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Introduction

Negotiations [Desel, Esparza ’13]

model multiparty distributed cooperation,

better complexity than alternative models (Petri Nets),

embeds natural concepts: soundness, race properties,...

This paper:

study of different restrictions on the model,

complexity of deciding soundness, concurrency relationships

application to workflow analysis for programs



The negotiation model

Negotiations involve a set of processes, which must decide on
outcomes according to a fixed structure.
The model builds on the notion of atomic negotiation or node.

p1 p2 p3 p4 p5
n:

This node n involves 5 processes p1, . . . , p5.
If all five are ready to engage, the node can be fired : the processes
agree on an outcome and move on.

A negotiation N consists of

a set of processes Proc,

a set of nodes N,

a domain function dom : N → P(Proc),

a set of outcomes R,

a transition table δ : N × R × Proc → P(N).
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Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.
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p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.
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The Soundness problem



Soundness property

Soundness:
Every partial run can be completed into an accepting run.
Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim:
INPUT: A negotiation N = (N,Proc,R, δ).
OUTPUT: Is N sound ?

Problem:
Configuration: Proc → P(N)
→ Number of configurations exponential in |N |
→ Runs can have exponential length.
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Subclasses of negotiations

Soundness problem PSPACE-complete in general [DE ’13].

Complexity of the soundness problem for classes of negotiations?

Natural Restrictions on negotiations:

Deterministic: All processes are deterministic.

Weakly non-deterministic: All nodes involve at least one
deterministic process.

Acyclic: No cycle in the transition graph between nodes.

Theorem (DE ’14)

Deciding soundness is in PTIME for deterministic negotiations.
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Results on the complexity of the soundness problem

Theorem (EKMW ’16)

Deciding soundness is in PTIME for acyclic weakly
non-deterministic negotiations.

Main tool used in the proof: the Omitting Theorem.

Theorem (EKMW ’16)

It can be decided in PTIME if for a given deterministic, acyclic,
and sound negotiation N and two sets P ⊆ N × R and B ⊆ N,
there is a successful run of N containing P and omitting B.

Proof: Via a game argument.

General interest: characterize the important parts of a negotiation.



Soundness problem for bigger classes

What happens if we drop restrictions in the previous results ?
Dropping weak non-determinism:

Theorem (EKMW ’16)

The soundness problem for acyclic negotiations is coNP-complete.

Dropping acyclicity for a milder constraint:

Theorem (EKMW ’16)

The soundness problem for det-acyclic (very) weakly
non-deterministic negotiations is coNP-complete.

Det-acyclicity: deterministic processes are acyclic.
In this context, it is enough to prevent cycles in actual runs.
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Applications of sound negotations



Race Property

Race Problem:
INPUT: a sound negotiation N , and two nodes n,m of N .
OUTPUT: can n and m be concurrently enabled ?

standard question for concurrent systems

used for guaranteeing predictable behaviours

inherently parallel property, hard to work with linearizations

Theorem (EKMW ’16)

The race problem is

NLOGSPACE-complete for deterministic acyclic negotiations,

in PTIME for deterministic negotiations.
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Workflow Analysis

Application of negotiations: analyze the workflow of programs.
We add global variables that can be affected by nodes via
operations: alloc(x), read(x), write(x), dealloc(x).

Acyclic deterministic negotiations with variables  formalize
data-flow problems from the literature [van der Aalst et al, ’09]:

Well-defined behaviour: no concurrent operations on the
same variable,

No redundancy: allocated variables are used,

Clean memory: allocated variables are deallocated.

Theorem (EKMW ’16)

All these properties can be checked in PTIME on data-flows.

Exponential improvement on [van der Aalst et al, ’09]. Proof using
the Omitting Theorem.
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Conclusion

Soundness problem for negotiations:

PTIME for acyclic weakly non-deterministic

coNP-complete for mild relaxations

Race problem for sound negotiations:

NLOGSPACE-complete for deterministic acyclic,

PTIME for deterministic.

Data-flow analysis:

modelisation with deterministic acyclic negotiations,

PTIME algorithms for standard problems on data-flows.

Omitting problem for sound negotiations

PTIME for deterministic acylic negotiations

used for Soundness problem and Data-flow analysis.


