Martin Hofmann

Institute for Informatics, LMU Munich

Workshop on Higher-Order Model Checking (HOMC)
Singapore, 21 September 2016

1/38

Motivation: Programming guidelines for secure
web-programming

v

Invoke the right sanitization function according to context
(FAST 2011)

Request appropriate authorization prior to data access
(HOFM 2015)

Check passwords

v

v

v

Avoid certain features in high-security context

v

Write log information at regular intervals

v

Eventually close open connections

2/38

Enforcing such guidelines with type systems

» Formulate guideline as finite automaton to be run on all
possible program traces of annotated program

» Use aspect-orientation to define instrumentation (with ghost
variables and special event-throwing instructions).

» Formulate type system capable of predicting outcome without
actually instrumenting the program and without actually
running the automaton.

This talk: focus on Biichi automata for infinitary behaviours.

3/38

State-of-the-art

» Aderhold & Mantel enforce guidelines with LTL model
checking,

» Annamaa & Vene devise string analysis against SQL injection.
Many other applications of static analysis to counter
particular threats.

» Grabowski, MH, Li use types based on finite automata to get
fine-grained string analysis to enforce sanitization policy

» Beringer, Grabowski, MH describe region-based
type-and-effect system for Java subsuming and certifying
various analysis notably points-to, alias, context-sensitive

> Jeffrey translates LTL into dependent types using first-order
semantics

» Vast body of work on model checking of pushdown systems

» Ong and Kobayashi give intersection type system equivalent to
model checking of mu-calculus against HO-pushdown systems.

4/38

Type system vs. model checking (very contentious)

» Type system naturally extends existing practice in Java / ML,
etc.

» Deals well with higher-order functions, modules, objects, etc.
without having to go through low-level encodings.

» Offers some feedback to users.

5/38

Conundrum with typing rules for infinite behaviours

Suppose a() issues an a event, b() issues a b event and that
GFb = (a*b)¥ is a (type-and-effect) type asserting “infinitely
many" b-events.

Consider the procedure
f()=a(): ()

Assuming f() : GFb we obtain a(); f() : aGFb (formally:
f(): GFbl a(); f() : aGFb hence f() : GFbt a(); f() : GFb since
aGFb and GFb describe the same language.

Thus, assuming a purported type (GFb) for a recursive call, we
were able to ascribe that very type for the procedure’s body.

Under the usual (Java, ML) typing rules, this suffices to establish
- f() : GFb (unconditionally) which is clearly wrong.

6/38

Our solution

If f() = e is a recursive procedure (with body e) derive a typing
f():Xfl—el T(Xf)

where T(X¢) is a type expression containing the type variable Xs.

Then conclude (unconditionally) - () : gfp X¢. T(X¢). In
particular, if T(Xf) = UU VX then gfp X¢. T(X¢) = V¥U U VY.

7/38

Traces

Let ¥ be a finite set of events. We denote =% the set of finite
and infinite sequences over X.

For expression e (assuming an ambient program) we write L. (e)
for the set of (finite!) traces of terminating executions of e, thus
w € L.(e) if the execution of e may terminate with finite trace w.
(“may” = for some initial store, input, non-deterministic choice,
etc.)

We write L<,(e) for the set of finite and infinite traces of
nonterminating executions of e.

These languages can be defined by a structured operational
semantics. We omit the details.

8/38

Policy automaton

We assume a Biichi automaton 2 and want to ascertain (using a
type system) that whenever w € L.(e) or w € L<,(e) then w is
accepted by L.

Finite words are accepted by the Biichi automaton by running it as
an NFA.

Example:

2 —(0_ 10

Finite words must end in b; infinite words must contain infinitely
many b.

9/38

Equivalence relation

On finite, nonempty, words one defines an equivalence relation
u~ v by

u~v <= Vq,d.(u:g—>q¢g <=v:qg—qg)A
(u:g—=Fqd ©vig—=Fd)
where u : g — ¢ indicates the existence of a path labelled v in A

from g to q' and where u: g —F¢ ¢’ indicates the existence of such
a path which in addition contains a final state.

One formally adds to the equivalence classes of ~ a class [¢] for
the empty word.

10/38

Example

b

Equivalence classes: [€] and [a] = (a+ b)*a and [b] = b and
[ab] = (a+ b)*b — [b].

We have [a][a] = [b][a] = [ab][a] = [a] and [b][b] = [b] and
[al[b] = [a][ab] = [b][ab] = [ab][b] = [ab][ab] = [ab].

Now (ab)“ € [ab][ab]¥ N [a][a]“, but [ab][ab]” # [a][a]* because
a¥ & [a][a]” \ [ab][ab]".

11/38

Abstraction of languages of finite words

Define M, = P(X*/ ~). For language L C ¥* define the
(“Nerode™) abstraction by

a(l)={U|UNL#D}

We have a concretization function
Y(U) = Uyey U so that o, form a
Galois connection.

The abstraction is faithful w.r.t. to
the policy automaton because L C
L(A) <= ~(a(L)) € L(A).

Thus, we can analyse finite traces on the level of the abstraction
without losing anything regarding acceptance or rejection by the
policy automaton.

This is the essence of our automata-based type system for finite
traces and strings (FAST2011).

12/38

The Buchi-abstraction

Let's do the same thing for infinite words. Classes <+ “Patches”
(= languages of the form UV* with U, V classes.)

Patches are similar to equivalence classes, but in general not
disjoint!

13/38

Theorem (Biichi)

If U,V are such classes then if w € L() and w € UV* then
uve C L(A).

For every word w € ¥=¥ there exist classes U, V with UV = U
and VV =V such that w € UV“.

14/38

Write C:= {(C,D) | C,D € QA CD = C,DD = D}.

In the example the set C is

{([e], [€]), (1], [¢]), (1], [a]), ([6], []), ([B]; [B]); ([bal. [€]),
([ba), [a]), ([ba], [ba])}.

For V C C define v(V) = Uy, v)er UV*.

15/38

Closed sets

Call V closed if UV Nv(V) # 0 and UV = U, VV = V implies
(U, V) € V. "If a patch meets the thing throw it in.”

We define M<,, (an infinitary cousin of M,) as the complete
lattice of closed sets.

In the example, the set
{([ba],[b])} is not closed; we
must add ([ba], [b]), ([£], [b]),
([b], [ba]), ([€], [b]), ([e], [ba]).

In fact, M, can be identified with a sublattice of M.

16/38

For L C ¥=¥ define a(L) as the least closed set containing
{(C,D)| CD = C,DD = D,CD* N L # ().

a(l)CV < LCH((V)

LC L) < a(L) C L)

17/38

Language operations on the level of the abstractions

The idea is to build types from the abstractions.

Essentially, the abstractions play the role of effects; the usual
machinery consisting of function types, regions, polymorphism,
..., can be built around them.

It remains, however, to match the language operations arising from
the typing rules on the level of the abstractions.

For concatenation, union, least fixpoints this is either obvious or
follows abstractly from the fact that we have a Galois connection.

Since, however, Galois connections do not in general commute
with greatest fixpoints, the case of w-iteration required a special
and nontrivial treatment:

18/38

Infinite iteration

We seek an operation (—)) so that for L C o* we have
(L) = (L)@ (x%)

It is tempting to define () (for U € M.,) as the greatest solution
of X =U - X. Then, however, the desired property above is not
true!

We rather put
U = a(r(U)*)
Note that this can be effectively computed from U.

The proof that (**) holds is still nontrivial and requires
Lemma

Let (L;)j>1 be a family of classes and put P = [[;-; Li C £=¥,
i.e., P comprises finite or infinite words of the form wiwsws . . .
where w; € L; for i > 1. There exist classes U,V € Q where
UV = U, VV =V such that P C UV"¥.

19/38

Typechecking & inference

We can use this to devise a type system with judgements of the
form I'g e : 7&(U, V) with U € M, and V € M.

It means that terminating executions of e in an environment
respecting [yield results of type 7 and their trace matches Uf.
Nonterminating executions (without result) match V. Exemplary

typing rule
r l_Q[€T & (L{1,V1)
[x:7 by e:m & (U, Vo)
MFglet x=eine:m & (Z/{l-UQ,VlUul'Vz)

(T-LET)

The typing rule for recursive procedures uses Ifp on the finitary
part and (—)“ on the infinitary part.

The typing rules are sound and even complete assuming that all
state dependencies of the control-flow are abstracted as
non-determinism.

Inference by constraint solving (over a finite domain!)

20/38

Fairness

Fairness is often used as an abstraction of timing constraints:

#define TIMEOUT 65536
while (true) {
i=0;
while (i++ < TIMEOUT && s !'= 0) {
unsigned int s = auth(); /* a(); */
Y /x cQ; */
work(); /* b(); */
}

~NOo o W N+ O

Show that line 6 is executed infinitely often assuming (fairness)
that the loop 3 always terminates.

21/38

Abstracted program

f=gib();f
g = if (*) (a(); g) else c()
We are then interested in the property “infinitely many b"

assuming that “infinitely often ¢" (fairness) or equivalently:
“infinitely many b or finitely many c.”

Policy automaton

22/38

Related work

» Higher-order model checking (Ong, Kobayashi et al): Type
system for p-calculus formulas on higher-order recursion

schemes.
» On traces Biichi is equally (actually more) powerful as
p-calculus.
» Once equivalence classes and patches are tabulated analysis is
inexpensive.

» Relationship with abstract interpretation.

» Work on infinitary semigroups (Pin, Wilke, et al). Recast
Biichi's result in terms of semigroups. Defines “Wilke
algebra” as semigroup with w-iteration. Our results generalise
Wilke algebras to lattices and abstract interpretation.

» Model checking pushdown systems. (Esparza, Bouajjani,
Schwoon)

» Type-based model checking (Skalka et al). Use type system to
derive pushdown system from complex program. Then use
“off-the-shelf” model checking to verify extracted pushdown
svstem \We hone to achieve bhetter inteoration & feedbhack

23/38

Higher-order functions

>

So long as higher-order functions are used only as “extended
macros” nothing essentially new happens:

Use type-and-effect system with function types of the form

u,y)
T — T2.

In addition: effect variables and regions to accommodate
interprocedural and pointer-sensitive analysis [Beringer,
Grabowski, H.]

The annotations U,V are the same as before provided that
recursive definitions are only at first order.

If we allow the recursive definition of higher-order functions
then new phenomena appear, e.g. trace languages beyond
Type-2.

Igor Walukiewicz: need to consider (w) tree languages to
handle this (private conversation in 2014).

Our new results (with Jérémy Ledent): no trees needed, but
some category theory.

24/38

Syntax for higher-order

» Simply-typed lambda calculus with one base type o
representing “commands”

» basic commands a: o forac X.

» conditionals: +: 0 — 0 — o (since we abstract guards
anyway we don't even have them for simplicity)

» sequential composition: ;: 0 — 0 — 0
» M\-abstraction and application,

» Recursion fix: (1 = 7) — 7.

25/38

Operational Semantics

We assume that the alphabet X contains all the basic commands
(“events”) and a special symbol v'; each unrolling of a recursive
definition emits a v'-symbol. In this way, traces of nonterminating
computations are always infinite. Thus,

» with each closed term e : o we associate L,(e) C *
representing finite terminating computations, e.g.
L.(a;a+ a) = {a, aa}.

» ...and L, C ¥ representing nonterminating computations.
We have in particular
L,(fix e e1...ex) = v Ly(e(fix e) e1...ek). E.g.
L, (fix(Ax.x) + fix(Ax.a; x)) = v¥ + (Va)*.

» As before, we can define these using smallstep reduction rules
and show that L, is given as a Ifp and L, as a gfp.

26/38

e := fix(A\f°7%\x%.a; f(b; x; c) + x)
Ly(ed)~a" ; Li(e)~{a"b"dc"|n> 0}

~ means without v

27/38

Denotational semantics

» With each type 7 associate complete lattices [7]. and [7].:
> [o]« = P(X*) and [o]. = P(T¥).
» [t — 7]« = [7]« = [7']« and
[T — 7w =[]« X [7]w = [7]w-
> Hr]]*/w = erdom(r) [r(x)]]*/w and
» With each term [- e : 7 we associate functions
[el. : [F]« = [7]. and [e]e, : [T x [[o = [7]e

Herein, = stands for monotone function space.

28/38

> [fix], = M.Ifp(F)
> [fix], = A(f, F).gfp(AX.F(Ifp(f), X))

| S

If e is a closed term of type o then [e]. = L.(e) and [e]., = L. (e).

29/38

Towards a finite abstraction

» As before, we have the finite lattices M, and M., with their
“ok” subsets ok, ,, C M,/ and we would like to know
whether o, /,([e]«/.,) € ok, -

» To this end, we need to extend M, and a,/, to higher
order.

> If we only had the finitary component this would not be too
hard, since Galois connections lift to (monotone) function
spaces and least fixpoints: M = M, and
MT%T’ = M = M‘r’

» But a does not commute with gfp :-(

30/38

Important observation at type o — o

Let us abbreviate [o]. = P(X*) by o and [o], = P(X¥) by O.
» We have [o — o], = 0 = o and
» and

[o—=oJu=0x0=0

but all the functions F in this lattice that actually occur as
denotations are linear in the sense that there exist A € O and
b: o0 = O such that

F(x,X) =AU b(x)X

31/38

» More generally, if u, v, w are lattices built up from o by x and
= then a function ® : u x (v = O) = O arising as the
[—]w-denotation of a term will have the form

®(x,X) = Xa.U(x,a) U |] V(x,a, b).X(b)
bev

Given x € u, X € v= 0, and a € w in order to compute “an
0", we can either not use X at all or apply it to v-arguments
and prefix the results. NB: V/(x, a, b) may be () (“switching
off a b").

32/38

A cartesian-closed category of linear maps

» Objects are pairs of sets A = (fin(A), arg(A)),

» Morphisms A — B are pairs of functions f = (fin(f), arg(f))
where fin(f) : fin(A) — fin(B) and

arg(f) : fin(A) — 08(B) 5 gare(B)xarg(A)
Here B# is short for A = B.

» arg(f) induces F : fin(A) x 022(A) — 0=(B) py

F(x,X) = Ab.arg(f)(x).1(b) U U arg(f)(x).2(b, a)X(a)
x€carg(A)

which is linear in X.

» Notice also that arg(f) is uniquely determined by an F
admitting such a presentation.

33/38

Product and function space

» fin(A x B) = fin(A) x fin(B) and
arg(A x B) = arg(A) + arg(B).
» For function space notice that a morphism f : A x B — C has
components
» fin(f) : fin(A) x fin(B) — fin(C), suggesting
fin(B=C) = fin(C)f®)) and (up to iso)
» arg(f) : fin(A) x fin(B) x arg(C) — O x 0*8A) x o*r&(B)
» This suggests arg(B= C) = fin(B) x arg(C) and in fact
» fin(B=C) = (fin(C) x oma(E)<are(C)yin(8)

» It is then possible to define application and A-abstraction and
in fact to show cartesian closure!

Recall that cartesian closure means a 1-1 correspondence between
Ax B — Cand A— B=C.

34/38

Fixpoints

» Consider a fixpoint operator fix : A=A — A. (For it to exist
we must move from sets to cpos or similar and monotone
functions.

» Must add “op” in various places:

arg(f) : fin(A) — 0¥8(B) i para(B)xarg(A)?
ﬁn(A:>B) = (ﬁn(B) X O&I‘g(B)Xarg(A)OP)ﬁn(A)

» The fixpoint equation fix(f) = f(fix(f)) becomes: for all
f € fin(A= A) and q € arg(A):
» xo := fin(fix)(f) = f(fin(fix)(f)).1,
» arg(fix)(f) = (U, m) where
» Uc Oarg(A) and m € Oarg(A)Xﬁn(A)OPXarg(A)"p
> U(q) = U, f(x)-2(q,9)U(q")
> m(q,Xl7qN):[X/SX/\qIIS
qlulU, f(x)-2(q,q")m(q’,x",q")
Where [¢] = if ¢ then {e} elsel.
» This dictates the definition of fix: Use Ifp for fin-part and m,
use w-product for U. Both trackable by abstraction!

35/38

The fixpoint combinator

For any object A = fin(A), arg(A) we have a fixpoint combinator
fix : A=A — A with
» fin(fix)(f € fin(A = A)) = lfp(Aa.f(a).1) =: xo
» arg(fix)(f € fin(A = A)) = (U, m) where
> ti=f(xp).2 € o¥e(A)xarg(A)”
U e 0ars(A)

>
» mc Oarg(A)Xﬁn(A)DPXarg(A)op
>
Ug)= |J tq,a)t(ar, @2)t(q2,a3). ..
q1,92,q3...
>
m(q.x',q)= | J t(qo, q1)t(q1, 92)t(92, 43) - - - t(qn—1, qn)

’

q1,92,43-..,4n=q

if x' < xg and 0 otherwise.

36/38

Results

Theorem: Ifp/gfp semantics matches operational semantics.

Theorem: the cartesian-closed category of linear maps based
on O, o0 is sound and complete w.r.t. Ifp/gfp semantics.

Theorem: the ccc of linear maps based on the finite lattices
M, and M, is sound w.r.t. linear maps and complete w.r.t.
abstracted properties, in particular L(2().

Corollary: Given a closed term e : o we have that

L.(e), L,(e) € L(A) iff the interpretation of e in the finite ccc
(computable!) is < a(L(2A)).

~ Type system whose types are morphisms in the finite ccc
(sound and complete) or portions thereof (sound).

37/38

Conclusion

» Extended automata-based type system for trace policies to
infinite traces.

» Defined an abstract domain from a given Biichi automaton
which may be of independent interest

» One of the first type systems for infinitary properties.

» Further extended to higher-order functions with general
recursion

» Solves an question left open in Walukiewicz and Salvati's
recent paper.

38/38

	Introduction and Motivation
	First-order case
	Main technical result for the first-order case
	Higher-order functions

