Distribution Types: A Type-Theoretic Approach To Almost Sure Termination

Ugo dal Lago <u>Charles Grellois</u>

FOCUS Team - INRIA & University of Bologna

Institute for Mathematical Sciences, Singapore September 9, 2016

Motivations

- Probabilistic programming languages are important in computer science: modeling uncertainty, machine learning, Al...
- Quantitative notion of termination: almost-sure termination (AST)
- AST has been studied for imperative programs in the last years. . .
- ... but what about the functional probabilistic languages?

We introduce a monadic, affine sized type system sound for AST.

Sized types: the deterministic case

Simply-typed λ -calculus is strongly normalizing (SN).

No longer true with the letrec construction...

Sized types: a decidable extension of the simple type system ensuring SN for λ -terms with letrec.

See notably:

- Hughes-Pareto-Sabry 1996, Proving the correctness of reactive systems using sized types,
- Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination of recursive definitions.

Sized types: the deterministic case

Sizes:
$$\mathfrak{s},\mathfrak{r}:=\mathfrak{i}\mid\infty\mid\widehat{\mathfrak{s}}$$

+ size comparison inducing subtyping. Notably $\widehat{\infty} = \infty$.

Idea:

- Nat^î is 0,
- Nat^î is 0 or S 0,
- . . .
- \bullet Nat^∞ is any natural number. Often denoted simply $\mathsf{Nat}.$

The same for lists, . . .

Sized types: the deterministic case

Sizes:
$$\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$$

+ size comparison inducing subtyping. Notably $\widehat{\infty} = \infty$.

Fixpoint rule:

$$\frac{\Gamma, f : \mathsf{Nat}^{\mathfrak{i}} \to \sigma \vdash M : \mathsf{Nat}^{\widehat{\mathfrak{i}}} \to \sigma[\mathfrak{i}/\widehat{\mathfrak{i}}] \quad \mathfrak{i} \ \mathsf{pos} \ \sigma}{\Gamma \vdash \mathsf{letrec} \ f \ = \ M : \mathsf{Nat}^{\mathfrak{s}} \to \sigma[\mathfrak{i}/\mathfrak{s}]}$$

Typable \implies SN. Proof using reducibility candidates.

Decidable type inference.

Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

$$\begin{array}{ll} \text{plus} \equiv (\text{letrec} & \textit{plus}_{:\text{Nat}' \rightarrow \text{Nat} \rightarrow \text{Nat}} = \\ & \lambda x_{:\text{Nat}'} \cdot \lambda y_{:\text{Nat}} \cdot \text{case } x \text{ of } \{ \text{o} \Rightarrow y \\ & | \text{s} \Rightarrow \lambda x'_{:\text{Nat}'} \cdot \text{s} \underbrace{(\textit{plus } x' \ y)}_{:\text{Nat}} \\ \} \\) : & \text{Nat}^s \rightarrow \text{Nat} \rightarrow \text{Nat} \end{array}$$

Size decreases during recursive calls \Rightarrow SN.

A probabilistic λ -calculus

$$M, N, \dots$$
 ::= $V \mid V V \mid \text{let } x = M \text{ in } N \mid M \oplus_p N$
 $\mid \text{case } V \text{ of } \{S \to W \mid 0 \to Z\}$

$$V, W, Z, \dots$$
 ::= $x \mid 0 \mid S V \mid \lambda x.M \mid \text{letrec } f = V$

- Formulation equivalent to λ -calculus with \oplus_p , but constrained for technical reasons
- Restriction to base type Nat for simplicity, but can be extended to general inductive datatypes (as in sized types)

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

let
$$x = V$$
 in $M \to_{V} \left\{ (M[x/V])^{1} \right\}$

$$(\lambda x.M) V \to_{V} \left\{ (M[x/V])^{1} \right\}$$

$$\left(| \text{letrec } f = V \right) \left(c \overrightarrow{W} \right) \rightarrow_{V} \left\{ \left(V[f/(\text{letrec } f = V)] \left(c \overrightarrow{W} \right) \right)^{1} \right\}$$

case S
$$V$$
 of $\{S \to W \mid 0 \to Z\} \to_{\nu} \{(W \ V)^1\}$

case 0 of
$$\{S \to W \mid 0 \to Z\} \to_{\nu} \{(Z)^1\}$$

$$\frac{M \oplus_{p} N \to_{v} \left\{ M^{p}, N^{1-p} \right\}}{M \to_{v} \left\{ L_{i}^{p_{i}} \mid i \in I \right\}}$$

$$\text{let } x = M \text{ in } N \to_{v} \left\{ (\text{let } x = L_{i} \text{ in } N)^{p_{i}} \mid i \in I \right\}$$

$$\mathcal{D} \stackrel{VD}{=} \left\{ M_j^{p_j} \mid j \in J \right\} + \mathcal{D}_V \qquad \forall j \in J, \quad M_j \quad \to_{\nu} \quad \mathscr{E}_j$$

$$\mathcal{D} \quad \to_{\nu} \quad \left(\sum_{j \in J} p_j \cdot \mathscr{E}_j \right) + \mathcal{D}_V$$

For \mathcal{D} a distribution of terms:

$$\llbracket \mathscr{D} \rrbracket = \sup_{n \in \mathbb{N}} \left(\left\{ \mathscr{D}_n \mid \mathscr{D} \Rightarrow_{v}^{n} \mathscr{D}_n \right\} \right)$$

where \Rightarrow_{V}^{n} is \rightarrow_{V}^{n} followed by projection on values.

We let
$$\llbracket M \rrbracket = \llbracket \{ M^1 \} \rrbracket$$
.

$$M$$
 is AST iff $\sum \llbracket M \rrbracket = 1$.

Random walks as probabilistic terms

Biased random walk:

$$M_{bias} = \left(\mathsf{letrec} \ f \ = \ \lambda x.\mathsf{case} \ x \ \mathsf{of} \ \left\{ \ \mathsf{S} o \lambda y.f(y) \oplus_{rac{2}{3}} \left(f(\mathsf{S} \, \mathsf{S} \, y) \right) \right) \ \ \middle| \ \ 0 o 0 \
ight\} \right) \ \underline{n}$$

• Unbiased random walk:

$$M_{unb} = \left(\text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ S \rightarrow \lambda y. f(y) \oplus_{\frac{1}{2}} \left(f(SSy) \right) \right) \mid 0 \rightarrow 0 \right\} \right) \underline{n}$$

$$\sum \llbracket M_{bias} \rrbracket = \sum \llbracket M_{unb} \rrbracket = 1$$

Capture this in a sized type system?

Another term

We also want to capture terms as:

$$M_{nat} = \left(\text{letrec } f = \lambda x.x \oplus_{\frac{1}{2}} S (f x) \right) 0$$

of semantics

$$\llbracket M_{nat} \rrbracket = \left\{ (0)^{\frac{1}{2}}, (S \ 0)^{\frac{1}{4}}, (S \ S \ 0)^{\frac{1}{8}}, \ldots \right\}$$

summing to 1.

First idea: extend the sized type system with:

Choice
$$\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \oplus_{p} N : \sigma}$$

and "unify" types of M and N by subtyping.

Kind of product interpretation of \oplus : we can't capture more than SN...

First idea: extend the sized type system with:

Choice
$$\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \oplus_{p} N : \sigma}$$

and "unify" types of M and N by subtyping.

We can't type M_{bias} nor M_{unb} in a way decreasing the size (essential for letrec): we get at best

$$f \; : \; \mathsf{Nat}^{\widehat{\widehat{\mathfrak{i}}}} \to \mathsf{Nat}^{\infty} \; \vdash \; \lambda y. f(y) \oplus_{\frac{2}{3}} \left(f(\mathsf{SS}\, y) \right)) \; \; : \; \; \mathsf{Nat}^{\widehat{\mathfrak{i}}} \to \mathsf{Nat}^{\infty}$$

and can't use a variation of the letrec rule on that.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

We will use distribution types, built as follows:

Now

$$\begin{array}{c} f \ : \ \left\{ \left(\mathsf{Nat^i} \to \mathsf{Nat^\infty}\right)^{\frac{2}{3}}, \ \left(\mathsf{Nat^{\widehat{\widehat{\mathfrak{i}}}}} \to \mathsf{Nat^\infty}\right)^{\frac{1}{3}} \right\} \\ & \vdash \\ \lambda y. f(y) \oplus_{\frac{2}{3}} \left(f(\mathsf{SS}\, y)) \right) \ : \ \mathsf{Nat^{\widehat{\mathfrak{i}}}} \to \mathsf{Nat^\infty} \end{array}$$

We will use distribution types, built as follows:

Similarly:

$$\begin{array}{c} f \ : \ \left\{ \left(\mathsf{Nat^i} \to \mathsf{Nat^\infty}\right)^{\frac{1}{2}}, \ \left(\mathsf{Nat^{\widehat{i}}} \to \mathsf{Nat^\infty}\right)^{\frac{1}{2}} \right\} \\ & \vdash \\ \lambda y. f(y) \oplus_{\frac{1}{2}} \left(f(\mathsf{SS}\, y)) \right) \ : \ \mathsf{Nat^{\widehat{i}}} \to \mathsf{Nat^\infty} \end{array}$$

$$\frac{\Gamma \mid f \ : \ \left\{ \ (\mathsf{Nat}^{\mathfrak{s}_j} \to \nu[\mathfrak{s}_j/\mathfrak{i}])^{p_j} \ \mid \ j \in J \right\} \vdash V \ : \ \mathsf{Nat}^{\widehat{\mathfrak{i}}} \to \nu[\widehat{\mathfrak{i}}/\mathfrak{i}]}{\Gamma \mid \emptyset \vdash \mathsf{letrec} \ f \ = \ V \ : \ \mathsf{Nat}^{\mathfrak{r}} \to \nu[\mathfrak{r}/\mathfrak{i}]}$$

$$\{\mid \Gamma\mid\} = \mathsf{Nat}$$
 $\mathfrak{i}
otin \Gamma$ and \mathfrak{i} positive in u $otin \sum_{j \in J} p_j(\mid \mathfrak{s}_j \mid) < 1$

LetRec

$$\frac{\Gamma\,|\,f\,:\,\left\{\,(\mathsf{Nat}^{\mathfrak{s}_j}\to\nu[\mathfrak{s}_j/\mathfrak{i}])^{p_j}\ \big|\ j\in J\,\right\}\vdash\,V\,:\,\mathsf{Nat}^{\widehat{\mathfrak{i}}}\to\nu\widehat{[\mathfrak{i}}/\mathfrak{i}]}{\Gamma\,|\,\emptyset\vdash\mathsf{letrec}\,\,f\,\,=\,\,V\,:\,\mathsf{Nat}^{\mathfrak{r}}\to\nu[\mathfrak{r}/\mathfrak{i}]}$$

would allow to type

$$M_{bias} = \left(\text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ S \rightarrow \lambda y. f(y) \oplus_{\frac{2}{3}} \left(f(S S y) \right) \right) \mid 0 \rightarrow 0 \right\} \right) \, \underline{n}$$

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**90で

$$\begin{array}{c} \{\mid \Gamma \mid\} = \text{Nat} \\ \hspace{0.5cm} \mathfrak{i} \notin \Gamma \text{ and } \mathfrak{i} \text{ positive in } \nu \\ \hspace{0.5cm} \sum_{j \in J} \; p_{j}(\mid \mathfrak{s}_{j}\mid) < 1 \text{ or } \sum_{j \in J} \; p_{j} < 1 \\ \\ \text{LetRec} \quad \frac{\Gamma \mid f \; : \; \left\{ \; \left(\text{Nat}^{\mathfrak{s}_{j}} \rightarrow \nu [\mathfrak{s}_{j}/\mathfrak{i}] \right)^{p_{j}} \; \mid \; j \in J \; \right\} \vdash V \; : \; \text{Nat}^{\widehat{\mathfrak{i}}} \rightarrow \nu [\widehat{\mathfrak{i}}/\mathfrak{i}]}{\Gamma \mid \emptyset \vdash \text{letrec } f \; = \; V \; : \; \text{Nat}^{\mathfrak{r}} \rightarrow \nu [\mathfrak{r}/\mathfrak{i}]} \\ \end{array}$$

would allow to type M_{nat} too:

$$M_{nat} = \left(\text{letrec } f = \lambda x.x \oplus_{\frac{1}{2}} S (f x) \right) 0$$

$$\begin{array}{c} \{\mid \Gamma \mid\} = \text{Nat} \\ \hspace{0.5cm} \mathfrak{i} \notin \Gamma \text{ and } \mathfrak{i} \text{ positive in } \nu \\ \hspace{0.5cm} \sum_{j \in J} \; p_{j}(\mid \mathfrak{s}_{j}\mid) < 1 \text{ or } \sum_{j \in J} \; p_{j} < 1 \\ \\ \text{LetRec} \quad \frac{\Gamma \mid f \; : \; \left\{ \; (\text{Nat}^{\mathfrak{s}_{j}} \rightarrow \nu [\mathfrak{s}_{j}/\mathfrak{i}])^{p_{j}} \; \mid \; j \in J \; \right\} \vdash V \; : \; \text{Nat}^{\widehat{\mathfrak{i}}} \rightarrow \nu [\widehat{\mathfrak{i}}/\mathfrak{i}]}{\Gamma \mid \emptyset \vdash \text{letrec } f \; = \; V \; : \; \text{Nat}^{\mathfrak{r}} \rightarrow \nu [\mathfrak{r}/\mathfrak{i}]} \\ \end{array}$$

But how to cope with

$$M_{unb} = \left(\text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ S \rightarrow \lambda y. f(y) \oplus_{\frac{1}{2}} \left(f(S \, S \, y) \right) \right) \mid 0 \rightarrow 0 \, \right\} \right) \, \underline{n}$$

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**90で

$$\{|\Gamma|\} = \mathsf{Nat}$$

$$\mathfrak{i} \notin \Gamma \text{ and } \mathfrak{i} \text{ positive in } \nu$$

$$\left\{ \left(\mathsf{Nat}^{\mathfrak{s}_j} \to \nu[\mathfrak{s}_j/\mathfrak{i}] \right)^{p_j} \mid j \in J \right\} \text{ induces an AST sized walk}$$

$$\mathsf{LetRec} \qquad \frac{\Gamma \mid f : \left\{ \left(\mathsf{Nat}^{\mathfrak{s}_j} \to \nu[\mathfrak{s}_j/\mathfrak{i}] \right)^{p_j} \mid j \in J \right\} \vdash V : \mathsf{Nat}^{\widehat{\mathfrak{i}}} \to \nu[\widehat{\mathfrak{i}}/\mathfrak{i}]}{\Gamma \mid \emptyset \vdash \mathsf{letrec} \ f = V : \mathsf{Nat}^{\mathfrak{r}} \to \nu[\mathfrak{r}/\mathfrak{i}]}$$

solves the problem for

$$M_{unb} = \left(\text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ S \rightarrow \lambda y. f(y) \oplus_{\frac{1}{2}} \left(f(SSy) \right) \right) \mid 0 \rightarrow 0 \right\} \right) \, \underline{n}$$

by deferring to an external PTIME procedure the convergence checking.

- 4 ロ ト 4 昼 ト 4 種 ト 4 種 ト ■ 9 Q (C)

Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine. Higher-order symbols occur at most once. Why? Consider:

$$\textit{M}_{\textit{naff}} \hspace{2mm} = \hspace{2mm} \mathsf{letrec} \hspace{2mm} f \hspace{2mm} = \hspace{2mm} \lambda x.\mathsf{case} \hspace{2mm} x \hspace{2mm} \mathsf{of} \hspace{2mm} \left\{ \hspace{2mm} \mathsf{S} \to \lambda y. f(y) \oplus_{\frac{2}{3}} \left(f(\mathtt{S} \hspace{2mm} \mathtt{S} \hspace{2mm} y) ; \hspace{2mm} f(\mathtt{S} \hspace{2mm} \mathtt{S} \hspace{2mm} y) \right) \hspace{2mm} \middle| \hspace{2mm} 0 \to 0 \hspace{2mm} \right\}$$

and recall that its affine version was AST. Some reductions:

$$M_{naff}$$
 (S0) \rightarrow_{v}^{*} 0
 M_{naff} (S0) \rightarrow_{v}^{*} M_{naff} (SS0); M_{naff} (SS0)
 \rightarrow_{v}^{*} M_{naff} (S0); M_{naff} (SS0)
 \rightarrow_{v}^{*} M_{naff} 0; M_{naff} (SS0)
 \rightarrow_{v}^{*} 0; M_{naff} (SS0)
 \rightarrow_{v}^{*} M_{naff} (SS0)
 M_{naff} (S0) \rightarrow_{v}^{*} M_{naff} (SSS0); M_{naff} (SS0); M_{naff} (SS0)
 \rightarrow_{v}^{*} 0

Generalized random walks and the necessity of affinity

Tree of recursive calls:

Leftmost edges have probability $\frac{2}{3}$; rightmost ones $\frac{1}{3}$.

Generalized random walks and the necessity of affinity

Local shape

$$[i_1 \cdots i_k]$$

$$[i_1 \cdots i_k - 1] \quad [i_1 \cdots i_k + 1 \quad i_k + 1]$$

when $i_k > 1$, and

$$[i_{1} \cdots i_{k-1} \ 1]$$

$$[i_{1} \cdots i_{k-1}] \ [i_{1} \cdots i_{k-1} \ 2 \ 2]$$

else. Leaves are all labeled with [0].

The rightmost branch always increases the sum $i_1 + \cdots + i_k$ by at least 3 \rightarrow non AST random walk.

4 D > 4 P > 4 E > 4 E > E = 4940

Key points

- Affine type system
- Distribution types
- Sized walks induced by the letrec rule and solved by an external PTIME procedure

Theorem (Subject reduction)

Let $n \in \mathbb{N}$, and $\{(M_i : \mu_i)^{p_i} \mid i \in I\}$ be a closed typed distribution.

Suppose that $\{(M_i)^{p_i} \mid i \in I\} \rightarrow_v^n \{(N_j)^{p_j'} \mid j \in J\}$ then there exists a closed typed distribution $\{(L_k : \nu_k)^{p_k''} \mid k \in K\}$ such that

- $\bullet \mathbb{E}\left((M_i : \mu_i)^{p_i}\right) = \mathbb{E}\left((L_k : \nu_k)^{p_k''}\right),$
- and that $\left[(L_k)^{p_k''} \mid k \in K \right]$ is a pseudo-representation of $\left\{ (N_j)^{p_j'} \mid j \in J \right\}$.

Theorem (Subject reduction)

Let $n \in \mathbb{N}$, and $\{(M_i : \mu_i)^{p_i} \mid i \in I\}$ be a closed typed distribution. Suppose that $\{(M_i)^{p_i} \mid i \in I\} \rightarrow_v^n \{(N_j)^{p_j'} \mid j \in J\}$ then there exists a closed typed distribution $\{(L_k : \nu_k)^{p_k''} \mid k \in K\}$ such that

- $\bullet \mathbb{E}\left((M_i:\mu_i)^{p_i}\right) = \mathbb{E}\left((L_k:\nu_k)^{p_k''}\right),$
- and that $\left[(L_k)^{p_k''} \mid k \in K \right]$ is a pseudo-representation of $\left\{ (N_j)^{p_j'} \mid j \in J \right\}$.

Theorem (Subject reduction)

Let $n \in \mathbb{N}$, and $\{(M_i : \mu_i)^{p_i} \mid i \in I\}$ be a closed typed distribution. Suppose that $\{(M_i)^{p_i} \mid i \in I\} \rightarrow_v^n \{(N_j)^{p_j'} \mid j \in J\}$ then there exists a closed typed distribution $\{(L_k : \nu_k)^{p_k''} \mid k \in K\}$ such that

- $\bullet \mathbb{E}\left(\left(M_i:\mu_i\right)^{p_i}\right) = \mathbb{E}\left(\left(L_k:\nu_k\right)^{p_k''}\right),$
- and that $\left[(L_k)^{p_k''} \mid k \in K \right]$ is a pseudo-representation of $\left\{ (N_j)^{p_j'} \mid j \in J \right\}$.

Theorem (Subject reduction)

Let $n \in \mathbb{N}$, and $\{(M_i : \mu_i)^{p_i} \mid i \in I\}$ be a closed typed distribution. Suppose that $\{(M_i)^{p_i} \mid i \in I\} \rightarrow_v^n \{(N_j)^{p_j'} \mid j \in J\}$ then there exists a closed typed distribution $\{(L_k : \nu_k)^{p_k''} \mid k \in K\}$ such that

- $\bullet \mathbb{E}((M_i : \mu_i)^{p_i}) = \mathbb{E}((L_k : \nu_k)^{p_k''}),$
- and that $\left[(L_k)^{p_k''} \mid k \in K \right]$ is a pseudo-representation of $\left\{ (N_j)^{p_j'} \mid j \in J \right\}$.

Theorem (Subject reduction)

Let $n \in \mathbb{N}$, and $\{(M_i : \mu_i)^{p_i} \mid i \in I\}$ be a closed typed distribution. Suppose that $\{(M_i)^{p_i} \mid i \in I\} \rightarrow_v^n \{(N_j)^{p_j'} \mid j \in J\}$ then there exists a closed typed distribution $\{(L_k : \nu_k)^{p_k''} \mid k \in K\}$ such that

- $\mathbb{E}((M_i : \mu_i)^{p_i}) = \mathbb{E}((L_k : \nu_k)^{p_k''}),$
- and that $\left[(L_k)^{p_k''} \mid k \in K \right]$ is a pseudo-representation of $\left\{ (N_j)^{p_j'} \mid j \in J \right\}$.

Theorem (Typing soundness)

If $\Gamma \mid \Theta \vdash M : \mu$, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

Next step: look for the type inference (decidable again??)

Thank you for your attention!

Theorem (Typing soundness)

If $\Gamma \mid \Theta \vdash M : \mu$, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

Next step: look for the type inference (decidable again??)

Thank you for your attention!

Theorem (Typing soundness)

If $\Gamma \mid \Theta \vdash M : \mu$, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

Next step: look for the type inference (decidable again??)

Thank you for your attention!