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Temporal Reasoning

Church, 1957: Given a model M and MSO specification φ, check
M |= φ ? (Model-Checking Problem)

Pnueli, 1977: Linear Temporal Logic (LTL)

Pnueli-Lichtenstein, 1985: LTL model checking

V. and Wolper, 1986: Automata-theoretic model checking – LTL to
Automata
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Temporal-Reasoning Tasks

LTL model checking

LTL → Büchi automata: explicit or symbolic

LTL → runtime monitors

LTL satisfiability checking
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LTL Satisfiability Checking

Debug specifications

Properties and their negations should be satisfiable.
Conjunction of properties should be satisfiable.

Efficient algorithms may be adaptable to model checking.

LTL satisfiability is a special case of LTL model checking.
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Explicit model checking

Gerth-Peled-V.-Wolper, 1995: Tableau-based construction from LTL
formulas to Büchi automata

Holzmann 1997: First explicit model checker – Spin

Since 1997: dozens of works on optimization of LTL-to-Büchi
translation

Duret-Lutz&Poitrenaud, 2004: Well-performing LTL-to-automata
translator – Spot
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LTL-Satisfiability Checking - History

Rozier&V., 2007:

Reduction to model checking
BDD-based symbolic checking (SMV) outperformed explicit checking
(Spot+Spin)

Aalta, 2013: best LTL satisfiability solver – explicit checking

NuXMV, 2015: SAT-based symbolic model checker outperforms Aalta

Question: What is best for LTL satisfiability – explicit vs symbolic.
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Motivation

SAT techniques have been widely used in symbolic model checking.

SAT techniques have not been used in explicit model checking.

Question: Can explicit model checking utilize SAT techniques as
well?
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Explicit vs Symbolic in MC

Sebastiani, Tonetta, Vardi, CAV’05:

“Symbolic Systems, Explicit Properties: On Hybrid Approaches for
LTL Symbolic Model Checking”

Hybrid approach dominates symbolic approach.
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Linear Temporal Logic (LTL)

φ ::= true | false | a | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | Xφ

Assume LTL formulas are in NNF (Negation Normal Form)

Xψ: ψ must hold in next step

ψ1Uψ2: ψ2 will eventually hold, and before that ψ1 must always hold.

ψ1Rψ2: ψ2 holds until “released” by ψ1

LTL formulas are interpreted over infinite traces
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LTL explicit model checking

Given model M a specification φ

1 consider M as automaton with no accepting condition.

2 Translate ¬φ its equivalent Büchi automaton A¬φ.

3 Check nonemptiness of M × A¬φ – if a witness trace τ is found then
M |= φ fails and τ is counterexample.

4 If M is universal (allowing all traces), then model checking ¬ψ checks
satisfiabilit of ψ.
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Aalta’s basic Algorithm

Generate automaton on the fly

Use DFS search to find a satisfying model as soon as possible

Sophisticated heuristics speed up search
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Automata Generation in Aalta

General idea: syntactic splitting
Consider φ to be a state:

1 Start from φ
2 φ⇔

∨
i (αi ∧ Xψi ): (φ, αi , ψi ) is a transition in the automaton.

For Until/Release formula: ψ1Uψ2 ≡ (ψ2 ∨ (ψ1 ∧ X (ψ1Uψ2))) and
ψ1Rψ2 ≡ (ψ2 ∧ (ψ1 ∨ X (ψ1Rψ2))).

3 For each new state ψi , repeat from step 2 until no new states are
generated.
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Automata Generation in Aalta

aUb

Figure: The Büchi automaton for aUb

aUb = (b ∧ XTrue) ∨ (a ∧ X (aUb))
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Bottleneck in Aalta

Transformation φ ≡
∨

i (αi ∧ Xψi ) may be very expensive

Exponential delay before we start generating states

Consequence: even short trace may be very expensive to generate
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This Work

From the current state, do not start by generating all next states.

Rather, generate states on the fly

Key: Use SAT to generate states on the fly.
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neXt Normal Form (XNF)

Definition 1 (neXt Normal Form)

An LTL formula φ is in neXt Normal Form (XNF) if all Until/Release
formulas are preceded by Next.

For example,

(b ∨ (a ∧ (X (aUb)))) is in XNF.

a ∧ (b ∨ cUa) is not in XNF.
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neXt Normal Form (XNF)

Theorem 1

For an LTL formula φ, there is an equivalent formula xnf (φ) that is in
XNF. Furthermore, the cost of the conversion is polynomial.

Proof.

1 xnf (φ) = φ if φ is true, false, a literal l or a Next formula Xψ;

2 xnf (φ) = xnf (φ1) ∧ xnf (φ2) if φ = (φ1 ∧ φ2);

3 xnf (φ) = xnf (φ1) ∨ xnf (φ2) if φ = (φ1 ∨ φ2);

4 xnf (φ) = (xnf (φ2)) ∨ (xnf (φ1) ∧ Xφ) if φ = (φ1Uφ2);

5 xnf (φ) = xnf (φ2) ∧ (xnf (φ1) ∨ Xφ) if φ = (φ1Rφ2).
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Treating LTL formulas Propositionally

For an LTL formula φ in XNF, consider each Next subformula as an
“atom”, then we can treat φ as a propositional formula, denoted as
φp.

φ = (b ∨ (a ∧ (X (aUb))))⇒ φp = b ∨ (a ∧ newVar), where
newVar = X (aUb).

φ = Xa ∨ (b ∧ X (cUb))⇒ φp = newVar1 ∨ (b ∧ newVar2), where
newVar1 = Xa and newVar2 = X (cUb)
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Generate states via SAT solver

Given an LTL formula φ,

Take xnf (φ)p as input for SAT solver

A satisfying assignment describes current state and a successor state

Let A be an assignment, then A = L ∪ X (A) ∪ ¬X (A), and
(φ,

∧
L,
∧
ψi )((Xψi ) ∈ X (A)) is a transition.

L is the set of literals in A.
X (A) is the set of Next formulas in A.
¬X (A) is the set of negative Next formulas in A, and is ignored, as
formulas are in NNF.
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Generate states via SAT solver

Consider φ = (aUb) ∧ (cU¬b).

xnf (φ) = (b ∨ (a ∧ X (aUb))) ∧ (¬b ∨ (c ∧ X (cU¬b)))

SAT solver may give us an assignment of
{a,¬b, c ,X (aUb),¬X (cU¬b)}
Assignment indicates (φ, a ∧ ¬b ∧ c , (aUb)) is a transition.
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Advantages of Approach

We go from syntactic splitting to semantic splitting, leveraging power
of SAT solvers

Generate states on-the-fly.

Search can be guided by adding constraints to formulas submittd to
SAT solver
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Syntactic vs. Semantic Splitting: an Old Debate

Beth, 1955: propositional tableaux – syntactic splitting

Roth, 1966: ATPG – syntatic splitting

David-Putnam-Logemann-Loveland, 1958-1963: DPLL (now CDCL) –
semantic splitting

Final Verdict: semantic splitting wins!

V., 1989: modal and temporal satisfiability can be based on top of
propositional SAT solving.
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Searching for a Satisfying Trace

A DFS lasso search is necessary to find a satisfying trace

All states may have to be explored for unsatisfiable cases

Heuristics are used to speed up search in both satisfiable and
unsatisfiable cases
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Application to LTL satisfiability checking

Table: Experimental results on the Schuppan-collected benchmarks. Each cell lists
a tuple 〈t, n〉 where t is the total checking time (in seconds), and n is the total
number of unsolved formulas.

Formula type ls4 TRP++
NuXmv-
BMCINC

Aalta v1.2
NuXmv-
IC3-Klive

Aalta v2.0

/acacia/example 155 0 192 0 1 0 1 0 8 0 1 0

/acacia/demo-v3 68 0 2834 38 3 0 660 0 30 0 3 0

/acacia/demo-v22 60 0 67 0 1 0 2 0 4 0 1 0

/alaska/lift 2381 27 15602 254 1919 26 4084 63 867 5 1431 18

/alaska/szymanski 27 0 283 4 1 0 1 0 2 0 1 0

/anzu/amba 5820 92 6120 102 536 7 2686 40 1062 8 928 4

/anzu/genbuf 2200 30 7200 120 782 11 3343 54 1350 13 827 4

/rozier/counter 3934 62 4491 44 3865 64 3928 60 3988 65 2649 40

/rozier/formulas 167 0 37533 523 1258 19 1372 20 664 0 363 0

/rozier/pattern 2216 38 15450 237 1505 8 8 0 3252 17 8 9 0

/schuppan/O1formula 2193 34 2178 35 14 0 2 0 95 0 2 0

/schuppan/O2formula 2284 35 2566 41 1781 28 2 0 742 7 2 0

/schuppan/phltl 1771 27 1793 29 1058 15 1233 21 753 11 767 13

/trp/N5x 144 0 46 0 567 9 309 0 187 0 15 0

/trp/N5y 448 10 95 1 2768 46 116 0 102 0 16 0

/trp/N12x 3345 52 45739 735 3570 58 768 48 705 0 175 0

/trp/N12y 3811 56 19142 265 4049 67 7413 110 979 0 154 0

/forobots 990 0 1303 0 1085 18 2280 32 37 0 524 0

Total 32014 463 163142 2428 24769 376 31208 450 14261 126 7868 79
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Application to LTL satisfiability checking

Total formulas checked: 7448

IC3-Klive is more than twice as fast as Aalta 1.2

Aalta 2.0 is almost twice as fast as IC3-Klive

No other approach is competitive

Truth in Advertising: IC3-Klive is faster on unsatisfiable formulas.
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Experiments on Random-Conjunction Formulas

For propery-based design, need also to check that conjunction of
temporal properties is satisfiable.

RC (n) =
∧

1≤i≤n Pi

Pi : randomly chosen specification-pattern formulas1 (3000
random-conjunction formulas tested)

1http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
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Experiments on Random-Conjunction Formulas

Figure: Results for LTL-satisfiability checking on random-conjunction formulas.
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Handling LTL assertions

By replacing SAT solver with SMT solver, we can also handle
assertional LTL.

Consider the formula φ = (F (k = 1) ∧ F (k = 2)).

If we use a SAT solver, we can obtain an assignment such as
A = {(k = 1), (k = 2)}, which is consistent propositionally, but
inconsistent theory-wise.
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SAT vs SMT

Figure: Results for LTL-satisfiability checking on
∧

1≤i≤n F (k = i).
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In Conclusion

We proposed a SAT-based explicit LTL reasoning framework.

We applied to LTL-satisfiability checking, and got a best-of-breed
LTL-Satisfiability solver.

We adapted to LTL assertional formulas, getting an exponential
performance improvement.

Future Work: Extend to other LTL-reasoning tasks:
LTL-to-automata, LTL model checking, etc.
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