Hitting Families of Schedules

Dmitry Chistikov¹,2, Rupak Majumdar¹, Filip Niksic ${ }^{1}$

${ }^{1}$ Max Planck Institute for Software Systems (MPI-SWS), Germany ${ }^{2}$ University of Oxford, UK

Ninjas at a conference banquet

A banquet is complete if for every pair of ninjas (i, \mathbf{j}), there's a course served to ninja i before ninja \mathbf{j}. How many courses make a banquet complete?

Ninjas at a conference banquet

Two courses suffice:

1

2

n

Ninjas at a conference banquet

What if ninjas form a hierarchy?
A master is always served before their student.

Ninjas at a conference banquet

Again, two courses suffice:

Ninjas at a conference banquet

What if instead of pairs we consider triplets of ninjas?
A banquet is 3-complete if for every triplet of ninjas ($\mathbf{i}, \mathbf{j}, \mathbf{k}$), there's a course served to ninja \mathbf{i} before \mathbf{j}, and \mathbf{j} before \mathbf{k}.

Ninjas at a conference banquet

What if instead of pairs we consider triplets of ninjas?
admissible
A banquet is 3-complete if for every triplet of ninjas ($\mathbf{i}, \mathbf{j}, \mathbf{k}$), there's a course served to ninja \mathbf{i} before \mathbf{j}, and \mathbf{j} before \mathbf{k}.

Ninjas at a conference banquet

What if instead of pairs we consider triplets of ninjas?
admissible
A banquet is 3-complete if for every triplet of ninjas ($\mathbf{i}, \mathbf{j}, \mathbf{k}$), there's a course served to ninja \mathbf{i} before \mathbf{j}, and \mathbf{j} before \mathbf{k}.

Naive approach with $\mathbf{2 n}$ courses:
for each i@\{1,..., n\}:
serve ancestry line to i; ldfs the rest serve ancestry line to i; rdfs the rest

Ninjas at a conference banquet

What if instead of pairs we consider triplets of ninjas?
admissible
A banquet is 3-complete if for every triplet of ninjas ($\mathbf{i}, \mathbf{j}, \mathbf{k}$), there's a course served to ninja \mathbf{i} before \mathbf{j}, and \mathbf{j} before \mathbf{k}.

Naive approach with $\mathbf{2 n}$ courses:
for each i@\{1,..., n\}:
serve ancestry line to i; ldfs the rest serve ancestry line to i; rdfs the rest

Can be done with $\mathbf{O}(\log \mathbf{n})$ courses!

From ninjas to concurrent systems

ninjas
hierarchy
courses
d-complete banquet

events partial order
schedules
d-hitting family of schedules

d-hitting families of schedules

Given a poset of events, a schedule hits a d-tuple of events $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{\mathbf{d}}\right)$ if it executes the events in the order $\mathbf{e}_{1}<\ldots<\mathbf{e}_{d}$.

Given a poset of events, a family of schedules \mathbf{F} is d-hitting if for every admissible d-tuple of events there is a schedule in \mathbf{F} that hits it.

Why d?

Empirically: Many bugs involve small number of events-bug depth d
[Lu et al. ASPLOS '08] [Burckhardt et al. ASPLOS '10] [Jensen et al. OOPSLA '15] [Qadeer et al. TACAS '05]

- $d=2$: order violation
- $d=3$: atomicity violation

A d-hitting family of schedules provides a notion of coverage: it hits any bug of depth d.

Moreover, for certain kinds of partial orders we can explicitly construct small d-hitting families.

Contributions

© The notion of d-hitting families of schedules
© For antichains with n elements, existence of hitting families of size $\mathbf{O}(\exp (\mathbf{d}) \cdot \log \mathbf{n})$

- For trees of height h :
- $d=3$: explicit construction of hitting families of size $\mathbf{4 h}$ (optimal)
- $d>3$: explicit construction of hitting families of size $\mathbf{O}\left(\exp (\mathbf{d}) \cdot \mathbf{h}^{\mathbf{d}-1}\right)$

Contributions

© The notion of d-hitting families of schedules

6. For antichains with n elements, existence of hitting families of size $\mathbf{O}(\exp (\mathrm{d}) \cdot \log \mathbf{n})$

- For trees of height h :
- $d=3$: explicit construction of hitting families of size $\mathbf{4 h}$ (optimal)
- $d>3$: explicit construction of hitting families of size $\mathbf{O}\left(\exp (\mathbf{d}) \cdot \mathbf{h}^{\mathbf{d}-1}\right)$

Why trees?

Trees arise from a simple fire-and-forget model of asynchronous programs.

3-hitting families for trees

admissible (a,b,c)

3-hitting families for trees

admissible (a,b,c)

3-hitting families for trees

$$
\begin{aligned}
& \text { admissible }(a, b, c) \\
& d=\operatorname{lca}(a, c) \quad(\text { could be a itself })
\end{aligned}
$$

3-hitting families for trees

$$
\begin{aligned}
& \text { admissible }(a, b, c) \\
& d=\operatorname{lca}(a, c) \quad(\text { could be a itself })
\end{aligned}
$$

3-hitting families for trees

$$
\begin{aligned}
& \text { admissible }(a, b, c) \\
& d=\operatorname{lca}(a, c) \quad \text { (could be a itself) }
\end{aligned}
$$

3-hitting families for trees

admissible (a,b,c)
$d=\operatorname{lca}(a, c) \quad$ (could be a itself)
dfs blocking right@i; dfs the rest

3-hitting families for trees

admissible (a,b,c)
$d=\operatorname{lca}(a, c) \quad$ (could be a itself)
dfs blocking right@i; dfs the rest dfs blocking left@i; dfs the rest

3-hitting families for trees

admissible (a,b,c)
$d=\operatorname{lca}(a, c) \quad$ (could be a itself)
dfs blocking right@i; dfs the rest dfs blocking left@i; dfs the rest

3-hitting families for trees

admissible (a,b,c)
$\mathrm{d}=\operatorname{Ica}(\mathrm{a}, \mathrm{c}) \quad$ (could be a itself)
ldfs blocking right@i; ldfs the rest ldfs blocking left@i; ldfs the rest rdfs blocking right@i; rdfs the rest rdfs blocking left@i; rdfs the rest

3-hitting families for trees

admissible (a,b,c)
$d=\operatorname{lca}(a, c) \quad(c o u l d$ be a itself)
for each i@\{0,..,h-1\}:
ldfs blocking right@i; ldfs the rest ldfs blocking left@i; ldfs the rest rdfs blocking right@i; rdfs the rest rdfs blocking left@i; rdfs the rest

3-hitting families for trees

$$
\begin{aligned}
& \text { admissible (a,b,c) } \\
& d=\text { lca(a,c) (could be a itself) } \\
& \text { for each i@\{0,..., h-1\}: } \\
& \text { ldfs blocking right@i; ldfs the rest } \\
& \text { ldfs blocking left@i; ldfs the rest } \\
& \text { rdfs blocking right@i; rdfs the rest } \\
& \text { rdfs blocking left@i; rdfs the rest } \\
& \text { Total: 4h schedules } \\
& \text { (4•log } \mathbf{n} \text { for a balanced tree) }
\end{aligned}
$$

d-hitting families for $\mathrm{d} \geq 4$

d-hitting families for $d \geq 4$

d-hitting families for $\mathrm{d} \geq 4$

d-hitting families for $\mathrm{d} \geq 4$

admissible $\left(x_{1}, \ldots, x_{d}\right)$
$\mathrm{D}=$ Ica-closure $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right) \quad$ (an ordered tree)
$\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}$ - levels of D's internal nodes

d-hitting families for $\mathrm{d} \geq 4$

admissible ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}$)
$\mathrm{D}=$ Ica-closure $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right) \quad$ (an ordered tree)
$\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}$ - levels of D's internal nodes
π - schedule of D that hits $\left(x_{1}, \ldots, x_{d}\right)$
($D, i_{1}, \ldots, i_{k}, \pi$) is a pattern:

- determines a partition of the tree
- by scheduling parts according to π, determines a schedule that hits $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right)$
height h

d-hitting families for $\mathrm{d} \geq 4$

admissible ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}$)
$\mathrm{D}=$ Ica-closure $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right) \quad$ (an ordered tree)
$\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}$ - levels of D's internal nodes
π - schedule of D that hits $\left(x_{1}, \ldots, x_{d}\right)$
($D, i_{1}, \ldots, i_{k}, \pi$) is a pattern:

- determines a partition of the tree
- by scheduling parts according to π, determines a schedule that hits $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right)$
for each pattern:
schedule according to pattern

d-hitting families for $d \geq 4$

Claim. For any nodes $x_{1}, \ldots, x_{d},|D| \leq 2 d-1$. Moreover, D has at most $d-1$ internal nodes.

Accounting:

- at most $\exp (\mathbf{d})$ ordered trees with $2 \mathrm{~d}-1$ nodes
- at most h $\mathbf{h}^{\text {d-1 }}$ choices for levels i_{1}, \ldots, i_{d-1}
- at most d! schedules π

Total: at most $\exp (\mathbf{d}) \cdot \mathbf{d}!\cdot \mathbf{h}^{\mathbf{d}-1}$ patterns

d-hitting families for $\mathrm{d} \geq 4$

Claim. For any nodes $x_{1}, \ldots, x_{d},|D| \leq 2 d-1$. Moreover, D has at most $d-1$ internal nodes.

Accounting:

- at most $\exp (\mathbf{d})$ ordered trees with $2 \mathrm{~d}-1$ nodes
- at most h $\mathbf{h}^{\text {d-1 }}$ choices for levels i_{1}, \ldots, i_{d-1}
- at most d! schedules π

Total: at most $\exp (\mathbf{d}) \cdot \mathbf{d}!\cdot \mathbf{h}^{\mathbf{d}-1}$ patterns
Note: For $d=3$, this is $O\left(h^{2}\right)$ instead of $O(h)$ schedules

From hitting families to systematic testing

Posets of events need not be static

- Use on-the-fly constructions as a heuristic

Beyond trees

- Our results extend to series-parallel graphs
- In general, even the case of d=2 is difficult (order dimension [Dushnik \& Miller, '41])

Unbalanced trees

- Height h can be close to number of nodes n
- Use domain-specific properties to first reduce the poset

Summary

© The notion of d-hitting families of schedules
© For antichains with n elements, existence of hitting families of size $\mathbf{O}(\exp (\mathbf{d}) \cdot \log \mathbf{n})$

- For trees of height h :
- $d=3$: explicit construction of hitting families of size $\mathbf{4 h}$ (optimal)
- $d>3$: explicit construction of hitting families of size $\mathbf{O}\left(\exp (\mathbf{d}) \cdot h^{d-1}\right)$
http://www.mpi-sws.org/~fniksic/

