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What is Apache SPARK?

@ SPARK is a more recent platform for large-scale data parallel
processing.
@ To reduce I/O overhead, SPARK is memory-based.

» Keep intermediate results in memory;
» Recompute results upon faults.
» Google MAPREDUCE is disk-based.

@ To avoid unnecessary computation, SPARK is lazy.

» Computation is performed when necessary.
» Think of lazy evaluation in purely functional languages such as
Haskell.
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Why Apache SPARK? I

@ SPARK is still under (very) active development.
@ It has lots of applications.
» Go to databricks for more information.

@ It is an easy-to-use distributed computing environment.

@ Many distributed programs are developed and executed.
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Why Apache SPARK? II

@ Programming in SPARK is so simple that novice programmers are
writing distributed SPARK programs.

@ Concurrent programs are easy to have tricky bugs.

@ I believe this is a good opportunity for verification!

» We can make impacts on SPARK development.
» We can verify distributed SPARK programs.
» We can contribute to big data researches.
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SPARK Architecture

Spark SQL ‘ Spark Streaming ‘ MLIib ‘ GraphX
core Spark
EC2, Hadoop YARN H HDFS, Hive

@ SPARK runs on top of distributed process/data clusters.

» EC2, Hadoop YARN manage distributed processes.

» HDFS, Hive manage distributed data.
@ Core Spark provides basic APIs for distributed data processing.
@ On top of core Spark, four libraries are available:

Spark SQL: database queries

» Spark Streaming: streaming data processing
» MLIib: machine learning library

» GraphX: pregel-like graph library

\4
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SPARK Programming Model 1

@ A distributed collection of data items is a Resilient Distributed
Dataset (RDD).

@ A SPARK program creates an RDD from raw data stored in the
underlying distributed file system.

@ A SPARK program computes by processing data items in RDDs.

Bow-Yaw Wang (Academia Sinica) Verification Problems in SPARK Programs Automata, Logic, and Games 7 / 58



SPARK Programming Model 11

@ An RDD can be changed into another RDD through transformation.
@ Data in an RDD can be collected through actions.

@ Typically, a SPARK program performs a sequence of
transformations then followed by an action on an RDD.

To T1 Ty A
RDDy +—|RDD; }——> -+ ——|RDD,, —
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Distributed Data Processing I

@ An RDD consists of several partitions.
@ A partition is a basic block of data items.

» It is stored in a worker node of the underlying cluster.
» Computation on a partition is local.

RDD

Bow-Yaw Wang (Academia Sinica) Verification Problems in SPARK Programs Automata, Logic, and Games 9 /58



Distributed Data Processing II

@ A transformation is hence performed locally and distributively.

T
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Distributed Data Processing II1

@ An action however requires local computation followed by
communication with the master node.
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Distributed Data Processing IV

@ In practice, data flow can be complicated.

@ SPARK takes care of job scheduling, message passing, and even
fault tolerance automatically.

@ Programmers only specify local computation.

RDDyg
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Abstract Functional Model for SPARK 1

@ We are interested in functional behaviors of SPARK programs.

@ To simplify our discussion, an abstract functional model for
SPARK will be used.

@ Our abstract model ignores implementation details (performance,
fault tolerance, etc) but focuses on functional behaviors.
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Abstract Functional Model for SPARK 1I

@ A partition is modeled by a list.

e For instance, a partition of data items 0, 1, 2 is modeled by the list
[0, 1, 2].

@ In general, a partition consisting of data items of the type « is
modeled by a list of the type [a].

@ Define

type Partition a = [«]
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Abstract Functional Model for SPARK III

e An RDD is a sequence of partitions.
@ Hence an RDD is modeled by a list of partitions.

e That is, an RDD consisting of data items of the type a is modeled
by a list of the type [Partition a].

@ Similarly, define

type RDD a« = [Partition «]
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Abstract Functional Model for SPARK IV

@ A transformation transforms an RDD into another RDD.
@ Consider the transformation map as an example.

@ Given a function from « to 8, map transforms an RDD whose data
items are of the type a to another RDD whose data items are of

the type S.
@ Thatis, we have

[RDD @] .map :: (a— () — RDD [

@ The functional specification of map is straightforward for
functional programmers.

» Exercise!
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Abstract Functional Model for SPARK V

@ An action returns a result by collecting data items in an RDD.
o Consider the action reduce as an example.

@ Given a function from (o X «) to «, reduce reduces an RDD
whose data items are of the type « to a value of the type a.

@ Thatis,

[RDD «] .reduce :: (o X o — o) — «

@ Again, the functional specification is straightforward.
» Another exercise!
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Abstract Functional Model for SPARK VI

@ We have the functional specification of SPARK transformations
and actions.

@ Our specification is in Haskell and Scala.

@ We uses the executable specification to develop a distributed
randomized graph coloring SPARK program.
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Word Counts I

e Writing distributed programs is easy in SPARK.
o Consider the SPARK program for word counts from its tutorial.

val textFile = sc.textFile ("README.md")
val wordCounts =
textFile.flatMap (line => line.split("_."))
.map (word => (word, 1))
.reduceByKey ((a, b) => a + b)
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Word Counts II

val textFile = sc.textFile ("README.md")
val wordCounts =
textFile.flatMap(line => line.split("_ "))
.map (word => (word, 1))
.reduceByKey ((a, b) => a + b)

@ sc.textFile reads a text file and returns an RDD whose data
items are strings.

@ flatMap, map, and reduceByKey are transformations.
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Word Counts III

val textFile = sc.textFile ("README.md")

val wordCounts =
textFile.flatMap(line => line.split("_ "))
.map (word => (word, 1))
.reduceByKey ((a, b) => a + b)

@ Let us read the code by types in our functional specification.

textFile :: String — RDD String
[RDD «].flatMap :: (a — [B]) — RDD 8

@ textFile isan RDD of strings. Each string is a line in the file.
e flatMap maps a line to a list of strings and then flattens all lists.

@ We have an RDD of strings. Each string is a word in the file.

21/ 58
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Word Counts IV

val textFile = sc.textFile ("README.md")

val wordCounts
textFile.flatMap(line => line.split("_."))
.map (word => (word, 1))
.reduceByKey ((a, b) => a + b)

@ For each string in the RDD, we map it to a pair of the string and 1.

[RDD «] .map :: (a— ) — RDD
[RDD (a X ()] .reduceByKey :: (8 x 8 — (B) —
RDD (a X f3)

@ For each string appeared in a pair, we reduce the associated
integers by summation.
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Word Counts V

val textFile = sc.textFile ("README.md")
val wordCounts =
textFile.flatMap(line => line.split("_ "))
.map (word => (word, 1))
.reduceByKey ((a, b) => a + b)

@ Finally, we have
wordCounts :: RDD (String X Int)

o Each string is associated with exactly an integer.

@ The associated integer is the number of occurrences of the string
in the file.
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Lazy Evaluation

@ Notice that a sequence of transformations are performed in word
counts without any action.
@ By lazy evaluation, SPARK will not perform any computation.
» SPARK returns immediately after the program is entered.

@ The computation will be carried out only when concrete values
are needed.

@ For example, we can count the number of words by

wordCounts.reduce (((_, w), (_, v)) => ("", u+tv))
L2 // (a, b)._2 =b

@ Or, we can ask SPARK to compute an array of data items by

wordCounts.collect ()
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More SPARK Libraries

@ Several libraries are built on top of core SPARK.

@ The SPARK GraphX library is a framework for implementing
distributed graph algorithms.

@ In GraphX, a graph is represented by two RDDs:

» a vertex RDD contains vertices;
» an edge RDD contains edges.

o It also has a pregel-like interface for distributed iterative
computation over graphs.
@ We have interns to implement a handful of distributed graphs
algorithms in GraphX during this summer.
» Correctness?
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All Look Good

val textFile = sc.textFile ("README.md")
val wordCounts =
textFile.flatMap(line => line.split("_ "))
.map (word => (word, 1))
.reduceByKey ((a, b) => a + b)
wordCounts.reduce (((_, u), (_, v)) => ("", utv))
2

@ Observe that SPARK programmers only specify local computation
in transformations and actions.

o Itis easy to write distributed SPARK programs.

@ So what can go wrong?
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Peeking Under the Hood

@ Similar to MAPREDUCE, concurrency makes computation
non-deterministic.
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Requirements of Local Computation I

@ Due to concurrency and efficiency, SPARK computation is
inherently non-deterministic.

@ What we look for is deterministic outcomes.

@ That is, the results will be the same for all non-deterministic
computation.
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Requirements of Local Computation II

@ To ensure deterministic outcomes, SPARK requires certain
algebraic properties on local computation.

e For instance, the documentation of the action reduce says:

“Reduces the elements of this RDD using the specified
commutative and associative binary operator.”

@ In the word counts example, the binary operator is both
associative and commutative.

> ((o, u), (o v)) => ("", utv)
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Algebraic Properties I

Let & :: a X a — o beabinary operator.

@ is associative if for every x, y, z
x @y ®&®z=x O (y & z2).
@ @ is commutative if for every x, y
X G y=y & x
e 0 is a neutral element of @ if for every x

x ®0=0 & x=x.

These algebraic properties are required for various SPARK actions.
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Algebraic Properties II

@ More generally, consider any universally quantified equations
over functions and constants.

too= x|c|f(t..., 1)
VX.t=t

e Distributive law
VX, y,2.x0 (ydz) = (xQy) ® (x ®2)
@ Idempotent unary function
vx f(f(x)) = f(x)

e Can we prove such algebraic properties hold for SPARK operators?
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SPARK Operators in Practice I

@ Abstractly, algebraic properties are easy to specify.

@ Their concrete interpretations necessarily depend on SPARK
operators in practice.

@ We divide SPARK operators into three classes:

» numerical operators;
» abstract data operators;
» arbitrary user-defined operators.
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SPARK Operators in Practice II

@ Algebraic properties over numerical SPARK operators are
straightforward to interpret.

@ They are just different from mathematical operators.

@ Mathematical addition and multiplication are both associative
and commutative.

@ SPARK programs rarely use exact mathematical addition and
multiplication.

@ For bounded integers, are + and = still associative and
commutative?

@ For floating-point numbers, are + and ~ still associative and
commutative?
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SPARK Operators in Practice III

Abstract data types are employed in SPARK programs.
Their operations are often used in transformations and actions.

Consider the union operator U for the data type Set [a].

We know the set-theoretic union U is associative and
commutative.

Do we really have, say,A U B=B U A?

Probably not. The concrete data structure for A U B is likely to be
different fromB U A.

What do we mean (and show) that U is commutative?
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SPARK Operators in Practice IV

@ For user-defined SPARK operators, interpretations of algebraic
properties are even less clear.

@ They may not correspond to any abstract objects.

e What do we mean (and show) that such operators satisfy certain
algebraic properties?
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Classical Techniques for Abstract Data Types I

@ When we prove the correctness of data type implementations,
similar problems arise.

@ Let U be an implementation of the set-theoretic union U.
@ How do we show that U is correct?

@ Tony Hoare came up with a solution back in 1972.
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Classical Techniques for Abstract Data Types II

o Let Abe a representation function mapping any concrete set S to an
abstract set S.

@ To show U is correct, it is to show
AR U B) = A(A)U.A(B)

for every concrete sets A and B.
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Classical Techniques for Abstract Data Types III

@ The representation function lifts concrete structures to abstract
objects.

@ Using a representation function, it is clear how to verify algebraic
properties.

@ For example, U is commutative if for every A and B

AR U B)=A(B U 2).
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Classical Techniques for Abstract Data Types IV

@ In other words, we can prove algebraic properties of SPARK
operators after establishing correctness of abstract data types.

@ This looks good on paper.

@ But it is an overkill.

» We only want to show algebraic properties, not correct data type
implementations.

e What about arbitrary user-defined SPARK operators?
» Representation functions can be obscure.
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Interpretations of Algebraic Properties Revisited I

e To find a simpler solution, let us take another look at algebraic
properties.

@ Let U be an implementation of the set-theoretic union U.

@ Since the concrete structure of 2 U B is different from those of B
U A, we have
AUB#B U A

@ We interpret the equality = too narrowly.
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Interpretations of Algebraic Properties Revisited II

@ Define the binary relation ~ over concrete structures:
~ = {(s,T): sand T denote the same set.}
@ Then we have for every A and B
A U BB U A.

e This is the intended interpretation of algebraic properties.
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Interpretations of Algebraic Properties Revisited III

@ Our interpretation in fact coincides with Hoare’s formulation.

@ The binary relation ~ can simply be
~ = {(s,T): A(s) = A(T)}.

@ Then
foreveryAandB A U B~B U A

is a paraphrase of

foreveryAandB A(A U B)=A(B U A).

@ This particular definition of ~ is fine but unsatisfactory.
» It needs the representation function A.

Bow-Yaw Wang (Academia Sinica) Verification Problems in SPARK Programs Automata, Logic, and Games 43 / 58



Interpretations of Algebraic Properties Revisited IV

o Intended interpretations of algebraic properties depend on the
interpretation of equality.

» That is, the binary relation ~.
@ Two problems remain:
@ What are the criteria for the soundness of ~?

» Taking ~ to be the universal binary relation is not sound. Why?
e How to define such ~ without representation functions?

» Can it be computed automatically?
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Interpretation by Bisimulation I

Let us try to formulate ~.
What is a proper intended interpretation of equality?
Intuitively, ~ relates equivalent concrete structures.

But how do we define “equivalence?”

The process algebra community has solved this problem.
» Thanks to Robin Milner.
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Interpretation by Bisimulation II

o Informally, two processes are equivalent if no action can
differentiate one from the other.

@ In our context, we have

two concrete structures are equivalent if no operation can
differentiate one from the other.

e For instance, a good definition of ~ must satisfy
For every A, A’, B, B’

A~ A’andB ~ B’ implyA U B=A’ U B’

among other operations of interests.
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Interpretation by Bisimulation III

@ Similar to bisimulation, = is relative to operations.

» If we only insert elements to sets, any two sets are “equal.”
» Insertion cannot differentiate one set from another.

@ Depending on operations of interests, different definitions of ~
are available.

» Representation functions are no longer needed.
@ ~ does not verify correctness of data type implementations.

» Just like bisimulation, it only relates equivalent concrete structures.
» It is easier to check and not an overkill.
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Higher-Order Operations and Logical Relations

@ For SPARK, concrete structures often have higher-order
operations.

» Operations take functions as parameters.
@ Our theory also covers such concrete structures.

@ We borrow from logical relations in A-calculus.
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Verifying Algebraic Properties

@ Algebraic properties can now be formally verified as follows.
» Specify ~.
» Check if =~ is a bisimulation (or logical relation).
» Check algebraic properties by interpreting equality with ~.
@ No abstract objects are referred in this process.
@ Verification can be done in automated software verification tools.
» without proof assistants, that is.

@ We have case studies in LEON.
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Plan

e More Problems
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Interested?

@ There are more problems to be addressed in SPARK programming.
o I will briefly describe two (unsolved) problems.

» Stability problem in numerical computation
» SQL query optimization
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Stability Problem I

Recall that associative and commutative SPARK operators are
required for transformations and actions.

But floating-point operators do not have such algebraic properties.

Particularly, floating-point addition is not associative.
» Letx=1.0,y=-1.0,and z = le-16.
» le-l6=(x + y) + z#x + (y + z)=0.0

No sound definition of ~ can relate 1e—-16 and 0. 0.

Floating-point addition should not be used in SPARK
transformations and actions.

» But they are widely used!
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Stability Problem II

@ Non-deterministic outcomes can in fact be observed from a
private function AreaUnderCurve. of in MLlib.

@ Given an RDD of sample points of a curve,
AreaUnderCurve.of performs the numerical integration by
summing up areas of trapezoids defined by the curve.

@ Let us consider the following integration

2
/ x3dx
-2

@ However AreaUnderCurve. of returns different answers in 50

runs on the same evenly distributed sample points on x73.

@ The outcomes are not deterministic.

Bow-Yaw Wang (Academia Sinica) Verification Problems in SPARK Programs Automata, Logic, and Games



Stability Problem III

@ Non-deterministic outcomes are perhaps tolerable if they are not
very different.

@ With 8 worker nodes, we observe values from —8192.0 to 12288.0

in 50 runs.
2
/ xBdx =0
-2

» since x7° is an odd function.

@ Recall the integration

@ Outcomes are (very) different from the mathematical result.
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Stability Problem IV

Unstable floating-point computation is always a problem in
numerical methods.

To have stable computation, a sequence of floating-point
operations need to be performed in a certain order.

» Mathematically equivalent sequences of such operations can have
different stability.

For SPARK, the problem is even more uncontrollable.

Floating-point operations are not executed in any fixed-order due
to concurrency.

Is there a way to ensure stability in SPARK computation?
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SQL Optimization I

@ SPARK SQL provides an interface to write database queries.
@ In SPARK, databases are modeled by RDDs.

@ SQL queries are thus translated to SPARK transformations and
actions.

@ SPARK SQL goes even further to optimize the translation.
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SQL Optimization II

@ More than 30 local optimizations.
» Data flow analysis, static evaluation, etc.
e Divided into 11 batched optimizations.
» batched optimizations are iteratively performed.
o Correctness?
» stability, algebraic properties of user-defined queries?
@ Performance?
» a performance model for SPARK?
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Conclusions

@ SPARK is now a popular and simple programming model for
distributed computing.

@ Unlike classical distributed computing, concurrency is restricted
in SPARK computation.

@ We have shown an abstract functional model and a proof
technique for SPARK programs.

@ We believe there are many opportunities for the verification
community to offer.
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