SAT-Based Explicit LTL Reasoning

Jianwen Li^{1,2} Shufang Zhu² Geguang Pu^2 Moshe Y. Vardi¹

1. Rice University

2. East China Normal University

August 22, 2016

- Church, 1957: Given a model M and MSO specification ϕ , check $M \models \phi$? (Model-Checking Problem)
- Pnueli, 1977: Linear Temporal Logic (LTL)
- Pnueli-Lichtenstein, 1985: LTL model checking
- V. and Wolper, 1986: Automata-theoretic model checking LTL to Automata

Temporal-Reasoning Tasks

- LTL model checking
- $\bullet\ LTL \rightarrow$ Büchi automata: explicit or symbolic
- LTL \rightarrow runtime monitors
- LTL satisfiability checking

LTL Satisfiability Checking

- Debug specifications
 - Properties and their negations should be satisfiable.
 - Conjunction of properties should be satisfiable.
- Efficient algorithms may be adaptable to model checking.
 - LTL satisfiability is a special case of LTL model checking.

- Gerth-Peled-V.-Wolper, 1995: Tableau-based construction from LTL formulas to Büchi automata
- Holzmann 1997: First explicit model checker Spin
- Since 1997: dozens of works on optimization of LTL-to-Büchi translation
- Duret-Lutz&Poitrenaud, 2004: Well-performing LTL-to-automata translator – Spot

LTL-Satisfiability Checking - History

• Rozier&V., 2007:

- Reduction to model checking
- BDD-based symbolic checking (SMV) outperformed explicit checking (Spot+Spin)
- Aalta, 2013: best LTL satisfiability solver explicit checking
- NuXMV, 2015: SAT-based symbolic model checker outperforms Aalta
- Question: What is best for LTL satisfiability explicit vs symbolic.

Motivation

- SAT techniques have been widely used in symbolic model checking.
- SAT techniques have not been used in explicit model checking.
- Question: Can explicit model checking utilize SAT techniques as well?

Sebastiani, Tonetta, Vardi, CAV'05:

- "Symbolic Systems, Explicit Properties: On Hybrid Approaches for LTL Symbolic Model Checking"
- Hybrid approach dominates symbolic approach.

 $\phi \ ::= \ true \mid \textit{false} \mid a \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi U \phi \mid X \phi$

Assume LTL formulas are in NNF (Negation Normal Form)

- $X\psi$: ψ must hold in next step
- $\psi_1 U \psi_2$: ψ_2 will eventually hold, and before that ψ_1 must always hold.
- $\psi_1 R \psi_2$: ψ_2 holds until "released" by ψ_1
- LTL formulas are interpreted over infinite traces

Given model M a specification ϕ

- **(**) consider *M* as automaton with no accepting condition.
- 2 Translate $\neg \phi$ its equivalent Büchi automaton $A_{\neg \phi}$.
- Oteck nonemptiness of M × A_{¬φ} − if a witness trace τ is found then M ⊨ φ fails and τ is counterexample.
- If *M* is universal (allowing all traces), then model checking ¬ψ checks satisfiabilit of ψ.

- Generate automaton on the fly
- Use DFS search to find a satisfying model as soon as possible
- Sophisticated heuristics speed up search

General idea: syntactic splitting Consider ϕ to be a state:

 $\ \, {\rm Start \ from} \ \phi$

2 $\phi \Leftrightarrow \bigvee_i (\alpha_i \wedge X\psi_i)$: (ϕ, α_i, ψ_i) is a transition in the automaton.

- For Until/Release formula: $\psi_1 U \psi_2 \equiv (\psi_2 \lor (\psi_1 \land X(\psi_1 U \psi_2)))$ and $\psi_1 R \psi_2 \equiv (\psi_2 \land (\psi_1 \lor X(\psi_1 R \psi_2))).$
- For each new state \u03c6_i, repeat from step 2 until no new states are generated.

Automata Generation in Aalta

aUb

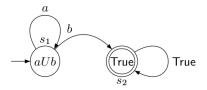


Figure: The Büchi automaton for aUb

$$aUb = (b \land XTrue) \lor (a \land X(aUb))$$

- Transformation $\phi \equiv \bigvee_i (\alpha_i \wedge X\psi_i)$ may be very expensive
- Exponential delay before we start generating states
- Consequence: even short trace may be very expensive to generate

- From the current state, do not start by generating all next states.
- Rather, generate states on the fly
- Key: Use SAT to generate states on the fly.

Definition 1 (neXt Normal Form)

An LTL formula ϕ is in *neXt Normal Form* (XNF) if all Until/Release formulas are preceded by Next.

For example,

- $(b \lor (a \land (X(aUb))))$ is in XNF.
- $a \land (b \lor cUa)$ is not in XNF.

Theorem 1

For an LTL formula ϕ , there is an equivalent formula $xnf(\phi)$ that is in XNF. Furthermore, the cost of the conversion is polynomial.

Proof.

• $xnf(\phi) = \phi$ if ϕ is *true*, *false*, a literal *I* or a Next formula $X\psi$;

$$a xnf(\phi) = xnf(\phi_1) \wedge xnf(\phi_2) \text{ if } \phi = (\phi_1 \wedge \phi_2);$$

So $xnf(\phi) = xnf(\phi_1) \lor xnf(\phi_2)$ if $\phi = (\phi_1 \lor \phi_2)$;

•
$$xnf(\phi) = (xnf(\phi_2)) \lor (xnf(\phi_1) \land X\phi)$$
 if $\phi = (\phi_1 U \phi_2)$;

Treating LTL formulas Propositionally

- For an LTL formula ϕ in XNF, consider each Next subformula as an "atom", then we can treat ϕ as a propositional formula, denoted as ϕ^p .
- φ = (b ∨ (a ∧ (X(aUb)))) ⇒ φ^p = b ∨ (a ∧ newVar), where newVar = X(aUb).
- φ = Xa ∨ (b ∧ X(cUb)) ⇒ φ^p = newVar1 ∨ (b ∧ newVar2), where newVar1 = Xa and newVar2 = X(cUb)

Given an LTL formula ϕ ,

- Take $xnf(\phi)^p$ as input for SAT solver
- A satisfying assignment describes current state and a successor state
- Let A be an assignment, then $A = L \cup X(A) \cup \neg X(A)$, and $(\phi, \bigwedge L, \bigwedge \psi_i)((X\psi_i) \in X(A))$ is a transition.
 - L is the set of literals in A.
 - X(A) is the set of Next formulas in A.
 - $\neg X(A)$ is the set of negative Next formulas in A, and is ignored, as formulas are in NNF.

Generate states via SAT solver

- Consider $\phi = (aUb) \land (cU \neg b)$.
- $xnf(\phi) = (b \lor (a \land X(aUb))) \land (\neg b \lor (c \land X(cU \neg b)))$
- SAT solver may give us an assignment of {a,¬b, c, X(aUb), ¬X(cU¬b)}
- Assignment indicates $(\phi, a \land \neg b \land c, (aUb))$ is a transition.

- We go from *syntactic splitting* to *semantic splitting*, leveraging power of SAT solvers
- Generate states on-the-fly.
- Search can be guided by adding constraints to formulas submittd to SAT solver

Syntactic vs. Semantic Splitting: an Old Debate

- Beth, 1955: propositional tableaux syntactic splitting
- Roth, 1966: ATPG syntatic splitting
- David-Putnam-Logemann-Loveland, 1958-1963: DPLL (now CDCL) semantic splitting
- Final Verdict: semantic splitting wins!

V., 1989: modal and temporal satisfiability can be based on top of propositional SAT solving.

Searching for a Satisfying Trace

- A DFS lasso search is necessary to find a satisfying trace
- All states may have to be explored for unsatisfiable cases
- Heuristics are used to speed up search in both satisfiable and unsatisfiable cases

Application to LTL satisfiability checking

Table: Experimental results on the Schuppan-collected benchmarks. Each cell lists a tuple $\langle t, n \rangle$ where t is the total checking time (in seconds), and n is the total number of unsolved formulas.

Formula type		ł	TRP++		NuXmv- BMCINC		Aalta_v1.2		NuXmv- IC3-Klive		Aalta_v2.0	
	155 0											
/acacia/example	155	0	192	0	1	0	1	0	8	0	1	0
/acacia/demo-v3	68	0	2834	38	3	0	660	0	30	0	3	0
/acacia/demo-v22	60	0	67	0	1	0	2	0	4	0	1	0
/alaska/lift	2381	27	15602	254	1919	26	4084	63	867	5	1431	18
/alaska/szymanski	27	0	283	4	1	0	1	0	2	0	1	0
/anzu/amba	5820	92	6120	102	536	7	2686	40	1062	8	928	4
/anzu/genbuf	2200	30	7200	120	782	11	3343	54	1350	13	827	4
/rozier/counter	3934	62	4491	44	3865	64	3928	60	3988	65	2649	40
/rozier/formulas	167	0	37533	523	1258	19	1372	20	664	0	363	0
/rozier/pattern	2216	38	15450	237	1505	8	8	0	3252	17	89	0
/schuppan/O1formula	2193	34	2178	35	14	0	2	0	95	0	2	0
/schuppan/O2formula	2284	35	2566	41	1781	28	2	0	742	7	2	0
/schuppan/phltl	1771	27	1793	29	1058	15	1233	21	753	11	767	13
/trp/N5x	144	0	46	0	567	9	309	0	187	0	15	0
/trp/N5y	448	10	95	1	2768	46	116	0	102	0	16	0
/trp/N12x	3345	52	45739	735	3570	58	768	48	705	0	175	0
/trp/N12y	3811	56	19142	265	4049	67	7413	110	979	0	154	0
/forobots	990	0	1303	0	1085	18	2280	32	37	0	524	0
Total	32014	463	163142	2428	24769	376	31208	450	14261	126	7868	79

Jianwen Li, Shufang Zhu, Geguang Pu, Mosh

Application to LTL satisfiability checking

- Total formulas checked: 7448
- IC3-Klive is more than twice as fast as Aalta_1.2
- Aalta_2.0 is almost twice as fast as IC3-Klive
- No other approach is competitive
- Truth in Advertising: IC3-Klive is faster on unsatisfiable formulas.

Experiments on Random-Conjunction Formulas

- For propery-based design, need also to check that conjunction of temporal properties is satisfiable.
- $RC(n) = \bigwedge_{1 \le i \le n} P_i$
- *P_i*: randomly chosen *specification-pattern formulas*¹ (3000 random-conjunction formulas tested)

¹http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

Jianwen Li, Shufang Zhu, Geguang Pu, Mosh SAT-Based Explicit LTL Reasoning

Experiments on Random-Conjunction Formulas

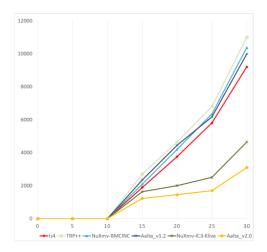
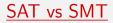


Figure: Results for LTL-satisfiability checking on random-conjunction formulas.

Jianwen Li, Shufang Zhu, **Geguang Pu**, Mosł

SAT-Based Explicit LTL Reasoning

- By replacing SAT solver with SMT solver, we can also handle *assertional LTL*.
- Consider the formula $\phi = (F(k = 1) \land F(k = 2)).$
- If we use a SAT solver, we can obtain an assignment such as
 A = {(k = 1), (k = 2)}, which is consistent propositionally, but
 inconsistent theory-wise.



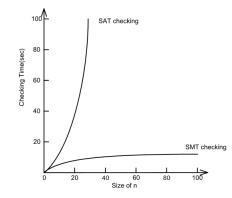


Figure: Results for LTL-satisfiability checking on $\bigwedge_{1 \le i \le n} F(k = i)$.

August 22, 2016 24 / 25

In Conclusion

- We proposed a SAT-based explicit LTL reasoning framework.
- We applied to LTL-satisfiability checking, and got a *best-of-breed* LTL-Satisfiability solver.
- We adapted to LTL assertional formulas, getting an *exponential* performance improvement.
- Future Work: Extend to other LTL-reasoning tasks: LTL-to-automata, LTL model checking, etc.