
Soundness in negotiations.

J. Esparza1 D. Kuperberg1,2 A. Muscholl1,2,3 I. Walukiewicz1,3

1TU Munich, 2IAS, 3LaBRI,CNRS

Automata, Logic, and Games
Communicating, Distributed and Parameterized Systems

Singapore 22/08/2016

Introduction

Negotiations [Desel, Esparza ’13]

model multiparty distributed cooperation,

better complexity than alternative models (Petri Nets),

embeds natural concepts: soundness, race properties,...

This paper:

study of different restrictions on the model,

complexity of deciding soundness, concurrency relationships

application to workflow analysis for programs

The negotiation model

Negotiations involve a set of processes, which must decide on
outcomes according to a fixed structure.
The model builds on the notion of atomic negotiation or node.

p1 p2 p3 p4 p5
n:

This node n involves 5 processes p1, . . . , p5.
If all five are ready to engage, the node can be fired : the processes
agree on an outcome and move on.

A negotiation N consists of

a set of processes Proc,

a set of nodes N,

a domain function dom : N → P(Proc),

a set of outcomes R,

a transition table δ : N × R × Proc → P(N).

The negotiation model

Negotiations involve a set of processes, which must decide on
outcomes according to a fixed structure.
The model builds on the notion of atomic negotiation or node.

p1 p2 p3 p4 p5
n:

This node n involves 5 processes p1, . . . , p5.
If all five are ready to engage, the node can be fired : the processes
agree on an outcome and move on.

A negotiation N consists of

a set of processes Proc,

a set of nodes N,

a domain function dom : N → P(Proc),

a set of outcomes R,

a transition table δ : N × R × Proc → P(N).

Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.

Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.

Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.

Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.

Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.

Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.

The Soundness problem

Soundness property

Soundness:
Every partial run can be completed into an accepting run.
Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim:
INPUT: A negotiation N = (N,Proc,R, δ).
OUTPUT: Is N sound ?

Problem:
Configuration: Proc → P(N)
→ Number of configurations exponential in |N |
→ Runs can have exponential length.

Soundness property

Soundness:
Every partial run can be completed into an accepting run.
Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim:
INPUT: A negotiation N = (N,Proc,R, δ).
OUTPUT: Is N sound ?

Problem:
Configuration: Proc → P(N)
→ Number of configurations exponential in |N |
→ Runs can have exponential length.

Soundness property

Soundness:
Every partial run can be completed into an accepting run.
Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim:
INPUT: A negotiation N = (N,Proc,R, δ).
OUTPUT: Is N sound ?

Problem:
Configuration: Proc → P(N)
→ Number of configurations exponential in |N |
→ Runs can have exponential length.

Subclasses of negotiations

Soundness problem PSPACE-complete in general [DE ’13].

Complexity of the soundness problem for classes of negotiations?

Natural Restrictions on negotiations:

Deterministic: All processes are deterministic.

Weakly non-deterministic: All nodes involve at least one
deterministic process.

Acyclic: No cycle in the transition graph between nodes.

Theorem (DE ’14)

Deciding soundness is in PTIME for deterministic negotiations.

Subclasses of negotiations

Soundness problem PSPACE-complete in general [DE ’13].

Complexity of the soundness problem for classes of negotiations?

Natural Restrictions on negotiations:

Deterministic: All processes are deterministic.

Weakly non-deterministic: All nodes involve at least one
deterministic process.

Acyclic: No cycle in the transition graph between nodes.

Theorem (DE ’14)

Deciding soundness is in PTIME for deterministic negotiations.

Results on the complexity of the soundness problem

Theorem (EKMW ’16)

Deciding soundness is in PTIME for acyclic weakly
non-deterministic negotiations.

Main tool used in the proof: the Omitting Theorem.

Theorem (EKMW ’16)

It can be decided in PTIME if for a given deterministic, acyclic,
and sound negotiation N and two sets P ⊆ N × R and B ⊆ N,
there is a successful run of N containing P and omitting B.

Proof: Via a game argument.

General interest: characterize the important parts of a negotiation.

Soundness problem for bigger classes

What happens if we drop restrictions in the previous results ?
Dropping weak non-determinism:

Theorem (EKMW ’16)

The soundness problem for acyclic negotiations is coNP-complete.

Dropping acyclicity for a milder constraint:

Theorem (EKMW ’16)

The soundness problem for det-acyclic (very) weakly
non-deterministic negotiations is coNP-complete.

Det-acyclicity: deterministic processes are acyclic.
In this context, it is enough to prevent cycles in actual runs.

Soundness problem for bigger classes

What happens if we drop restrictions in the previous results ?
Dropping weak non-determinism:

Theorem (EKMW ’16)

The soundness problem for acyclic negotiations is coNP-complete.

Dropping acyclicity for a milder constraint:

Theorem (EKMW ’16)

The soundness problem for det-acyclic (very) weakly
non-deterministic negotiations is coNP-complete.

Det-acyclicity: deterministic processes are acyclic.
In this context, it is enough to prevent cycles in actual runs.

Applications of sound negotations

Race Property

Race Problem:
INPUT: a sound negotiation N , and two nodes n,m of N .
OUTPUT: can n and m be concurrently enabled ?

standard question for concurrent systems

used for guaranteeing predictable behaviours

inherently parallel property, hard to work with linearizations

Theorem (EKMW ’16)

The race problem is

NLOGSPACE-complete for deterministic acyclic negotiations,

in PTIME for deterministic negotiations.

Race Property

Race Problem:
INPUT: a sound negotiation N , and two nodes n,m of N .
OUTPUT: can n and m be concurrently enabled ?

standard question for concurrent systems

used for guaranteeing predictable behaviours

inherently parallel property, hard to work with linearizations

Theorem (EKMW ’16)

The race problem is

NLOGSPACE-complete for deterministic acyclic negotiations,

in PTIME for deterministic negotiations.

Workflow Analysis

Application of negotiations: analyze the workflow of programs.
We add global variables that can be affected by nodes via
operations: alloc(x), read(x), write(x), dealloc(x).

Acyclic deterministic negotiations with variables formalize
data-flow problems from the literature [van der Aalst et al, ’09]:

Well-defined behaviour: no concurrent operations on the
same variable,

No redundancy: allocated variables are used,

Clean memory: allocated variables are deallocated.

Theorem (EKMW ’16)

All these properties can be checked in PTIME on data-flows.

Exponential improvement on [van der Aalst et al, ’09]. Proof using
the Omitting Theorem.

Workflow Analysis

Application of negotiations: analyze the workflow of programs.
We add global variables that can be affected by nodes via
operations: alloc(x), read(x), write(x), dealloc(x).

Acyclic deterministic negotiations with variables formalize
data-flow problems from the literature [van der Aalst et al, ’09]:

Well-defined behaviour: no concurrent operations on the
same variable,

No redundancy: allocated variables are used,

Clean memory: allocated variables are deallocated.

Theorem (EKMW ’16)

All these properties can be checked in PTIME on data-flows.

Exponential improvement on [van der Aalst et al, ’09]. Proof using
the Omitting Theorem.

Conclusion

Soundness problem for negotiations:

PTIME for acyclic weakly non-deterministic

coNP-complete for mild relaxations

Race problem for sound negotiations:

NLOGSPACE-complete for deterministic acyclic,

PTIME for deterministic.

Data-flow analysis:

modelisation with deterministic acyclic negotiations,

PTIME algorithms for standard problems on data-flows.

Omitting problem for sound negotiations

PTIME for deterministic acylic negotiations

used for Soundness problem and Data-flow analysis.

