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Interpretations of Algebraic Properties Revisited IV

Intended interpretations of algebraic properties depend on the
interpretation of equality.

I That is, the binary relation ≈.

Two problems remain:
What are the criteria for the soundness of ≈?

I Taking ≈ to be the universal binary relation is not sound. Why?

How to define such ≈without representation functions?
I Can it be computed automatically?
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Interpretation by Bisimulation I

Let us try to formulate ≈.

What is a proper intended interpretation of equality?

Intuitively, ≈ relates equivalent concrete structures.

But how do we define “equivalence?”
The process algebra community has solved this problem.

I Thanks to Robin Milner.
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Interpretation by Bisimulation II

Informally, two processes are equivalent if no action can
differentiate one from the other.

In our context, we have

two concrete structures are equivalent if no operation can
differentiate one from the other.

For instance, a good definition of ≈must satisfy
For every A, A’, B, B’

A ≈ A’ and B ≈ B’ imply A U B ≈ A’ U B’

among other operations of interests.
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Interpretation by Bisimulation III

Similar to bisimulation, ≈ is relative to operations.
I If we only insert elements to sets, any two sets are “equal.”
I Insertion cannot differentiate one set from another.

Depending on operations of interests, different definitions of ≈
are available.

I Representation functions are no longer needed.

≈ does not verify correctness of data type implementations.
I Just like bisimulation, it only relates equivalent concrete structures.
I It is easier to check and not an overkill.
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Higher-Order Operations and Logical Relations

For SPARK, concrete structures often have higher-order
operations.

I Operations take functions as parameters.

Our theory also covers such concrete structures.
We borrow from logical relations in λ-calculus.
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Verifying Algebraic Properties

Algebraic properties can now be formally verified as follows.
I Specify ≈.
I Check if ≈ is a bisimulation (or logical relation).
I Check algebraic properties by interpreting equality with ≈.

No abstract objects are referred in this process.
Verification can be done in automated software verification tools.

I without proof assistants, that is.

We have case studies in LEON.
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Interested?

There are more problems to be addressed in SPARK programming.
I will briefly describe two (unsolved) problems.

I Stability problem in numerical computation
I SQL query optimization
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Stability Problem I

Recall that associative and commutative SPARK operators are
required for transformations and actions.

But floating-point operators do not have such algebraic properties.
Particularly, floating-point addition is not associative.

I Let x = 1.0, y = -1.0, and z = 1e-16.
I 1e-16 = (x + y) + z 6= x + (y + z) = 0.0

No sound definition of ≈ can relate 1e-16 and 0.0.
Floating-point addition should not be used in SPARK
transformations and actions.

I But they are widely used!
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Stability Problem II

Non-deterministic outcomes can in fact be observed from a
private function AreaUnderCurve.of in MLlib.

Given an RDD of sample points of a curve,
AreaUnderCurve.of performs the numerical integration by
summing up areas of trapezoids defined by the curve.

Let us consider the following integration∫ 2

−2
x73dx

However AreaUnderCurve.of returns different answers in 50
runs on the same evenly distributed sample points on x73.

The outcomes are not deterministic.
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Stability Problem III

Non-deterministic outcomes are perhaps tolerable if they are not
very different.

With 8 worker nodes, we observe values from −8192.0 to 12288.0
in 50 runs.

Recall the integration ∫ 2

−2
x73dx = 0

I since x73 is an odd function.

Outcomes are (very) different from the mathematical result.
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Stability Problem IV

Unstable floating-point computation is always a problem in
numerical methods.
To have stable computation, a sequence of floating-point
operations need to be performed in a certain order.

I Mathematically equivalent sequences of such operations can have
different stability.

For SPARK, the problem is even more uncontrollable.

Floating-point operations are not executed in any fixed-order due
to concurrency.

Is there a way to ensure stability in SPARK computation?
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SQL Optimization I

SPARK SQL provides an interface to write database queries.

In SPARK, databases are modeled by RDDs.

SQL queries are thus translated to SPARK transformations and
actions.

SPARK SQL goes even further to optimize the translation.
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SQL Optimization II

More than 30 local optimizations.
I Data flow analysis, static evaluation, etc.

Divided into 11 batched optimizations.
I batched optimizations are iteratively performed.

Correctness?
I stability, algebraic properties of user-defined queries?

Performance?
I a performance model for SPARK?
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Conclusions

SPARK is now a popular and simple programming model for
distributed computing.
Unlike classical distributed computing, concurrency is restricted
in SPARK computation.
We have shown an abstract functional model and a proof
technique for SPARK programs.
We believe there are many opportunities for the verification
community to offer.
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