
SAT-Based Explicit LTL Reasoning

Jianwen Li1,2 Shufang Zhu2 Geguang Pu2 Moshe Y. Vardi1

1. Rice University

2. East China Normal University

August 22, 2016

Temporal Reasoning

Church, 1957: Given a model M and MSO specification φ, check
M |= φ ? (Model-Checking Problem)

Pnueli, 1977: Linear Temporal Logic (LTL)

Pnueli-Lichtenstein, 1985: LTL model checking

V. and Wolper, 1986: Automata-theoretic model checking – LTL to
Automata

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 2 / 25

Temporal-Reasoning Tasks

LTL model checking

LTL → Büchi automata: explicit or symbolic

LTL → runtime monitors

LTL satisfiability checking

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 3 / 25

LTL Satisfiability Checking

Debug specifications

Properties and their negations should be satisfiable.
Conjunction of properties should be satisfiable.

Efficient algorithms may be adaptable to model checking.

LTL satisfiability is a special case of LTL model checking.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 4 / 25

Explicit model checking

Gerth-Peled-V.-Wolper, 1995: Tableau-based construction from LTL
formulas to Büchi automata

Holzmann 1997: First explicit model checker – Spin

Since 1997: dozens of works on optimization of LTL-to-Büchi
translation

Duret-Lutz&Poitrenaud, 2004: Well-performing LTL-to-automata
translator – Spot

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 5 / 25

LTL-Satisfiability Checking - History

Rozier&V., 2007:

Reduction to model checking
BDD-based symbolic checking (SMV) outperformed explicit checking
(Spot+Spin)

Aalta, 2013: best LTL satisfiability solver – explicit checking

NuXMV, 2015: SAT-based symbolic model checker outperforms Aalta

Question: What is best for LTL satisfiability – explicit vs symbolic.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 6 / 25

Motivation

SAT techniques have been widely used in symbolic model checking.

SAT techniques have not been used in explicit model checking.

Question: Can explicit model checking utilize SAT techniques as
well?

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 7 / 25

Explicit vs Symbolic in MC

Sebastiani, Tonetta, Vardi, CAV’05:

“Symbolic Systems, Explicit Properties: On Hybrid Approaches for
LTL Symbolic Model Checking”

Hybrid approach dominates symbolic approach.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 8 / 25

Linear Temporal Logic (LTL)

φ ::= true | false | a | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | Xφ

Assume LTL formulas are in NNF (Negation Normal Form)

Xψ: ψ must hold in next step

ψ1Uψ2: ψ2 will eventually hold, and before that ψ1 must always hold.

ψ1Rψ2: ψ2 holds until “released” by ψ1

LTL formulas are interpreted over infinite traces

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 9 / 25

LTL explicit model checking

Given model M a specification φ

1 consider M as automaton with no accepting condition.

2 Translate ¬φ its equivalent Büchi automaton A¬φ.

3 Check nonemptiness of M × A¬φ – if a witness trace τ is found then
M |= φ fails and τ is counterexample.

4 If M is universal (allowing all traces), then model checking ¬ψ checks
satisfiabilit of ψ.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 10 / 25

Aalta’s basic Algorithm

Generate automaton on the fly

Use DFS search to find a satisfying model as soon as possible

Sophisticated heuristics speed up search

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 11 / 25

Automata Generation in Aalta

General idea: syntactic splitting
Consider φ to be a state:

1 Start from φ
2 φ⇔

∨
i (αi ∧ Xψi): (φ, αi , ψi) is a transition in the automaton.

For Until/Release formula: ψ1Uψ2 ≡ (ψ2 ∨ (ψ1 ∧ X (ψ1Uψ2))) and
ψ1Rψ2 ≡ (ψ2 ∧ (ψ1 ∨ X (ψ1Rψ2))).

3 For each new state ψi , repeat from step 2 until no new states are
generated.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 12 / 25

Automata Generation in Aalta

aUb

Figure: The Büchi automaton for aUb

aUb = (b ∧ XTrue) ∨ (a ∧ X (aUb))

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 12 / 25

Bottleneck in Aalta

Transformation φ ≡
∨

i (αi ∧ Xψi) may be very expensive

Exponential delay before we start generating states

Consequence: even short trace may be very expensive to generate

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 13 / 25

This Work

From the current state, do not start by generating all next states.

Rather, generate states on the fly

Key: Use SAT to generate states on the fly.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 14 / 25

neXt Normal Form (XNF)

Definition 1 (neXt Normal Form)

An LTL formula φ is in neXt Normal Form (XNF) if all Until/Release
formulas are preceded by Next.

For example,

(b ∨ (a ∧ (X (aUb)))) is in XNF.

a ∧ (b ∨ cUa) is not in XNF.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 15 / 25

neXt Normal Form (XNF)

Theorem 1

For an LTL formula φ, there is an equivalent formula xnf (φ) that is in
XNF. Furthermore, the cost of the conversion is polynomial.

Proof.

1 xnf (φ) = φ if φ is true, false, a literal l or a Next formula Xψ;

2 xnf (φ) = xnf (φ1) ∧ xnf (φ2) if φ = (φ1 ∧ φ2);

3 xnf (φ) = xnf (φ1) ∨ xnf (φ2) if φ = (φ1 ∨ φ2);

4 xnf (φ) = (xnf (φ2)) ∨ (xnf (φ1) ∧ Xφ) if φ = (φ1Uφ2);

5 xnf (φ) = xnf (φ2) ∧ (xnf (φ1) ∨ Xφ) if φ = (φ1Rφ2).

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 15 / 25

Treating LTL formulas Propositionally

For an LTL formula φ in XNF, consider each Next subformula as an
“atom”, then we can treat φ as a propositional formula, denoted as
φp.

φ = (b ∨ (a ∧ (X (aUb))))⇒ φp = b ∨ (a ∧ newVar), where
newVar = X (aUb).

φ = Xa ∨ (b ∧ X (cUb))⇒ φp = newVar1 ∨ (b ∧ newVar2), where
newVar1 = Xa and newVar2 = X (cUb)

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 16 / 25

Generate states via SAT solver

Given an LTL formula φ,

Take xnf (φ)p as input for SAT solver

A satisfying assignment describes current state and a successor state

Let A be an assignment, then A = L ∪ X (A) ∪ ¬X (A), and
(φ,

∧
L,
∧
ψi)((Xψi) ∈ X (A)) is a transition.

L is the set of literals in A.
X (A) is the set of Next formulas in A.
¬X (A) is the set of negative Next formulas in A, and is ignored, as
formulas are in NNF.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 17 / 25

Generate states via SAT solver

Consider φ = (aUb) ∧ (cU¬b).

xnf (φ) = (b ∨ (a ∧ X (aUb))) ∧ (¬b ∨ (c ∧ X (cU¬b)))

SAT solver may give us an assignment of
{a,¬b, c ,X (aUb),¬X (cU¬b)}
Assignment indicates (φ, a ∧ ¬b ∧ c , (aUb)) is a transition.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 17 / 25

Advantages of Approach

We go from syntactic splitting to semantic splitting, leveraging power
of SAT solvers

Generate states on-the-fly.

Search can be guided by adding constraints to formulas submittd to
SAT solver

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 18 / 25

Syntactic vs. Semantic Splitting: an Old Debate

Beth, 1955: propositional tableaux – syntactic splitting

Roth, 1966: ATPG – syntatic splitting

David-Putnam-Logemann-Loveland, 1958-1963: DPLL (now CDCL) –
semantic splitting

Final Verdict: semantic splitting wins!

V., 1989: modal and temporal satisfiability can be based on top of
propositional SAT solving.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 19 / 25

Searching for a Satisfying Trace

A DFS lasso search is necessary to find a satisfying trace

All states may have to be explored for unsatisfiable cases

Heuristics are used to speed up search in both satisfiable and
unsatisfiable cases

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 20 / 25

Application to LTL satisfiability checking

Table: Experimental results on the Schuppan-collected benchmarks. Each cell lists
a tuple 〈t, n〉 where t is the total checking time (in seconds), and n is the total
number of unsolved formulas.

Formula type ls4 TRP++
NuXmv-
BMCINC

Aalta v1.2
NuXmv-
IC3-Klive

Aalta v2.0

/acacia/example 155 0 192 0 1 0 1 0 8 0 1 0

/acacia/demo-v3 68 0 2834 38 3 0 660 0 30 0 3 0

/acacia/demo-v22 60 0 67 0 1 0 2 0 4 0 1 0

/alaska/lift 2381 27 15602 254 1919 26 4084 63 867 5 1431 18

/alaska/szymanski 27 0 283 4 1 0 1 0 2 0 1 0

/anzu/amba 5820 92 6120 102 536 7 2686 40 1062 8 928 4

/anzu/genbuf 2200 30 7200 120 782 11 3343 54 1350 13 827 4

/rozier/counter 3934 62 4491 44 3865 64 3928 60 3988 65 2649 40

/rozier/formulas 167 0 37533 523 1258 19 1372 20 664 0 363 0

/rozier/pattern 2216 38 15450 237 1505 8 8 0 3252 17 8 9 0

/schuppan/O1formula 2193 34 2178 35 14 0 2 0 95 0 2 0

/schuppan/O2formula 2284 35 2566 41 1781 28 2 0 742 7 2 0

/schuppan/phltl 1771 27 1793 29 1058 15 1233 21 753 11 767 13

/trp/N5x 144 0 46 0 567 9 309 0 187 0 15 0

/trp/N5y 448 10 95 1 2768 46 116 0 102 0 16 0

/trp/N12x 3345 52 45739 735 3570 58 768 48 705 0 175 0

/trp/N12y 3811 56 19142 265 4049 67 7413 110 979 0 154 0

/forobots 990 0 1303 0 1085 18 2280 32 37 0 524 0

Total 32014 463 163142 2428 24769 376 31208 450 14261 126 7868 79

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 21 / 25

Application to LTL satisfiability checking

Total formulas checked: 7448

IC3-Klive is more than twice as fast as Aalta 1.2

Aalta 2.0 is almost twice as fast as IC3-Klive

No other approach is competitive

Truth in Advertising: IC3-Klive is faster on unsatisfiable formulas.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 21 / 25

Experiments on Random-Conjunction Formulas

For propery-based design, need also to check that conjunction of
temporal properties is satisfiable.

RC (n) =
∧

1≤i≤n Pi

Pi : randomly chosen specification-pattern formulas1 (3000
random-conjunction formulas tested)

1http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 22 / 25

Experiments on Random-Conjunction Formulas

Figure: Results for LTL-satisfiability checking on random-conjunction formulas.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 22 / 25

Handling LTL assertions

By replacing SAT solver with SMT solver, we can also handle
assertional LTL.

Consider the formula φ = (F (k = 1) ∧ F (k = 2)).

If we use a SAT solver, we can obtain an assignment such as
A = {(k = 1), (k = 2)}, which is consistent propositionally, but
inconsistent theory-wise.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 23 / 25

SAT vs SMT

Figure: Results for LTL-satisfiability checking on
∧

1≤i≤n F (k = i).

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 24 / 25

In Conclusion

We proposed a SAT-based explicit LTL reasoning framework.

We applied to LTL-satisfiability checking, and got a best-of-breed
LTL-Satisfiability solver.

We adapted to LTL assertional formulas, getting an exponential
performance improvement.

Future Work: Extend to other LTL-reasoning tasks:
LTL-to-automata, LTL model checking, etc.

Jianwen Li, Shufang Zhu, Geguang Pu, Moshe Y. Vardi (Rice University)SAT-Based Explicit LTL Reasoning August 22, 2016 25 / 25

