
On Hierarchical Communication Topologies in
the π-calculus

Emanuele D’Osualdo
1 Luke Ong2

1TU Kaiserslautern
2University of Oxford

CPDS 2016

The Problem 2

Goal: Automated analysis of concurrent systems.

Challenges:

Unbounded process creation + message passing

Dynamic reconfiguration of communication topology

Turing completeness

The Client/Server example 3

S[s] := !s(x).(νd.x〈d〉)

C[s,m] := s〈m〉 ‖ m(x).C[s,m]

E[s] := !τ.(νm.C[s,m])

νs.(S[s] ‖ E[s])

[Illustration of evolution of topology in the simulator]

Property of interest: mailboxes are bounded by 1

Typical abstractions ignore the topology: the property cannot
be proven

Alternatively we can prove the property using suitable
inductive invariants

An inductive invariant 5

* *

*
*

The picture represents a set of configurations: each bubble can
be cloned any number of times

The invariant contains the initial configuration: instantiate
once the outer bubble and zero times each inner bubble

The invariant is closed under reductions

The invariant satisfies the property: there is at most one
message in each mailbox

Problem: such invariants do not always exist for arbitrary π-terms

Solution: there is a fragment of π-calculus for which such invariants
always exist

Depth boundedness 7

If the simple paths of the reachable terms have bounded length,
the initial term is Depth Bounded

If a system is Depth Bounded then some semantic properties are
decidable

termination
coverability

One of the most expressive fragments of π-calculus to date

On Boundedness in Depth in the π-calculus
R. Meyer, 2008

Undecidability 8

Depth boundedness is undecidable!

And checking if a term is bounded in depth by a given k
has non primitive recursive complexity

We need more structure: Hierarchical systems.

Key contribution: a type system to check/infer if a system is
hierarchical.

Undecidability 8

Depth boundedness is undecidable!

And checking if a term is bounded in depth by a given k
has non primitive recursive complexity

We need more structure: Hierarchical systems.

Key contribution: a type system to check/infer if a system is
hierarchical.

Undecidability 8

Depth boundedness is undecidable!

And checking if a term is bounded in depth by a given k
has non primitive recursive complexity

We need more structure: Hierarchical systems.

Key contribution: a type system to check/infer if a system is
hierarchical.

Example Hierarchy 9

server

mailb

data

T

Example Hierarchy 9

server

mailb

data

T

Example Hierarchy 9

server

mailb

data

T

Example Hierarchy 9

server

mailb

data

T

Example Hierarchy 9

server

mailb

data

T

Types 10

S[s] := !s(x).(ν(d : data).x〈d〉)

C[s,m] := s〈m〉 ‖ m(x).C[s,m]

E[s] := !τ.(ν(m :mailb

[data]

).C[s,m])

ν(s : server

[mailb[data]]

).(S[s] ‖ E[s])

Types 10

S[s] := !s(x).(ν(d : data).x〈d〉)

C[s,m] := s〈m〉 ‖ m(x).C[s,m]

E[s] := !τ.(ν(m :mailb[data]).C[s,m])

ν(s : server[mailb[data]]).(S[s] ‖ E[s])

T-shapedness 11

νa.νb.νc.(P[a] ‖ Q[a, b] ‖ R[c, a])

because at least one of its presentations respects T

a

b

c

P[a] Q[a, b] R[c, a]

b

a

P[a] Q[a, b] c

R[c, a]

a

P[a] b

Q[a, b]

c

R[c, a]

t1

t2

T

T-shapedness 11

νa.νb.νc.(P[a] ‖ Q[a, b] ‖ R[c, a]) ≡ νb.νa.(P[a] ‖ Q[a, b] ‖ νc.R[c, a])

because at least one of its presentations respects T

a

b

c

P[a] Q[a, b] R[c, a]

b

a

P[a] Q[a, b] c

R[c, a]

a

P[a] b

Q[a, b]

c

R[c, a]

t1

t2

T

T-shapedness 11

νa.νb.νc.(P[a] ‖ Q[a, b] ‖ R[c, a]) ≡ νa.(P[a] ‖ νb.Q[a, b] ‖ νc.R[c, a])

because at least one of its presentations respects T

a

b

c

P[a] Q[a, b] R[c, a]

b

a

P[a] Q[a, b] c

R[c, a]

a

P[a] b

Q[a, b]

c

R[c, a]

t1

t2

T

T-shapedness 11

ν(a : t1).ν(b : t2).ν(c : t2).(P[a] ‖ Q[a, b] ‖ R[c, a])

because at least one of its presentations respects T

a : t1

b : t2

c : t2

P[a] Q[a, b] R[c, a]

b : t2

a : t1

P[a] Q[a, b] c : t2

R[c, a]

a : t1

P[a] b : t2

Q[a, b]

c : t2

R[c, a]

t1

t2

T

T-shapedness 11

ν(a : t1).ν(b : t2).ν(c : t2).(P[a] ‖ Q[a, b] ‖ R[c, a])

because at least one of its presentations respects T

a : t1

b : t2

c : t2

P[a] Q[a, b] R[c, a]

b : t2

a : t1

P[a] Q[a, b] c : t2

R[c, a]

a : t1

P[a] b : t2

Q[a, b]

c : t2

R[c, a]

t1

t2

T

T-shapedness 11

ν(a : t1).ν(b : t2).ν(c : t2).(P[a] ‖ Q[a, b] ‖ R[c, a])

because at least one of its presentations respects T

a : t1

b : t2

c : t2

P[a] Q[a, b] R[c, a]

b : t2

a : t1

P[a] Q[a, b] c : t2

R[c, a]

a : t1

P[a] b : t2

Q[a, b]

c : t2

R[c, a]

t1

t2

T

T-shapedness 11

ν(a : t1).ν(b : t2).ν(c : t2).(P[a] ‖ Q[a, b] ‖ R[c, a])

because at least one of its presentations respects T

a : t1

b : t2

c : t2

P[a] Q[a, b] R[c, a]

b : t2

a : t1

P[a] Q[a, b] c : t2

R[c, a]

a : t1

P[a] b : t2

Q[a, b]

c : t2

R[c, a]

t1

t2

T

T-shapedness 11

ν(a : t1).ν(b : t2).ν(c : t2).(P[a] ‖ Q[a, b] ‖ R[c, a]) is T-shaped

because at least one of its presentations respects T

a : t1

b : t2

c : t2

P[a] Q[a, b] R[c, a]

b : t2

a : t1

P[a] Q[a, b] c : t2

R[c, a]

a : t1

P[a] b : t2

Q[a, b]

c : t2

R[c, a]

t1

t2

T

The Client/Server example is T-shaped 12

server

mailb

data

T

server

mailb

data

Every reachable term is T-shaped

(but note that the communication topology is not a tree)

The Client/Server example is T-shaped 12

server

mailb

data

T

server

mailb

data

Every reachable term is T-shaped

(but note that the communication topology is not a tree)

Hierarchical systems 13

Definition

P is hierarchical

iif

∃T finite . ∀Q. P →∗ Q =⇒ Q is T-shaped

(Hierarchical = T-shapedness is invariant)

Non hierarchical terms 14

There are terms for which T-shapedness is not an invariant, for any
finite T : if the term is not depth-bounded, one can reach forests of
unbounded height

a : t

b : t

> height(T)

Designing a type system 15

Proposition

Hierarchical =⇒ Depth-bounded

Problem: Being hierarchical is still an undecidable property.

Solution: But now we have more structure, which we exploit
to design a type system such that

If Γ `T P then

P is T-shaped and P → Q =⇒ Q is T-shaped

Designing a type system 15

Proposition

Hierarchical =⇒ Depth-bounded

Problem: Being hierarchical is still an undecidable property.

Solution: But now we have more structure, which we exploit
to design a type system such that

If Γ `T P then

P is T-shaped and P → Q =⇒ Q is T-shaped

Designing a type system 15

Proposition

Hierarchical =⇒ Depth-bounded

Problem: Being hierarchical is still an undecidable property.

Solution: But now we have more structure, which we exploit
to design a type system such that

If Γ `T P then

P is T-shaped and P → Q =⇒ Q is T-shaped

Standard reductions 16

S = a〈b〉.S′ R = a(x).R′

a

b

RS

νa.
(
(νb.S) ‖ R

)

a
b

RS

νa.νb.
(
S ‖ R

)

a
b

R′S′

νa.νb.(S′ ‖ R′[b/x])

≡ →

≡ →

T-shaped reductions 17

S = a〈b〉.S′ R = a(x).(R′mig︸︷︷︸
uses x

‖ R′¬mig)

a

b

RS

a

b

R′

¬mig
S′

R′

mig

→

νa.
(
(νb.S) ‖ R

)
→ νa.

(
νb.(S′ ‖ R′mig[b/x]) ‖ R′¬mig

)

T-shaped reductions are special 18

b

a(x).Pa〈b〉

a

b

P
¬mig

P
mig

a

→

The Type System 19

a : ta[τx] ∈ Γ Γ, x : τx `T νX.
∏

i∈IAi

base(τx) <T ta ∨
(
∀i ∈ I. Miga(x).P (i) =⇒ base(Γ(fn(Ai) \ {a})) <T ta

)
Γ `T a(x).νX.

∏
i∈IAi

In

∀i ∈ I. Γ, X `T Ai

∀i ∈ I. ∀x : τx ∈ X. x /P i =⇒ base(Γ(fn(Ai))) <T base(τx)

Γ `T νX.
∏

i∈IAi

Par

∀i ∈ I. Γ `T πi.Pi

Γ `T
∑

i∈Iπi.Pi
Choice

Γ `T A

Γ `T !A
Repl

Γ `T P

Γ `T τ.P
Tau

a : ta[τb] ∈ Γ b : τb ∈ Γ Γ `T Q

Γ `T a〈b〉.Q
Out

Soundness 20

Subject reduction

If Γ `T P and P → Q, then Γ `T Q

Theorem

If Γ `T P and P is T-shaped =⇒ P is hierarchical

When Γ `T P and P is T-shaped,
we say P is typably hierarchical.

Soundness 20

Subject reduction

If Γ `T P and P → Q, then Γ `T Q

Theorem

If Γ `T P and P is T-shaped =⇒ P is hierarchical

When Γ `T P and P is T-shaped,
we say P is typably hierarchical.

Soundness 20

Subject reduction

If Γ `T P and P → Q, then Γ `T Q

Theorem

If Γ `T P and P is T-shaped =⇒ P is hierarchical

When Γ `T P and P is T-shaped,
we say P is typably hierarchical.

Type Inference 21

The type system:

type checking: decidable in P

type inference: decidable in NP

first type system inferring topological properties

Implementation available at
github.com/bordaigorl/jamesbound

github.com/bordaigorl/jamesbound

Expressivity 22

PN
CCS!

Typably Hier.

Terminating

Hierarchical

Depth-Bounded

π-calculus

Decidable
coverability

Undecidable
membership

Decidable
membership

Undecidable
reachability

Expressivity 22

PN
CCS!

Typably Hier.

Terminating

Hierarchical

Depth-Bounded

π-calculus

Decidable
coverability

Undecidable
membership

Decidable
membership

Undecidable
reachability

Expressivity 22

PN
CCS!

Typably Hier.

Terminating

Hierarchical

Depth-Bounded

π-calculus

Decidable
coverability

Undecidable
membership

Decidable
membership

Undecidable
reachability

Expressivity 22

PN
CCS!

Typably Hier.

Terminating

Hierarchical

Depth-Bounded

π-calculus

Decidable
coverability

Undecidable
membership

Decidable
membership

Undecidable
reachability

Expressivity 22

PN
CCS!

Typably Hier.

Terminating

Hierarchical

Depth-Bounded

π-calculus

Decidable
coverability

Undecidable
membership

Decidable
membership

Undecidable
reachability

Expressivity 22

PN

CCS!

Typably Hier.

Terminating

Hierarchical

Depth-Bounded

π-calculus

Decidable
coverability

Undecidable
membership

Decidable
membership

Undecidable
reachability

Expressivity 22

PN
CCS!

Typably Hier.

Terminating

Hierarchical

Depth-Bounded

π-calculus

Decidable
coverability

Undecidable
membership

Decidable
membership

Undecidable
reachability

Summary and Future 23

Contributions:

Definition of hierarchical system

A type system for hierarchical systems

Hierarchical systems are expressive
but have decidable coverability & termination

Future work:

use typing failures to do smart abstractions

make the type system more precise
applications to

• protocol verification
• concurrent heap manipulating programs verification

Thank you!

@bordaigorl
emanueledosualdo.com

Appendix

Verification of Depth Bounded systems 26

Coverability

Decidable for depth bounded systems via WSTS

P

Init

B[b]A[b] C

�ery

B[b]A[b] C RS[c, b]
∃

≤

Verification of Depth Bounded systems 26

Coverability

Decidable for depth bounded systems via WSTS

P

Init B[b]A[b] C

�ery

B[b]A[b] C RS[c, b]
∃

≤

Verification of Depth Bounded systems 26

Coverability

Decidable for depth bounded systems via WSTS

P

Init B[b]A[b] C

�ery

B[b]A[b] C RS[c, b]
∃

≤

Verification of Depth Bounded systems 26

Coverability Decidable for depth bounded systems via WSTS

P

Init B[b]A[b] C

�ery

B[b]A[b] C RS[c, b]
∃

≤ wqo

π-calculus 27

Syntax:

P 3 P,Q ::= 0 | νx.P | P1 ‖ P2 | M | !M process

M ::= M +M | π.P choice

π ::= a(x) | a〈b〉 | τ prefix

Normal form:

Pnf 3 N ::= νx1. · · · νxn.(A1 ‖ · · · ‖ Am)

A ::= π1.N1 + · · ·+ πn.Nn | !(π1.N1 + · · ·+ πn.Nn)

Depth 28

The nesting of restrictions of a term is given by the function

nestν(M) := nestν(!M) := nestν(0) := 0

nestν(νx.P) := 1 + nestν(P)

nestν(P ‖ Q) := max(nestν(P),nestν(Q)).

The depth of a term is defined as the minimal nesting of restrictions
in its congruence class:

depth(P) := min {nestν(Q) | P ≡ Q}

A term P is depth-bounded if there exists k ∈ N such that for each
Q ∈ Reach(P), depth(Q) ≤ k.

Soundness argument 29

S = a〈b〉.S′ R = a(x).(R′mig︸︷︷︸
uses x

‖ R′¬mig)

na

nb

nRnS

Soundness argument 29

S = a〈b〉.S′ R = a(x).(R′mig︸︷︷︸
uses x

‖ R′¬mig)

na

nb

pRpS

∈ S′

∈ R′mig

∈ R′¬mig

Soundness argument 29

S = a〈b〉.S′ R = a(x).(R′mig︸︷︷︸
uses x

‖ R′¬mig)

na

nb

pRpS

∈ S′

∈ R′mig

∈ R′¬mig

Soundness argument 29

S = a〈b〉.S′ R = a(x).(R′mig︸︷︷︸
uses x

‖ R′¬mig)

na

nb

pRpS

∈ S′

∈ R′mig

∈ R′¬mig

	The Problem
	Hierarchical Systems
	Type System

	Results and applications
	Appendix
	Coverability
	Basic definitions
	Soundness

