2. Streams and Coinductionexploiting circularity -

Jan Rutten

CWI Amsterdam & Radboud University Nijmegen

IMS, Singapore - 15 September 2016

Overview

- 1. Moessner's Theorem
- 2. Streams and coinduction
- 3. Formalising Moessner's Theorem
- 4. Proving Moessner's Theorem
- 5. Discussion

1. Moessner's Theorem

nat	1	2	3	4	5	6	7	8	9	10	11	12	
Drop ₂	1		3		5		7		9		11		
Σ	1	4	9	16	25	36							
nat ²	1 ²	2 ²	3 ²	4 ²	5 ²	6 ²							

nat
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 ...

 Drop2
 1
 3
 5
 7
 9
 11
 ...
 ...

$$\Sigma$$
 1
 4
 9
 16
 25
 36
 ...
 ...
 ...
 ...

 nat2
 12
 22
 32
 42
 52
 62
 ...

```
nat 1 2 3 4 5 6 7 8 9 10 11 12 ...

Drop_2 1 3 5 7 9 11 ...

\Sigma 1 4 9 16 25 36 ...

= nat<sup>2</sup> 1<sup>2</sup> 2<sup>2</sup> 3<sup>2</sup> 4<sup>2</sup> 5<sup>2</sup> 6<sup>2</sup> ...
```

nat
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 ...

 Drop3
 1
 2
 4
 5
 7
 8
 10
 11
 ...

$$\Sigma$$
 1
 3
 7
 12
 19
 27
 37
 48
 ...
 ...

 Drop2
 1
 7
 19
 37
 ...
 ...
 ...

 Σ
 1
 8
 27
 64
 ...
 ...
 ...
 ...

 nat3
 13
 23
 33
 43
 ...
 ...
 ...
 ...

```
nat 1 2 3 4 5 6 7 8 9 10 11 12 ···
Drop_3 1 2 4 5 7 8 10 11 ...
```

```
nat 1 2 3 4 5 6 7 8 9 10 11 12 ···
Drop_3 1 2 4 5 7 8 10 11 ...
    1 3 7 12 19 27 37 48 ...
```

nat
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 ...

 Drop3
 1
 2
 4
 5
 7
 8
 10
 11
 ...

$$\Sigma$$
 1
 3
 7
 12
 19
 27
 37
 48
 ...
 ...

 Drop2
 1
 7
 19
 37
 ...
 ...

 Σ
 1
 8
 27
 64
 ...

 Ξ
 1
 8
 27
 64
 ...

```
nat 1 2 3 4 5 6 7 8 9 10 11 12 ···
Drop_3 1 2 4 5 7 8 10 11 ...
    1 3 7 12 19 27 37 48 ...
Drop<sub>2</sub> 1 7 19 37 ...
\Sigma 1 8 27 64 \cdots
```

```
nat 1 2 3 4 5 6 7 8 9 10 11 12 ···
Drop_3 1 2 4 5 7 8 10 11 ...
     1 3 7 12 19 27 37 48 ...
Drop<sub>2</sub> 1 7 19
                    37
\Sigma 1 8 27 64 \cdots
nat^3 1^3 2^3 3^3 4^3 ...
```

```
nat 1 2 3 4 5 6 7 8 9 10 11 ···
Drop<sub>4</sub> 1 2 3 5 6 7
                              9 10 11 ...
    1 3 6 11 17 24 33 43 54 ...
Drop_3 1 3 11 17 33 43 67 81 ...
    1 4 15 32 65 108 175 ...
Drop<sub>2</sub> 1 15 65 175 ···
    1 16 81 256 ...
    = 1^4 2^4 3^4 4^4 \cdots
```

nat
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 ...

 Drop5
 1
 2
 3
 4
 6
 7
 8
 9
 11
 ...

$$\Sigma$$
 1
 3
 6
 10
 16
 23
 31
 40
 51
 ...

 etc.
 ...

 =
 15
 25
 35
 45
 ...

Moessner's Theorem: history

- Conjectured by A. Moessner (1951), first proved by O. Perron (1951), generalised by I. Paasche (1952) and H. Salie (1952).
- Proof in functional programming by R. Hinze (2008, 2011).
- First coinductive proof by M. Niqui and J.R. (2011).
- New proof using multivariate generating functions, by D. Kozen and A. Silva (2013).
- Formalisation in COQ of the coinductive proof of M. Niqui and J.R., by R. Krebbers, L. Parlant and A. Silva (2016).

Moessner's Theorem: history

- Today: a new coinductive proof (J.R. 2016, unpublished).
- Very simple, a student's exercise.
- We prove that streams are the same by showing that they behave the same.
- Cf. classical proofs use complicated bookkeeping, involving binomial coefficients and falling factorials.

2. Streams and coinduction

Streams of natural numbers

$$\bigvee_{\text{$\mathbb{N}\times\mathbb{N}^{\omega}$}}^{\mathbb{N}^{\omega}}\langle \mathsf{head}, \mathsf{tail}\rangle$$

where

head
$$(\sigma) = \sigma(0)$$

tail $(\sigma) = (\sigma(1), \sigma(2), \sigma(3), \ldots)$

for any stream $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots) \in \mathbb{N}^{\omega}$.

Streams of natural numbers

$$\bigvee_{\mathbb{N}\times\mathbb{N}^\omega}^{\mathbb{N}^\omega} \langle \mathsf{head}, \mathsf{tail} \rangle$$

where

$$\begin{array}{rcl} \mathsf{head}(\sigma) & = & \sigma(\mathsf{0}) \\ \mathsf{tail}(\sigma) & = & (\sigma(\mathsf{1}), \sigma(\mathsf{2}), \sigma(\mathsf{3}), \ldots) \end{array}$$

which we will typically write as

$$\operatorname{head}(\sigma) = \sigma(0)$$
 (initial value) $\operatorname{tail}(\sigma) = \sigma'$ (derivative)

Finality of streams

$$\begin{array}{c|c} \textbf{\textit{X}}--\stackrel{\exists!}{-} \textbf{\textit{h}} & \rightarrow \mathbb{N}^{\omega} \\ \forall \left\langle \mathsf{out},\mathsf{tr} \right\rangle & & \left\langle \mathsf{head},\mathsf{tail} \right\rangle \\ \mathbb{N} \times \textbf{\textit{X}}--- & \rightarrow \mathbb{N} \times \mathbb{N}^{\omega} \end{array}$$

The function *h*, defined by

$$h(x) = (out(x), out(tr(x)), out(tr(tr(x))), ...)$$

is the *unique* function making the diagram commute.

Streams and bisimulation

A relation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a **stream bisimulation** if

Equivalently, $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a bisimulation if for all $(\sigma, \tau) \in R$:

(i)
$$\sigma(0) = \tau(0)$$
 and

(ii)
$$(\sigma', \tau') \in R$$

Streams and bisimulation

A relation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a **stream bisimulation** if

Equivalently, $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a bisimulation if for all $(\sigma, \tau) \in R$:

$$(i)$$
 $\sigma(0) = \tau(0)$ and (ii) $(\sigma', \tau') \in R$

(ii)
$$(\sigma', \tau') \in F$$

Streams and coinduction

A relation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a bisimulation if for all $(\sigma, \tau) \in R$,

(i)
$$\sigma(0) = \tau(0)$$
 and

(ii)
$$(\sigma', \tau') \in R$$

Theorem [Coinduction proof principle]

Let $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ be a bisimulation. For all streams $\sigma, \tau \in \mathbb{N}^{\omega}$,

$$(\sigma, \tau) \in R \Rightarrow \sigma = \tau$$

Proof: straightforward, by showing that $\sigma(n) = \tau(n)$, for all $n \ge 0$, by induction on n.

Streams and coinduction

A relation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a bisimulation if for all $(\sigma, \tau) \in R$,

(i)
$$\sigma(0) = \tau(0)$$
 and

(ii)
$$(\sigma', \tau') \in R$$

Theorem [Coinduction proof principle]

Let $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ be a bisimulation. For all streams $\sigma, \tau \in \mathbb{N}^{\omega}$,

$$(\sigma, \tau) \in R \Rightarrow \sigma = \tau$$

Proof: straightforward, by showing that $\sigma(n) = \tau(n)$, for all $n \ge 0$, by induction on n.

Example

Define

$$\begin{split} \text{zip}: \mathbb{N}^\omega \times \mathbb{N}^\omega &\to \mathbb{N}^\omega \quad \text{ even}: \mathbb{N}^\omega \to \mathbb{N}^\omega \quad \text{ odd}: \mathbb{N}^\omega \to \mathbb{N}^\omega \\ \text{by} \\ &\text{zip}(\sigma,\tau) = (\sigma(0),\tau(0),\sigma(1),\tau(1),\sigma(2),\tau(2),\ldots) \\ &\text{even}(\sigma) = (\sigma(0),\sigma(2),\sigma(4),\ldots) \end{split}$$

Their initial values and derivatives satisfy

 $odd(\sigma) = (\sigma(1), \sigma(3), \sigma(5), \ldots)$

$$\begin{aligned} & \text{zip}(\sigma,\tau)(0) = \sigma(0) & \text{zip}(\sigma,\tau)' = \text{zip}(\tau,\sigma') \\ & \text{even}(\sigma)(0) = \sigma(0) & \text{even}(\sigma)' = \text{even}(\sigma'') \\ & \text{odd}(\sigma)(0) = \sigma(1) & \text{odd}(\sigma)' = \text{odd}(\sigma'') \end{aligned}$$

Example

Define

$$\begin{aligned} \text{zip}: \mathbb{N}^\omega \times \mathbb{N}^\omega \to \mathbb{N}^\omega & \text{even}: \mathbb{N}^\omega \to \mathbb{N}^\omega \end{aligned} \quad \text{odd}: \mathbb{N}^\omega \to \mathbb{N}^\omega \end{aligned}$$
 by

$$\begin{aligned} & \mathsf{zip}(\sigma,\tau) = (\sigma(0),\tau(0),\sigma(1),\tau(1),\sigma(2),\tau(2),\ldots) \\ & \mathsf{even}(\sigma) = (\sigma(0),\sigma(2),\sigma(4),\ldots) \\ & \mathsf{odd}(\sigma) = (\sigma(1),\sigma(3),\sigma(5),\ldots) \end{aligned}$$

Their initial values and derivatives satisfy:

$$\begin{aligned} & \text{zip}(\sigma,\tau)(0) = \sigma(0) & \text{zip}(\sigma,\tau)' = \text{zip}(\tau,\sigma') \\ & \text{even}(\sigma)(0) = \sigma(0) & \text{even}(\sigma)' = \text{even}(\sigma'') \\ & \text{odd}(\sigma)(0) = \sigma(1) & \text{odd}(\sigma)' = \text{odd}(\sigma'') \end{aligned}$$

A quick aside: definitions by coinduction

Equivalently: let the functions

$$zip : \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \to \mathbb{N}^{\omega}$$
 even $: \mathbb{N}^{\omega} \to \mathbb{N}^{\omega}$ odd $: \mathbb{N}^{\omega} \to \mathbb{N}^{\omega}$

be defined by the following **stream differential equations**:

$$zip(\sigma,\tau)(0) = \sigma(0)$$
 $zip(\sigma,\tau)' = zip(\tau,\sigma')$
 $even(\sigma)(0) = \sigma(0)$ $even(\sigma)' = even(\sigma'')$
 $odd(\sigma)(0) = \sigma(1)$ $odd(\sigma)' = odd(\sigma'')$

Then we can show that

$$\begin{aligned} & \mathsf{zip}(\sigma,\tau) = (\sigma(0),\tau(0),\sigma(1),\tau(1),\sigma(2),\tau(2),\ldots) \\ & \mathsf{even}(\sigma) = (\sigma(0),\sigma(2),\sigma(4),\ldots) \\ & \mathsf{odd}(\sigma) = (\sigma(1),\sigma(3),\sigma(5),\ldots) \end{aligned}$$

Proposition: for all $\sigma, \tau \in \mathbb{N}^{\omega}$, even($zip(\sigma, \tau)$) = σ

Proof: we define

$$R = \{ \langle \operatorname{even}(\operatorname{zip}(\sigma, \tau)), \sigma \rangle \mid \sigma, \tau \in \mathbb{N}^{\omega} \}$$

and prove that R is a **bisimulation**. First note that

$$(i)$$
 even $(\operatorname{\mathsf{zip}}(\sigma, au))(0) = \operatorname{\mathsf{zip}}(\sigma, au)(0) = \sigma(0)$

Then observe that

even
$$(zip(\sigma, \tau))' = even(zip(\sigma, \tau)'') =$$

even $(zip(\tau, \sigma')') = even(zip(\sigma', \tau'))$

which implies: (ii) $\langle \text{ even}(\text{zip}(\sigma,\tau))', \sigma' \rangle \in R$

Proposition: for all $\sigma, \tau \in \mathbb{N}^{\omega}$, even $(zip(\sigma, \tau)) = \sigma$

Proof: we define

$$R = \{ (even(zip(\sigma, \tau)), \sigma) | \sigma, \tau \in \mathbb{N}^{\omega} \}$$

and prove that *R* is a **bisimulation**. First note that

(i) even(
$$zip(\sigma, \tau)$$
)(0) = $zip(\sigma, \tau)$ (0) = σ (0)

Then observe that

even
$$(zip(\sigma, \tau))' = even(zip(\sigma, \tau)'') = even(zip(\tau, \sigma')') = even(zip(\sigma', \tau'))$$

which implies: (ii) $\langle \text{ even}(\text{zip}(\sigma, \tau))', \sigma' \rangle \in R$.

Proposition: for all $\sigma, \tau \in \mathbb{N}^{\omega}$, even $(zip(\sigma, \tau)) = \sigma$

Proof: we define

$$R = \{ (even(zip(\sigma, \tau)), \sigma) | \sigma, \tau \in \mathbb{N}^{\omega} \}$$

and prove that R is a **bisimulation**. First note that

(i) even(
$$zip(\sigma,\tau)$$
)(0) = $zip(\sigma,\tau)$ (0) = σ (0)

Then observe that

even
$$(zip(\sigma, \tau))' = even(zip(\sigma, \tau)'') =$$

even $(zip(\tau, \sigma')') = even(zip(\sigma', \tau'))$

which implies: (ii) $\langle \text{ even}(\text{zip}(\sigma,\tau))', \sigma' \rangle \in R$

Proposition: for all $\sigma, \tau \in \mathbb{N}^{\omega}$, even $(zip(\sigma, \tau)) = \sigma$

Proof: we define

$$R = \{ (even(zip(\sigma, \tau)), \sigma) | \sigma, \tau \in \mathbb{N}^{\omega} \}$$

and prove that R is a **bisimulation**. First note that

(i) even(
$$zip(\sigma, \tau)$$
)(0) = $zip(\sigma, \tau)$ (0) = σ (0)

Then observe that

even
$$(zip(\sigma, \tau))' = even(zip(\sigma, \tau)'') = even(zip(\tau, \sigma')') = even(zip(\tau, \tau'))$$

which implies: (ii) $\langle \text{ even}(\text{zip}(\sigma, \tau))', \sigma' \rangle \in R$.

Proposition: for all $\sigma, \tau \in \mathbb{N}^{\omega}$, even $(zip(\sigma, \tau)) = \sigma$

Proof: we define

$$R = \{ (even(zip(\sigma, \tau)), \sigma) | \sigma, \tau \in \mathbb{N}^{\omega} \}$$

and prove that R is a **bisimulation**. First note that

(i) even(
$$zip(\sigma, \tau)$$
)(0) = $zip(\sigma, \tau)$ (0) = σ (0)

Then observe that

even
$$(zip(\sigma, \tau))' = even(zip(\sigma, \tau)'') = even(zip(\tau, \sigma')') = even(zip(\tau, \tau'))$$

which implies: (ii) $\langle \text{even}(\text{zip}(\sigma, \tau))', \sigma' \rangle \in R$.

3. Formalising Moessner's Theorem

```
nat 1 2 3 4 5 6 7 8 9 10 11 12 ···
Drop_3 1 2 4 5 7 8 10 11 ...
     1 3 7 12 19 27 37 48 ...
Drop<sub>2</sub> 1 7 19
                    37
\Sigma 1 8 27 64 \cdots
nat^3 1^3 2^3 3^3 4^3 ...
```

Formalising Moessner's theorem (k = 3)

$$nat^3 = \Sigma \circ D_2 \circ \Sigma \circ D_3 (nat)$$

$$\mathsf{nat}^3 = \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, (\mathsf{nat})$$

On the left, we have:

$$nat = (1, 2, 3, \ldots)$$

$$nat^3 = (1^3, 2^3, 3^3, ...) = nat \odot nat \odot nat$$

with

$$\sigma \odot \tau = (\sigma(0) \cdot \tau(0), \ \sigma(1) \cdot \tau(1), \ \sigma(2) \cdot \tau(2), \ldots)$$

$$\mathsf{nat}^3 = \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, (\mathsf{nat})$$

On the left, we have:

$$nat = (1, 2, 3, \ldots)$$

$$nat^3 = (1^3, 2^3, 3^3, \ldots) = nat \odot nat \odot nat$$

with

$$\sigma \odot \tau = (\sigma(0) \cdot \tau(0), \ \sigma(1) \cdot \tau(1), \ \sigma(2) \cdot \tau(2), \ldots)$$

$$\mathsf{nat}^3 = \Sigma \, \circ \, \textit{D}_2 \, \circ \, \Sigma \, \circ \, \textit{D}_3 \, (\mathsf{nat})$$

On the right, we have:

$$\Sigma \ \sigma = (\sigma(0), \ \sigma(0) + \sigma(1), \ \sigma(0) + \sigma(1) + \sigma(2), \ \ldots)$$
 $D_2 \ \sigma = (\sigma(0), \sigma(2), \sigma(4), \ldots)$

$$\mathsf{nat}^3 = \Sigma \, \circ \, \textit{D}_2 \, \circ \, \Sigma \, \circ \, \textit{D}_3 \, (\mathsf{nat})$$

On the right, we have:

$$\Sigma \ \sigma = (\sigma(0), \ \sigma(0) + \sigma(1), \ \sigma(0) + \sigma(1) + \sigma(2), \ \ldots)$$

$$D_2 \sigma = (\sigma(0), \sigma(2), \sigma(4), \ldots)$$

$$D_3 \sigma = (\sigma(0), \sigma(1), \sigma(3), \sigma(4), \sigma(6), \sigma(7), \ldots)$$

A more convenient formulation

$$\begin{aligned} \text{nat}^3 &= \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, (\text{nat}) \\ &= \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, \circ \, \Sigma \, \circ \, D_4 \, (\overline{1}) \end{aligned}$$

where

$$\overline{1} = (1, 1, 1, \ldots)$$

since

$$\Sigma \circ D_4(\overline{1}) = \Sigma(\overline{1}) = \text{nat}$$

A more convenient formulation

$$\begin{aligned} \text{nat}^3 &= \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, (\text{nat}) \\ &= \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, \circ \, \Sigma \, \circ \, D_4 \, (\overline{1}) \end{aligned}$$

where

$$\overline{1} = (1, 1, 1, \ldots)$$

since

$$\Sigma \circ D_4(\overline{1}) = \Sigma(\overline{1}) = \text{nat}$$

4. Proving Moessner's Theorem

A proof by coinduction

$$\mathsf{nat}^3 = \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, \circ \, \Sigma \, \circ \, D_4 \, (\overline{1})$$

The aim is to construct a **bisimulation** relation containing the pair

$$\langle \text{ nat}^3, \ \Sigma \circ D_2 \circ \Sigma \circ D_3 \circ \Sigma \circ D_4 (\overline{1}) \rangle$$

Towards that end, let us investigate the **derivatives** of the streams and operators above. (Initial values will all be straightforward.)

A proof by coinduction

$$\mathsf{nat}^3 = \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, \circ \, \Sigma \, \circ \, D_4 \, (\overline{1})$$

The aim is to construct a **bisimulation** relation containing the pair

$$\langle \text{ nat}^3, \ \Sigma \circ D_2 \circ \Sigma \circ D_3 \circ \Sigma \circ D_4 (\overline{1}) \ \rangle$$

Towards that end, let us investigate the **derivatives** of the streams and operators above.

(Initial values will all be straightforward.)

A proof by coinduction

$$\mathsf{nat}^3 = \Sigma \, \circ \, D_2 \, \circ \, \Sigma \, \circ \, D_3 \, \circ \, \Sigma \, \circ \, D_4 \, (\overline{1})$$

The aim is to construct a **bisimulation** relation containing the pair

$$\langle \text{ nat}^3, \ \Sigma \circ D_2 \circ \Sigma \circ D_3 \circ \Sigma \circ D_4 (\overline{1}) \ \rangle$$

Towards that end, let us investigate the **derivatives** of the streams and operators above.

(Initial values will all be straightforward.)

For the stream nat = (1, 2, 3, ...), we have

$$\begin{aligned} \text{nat'} &= (2,3,4,\ldots) \\ &= (1+1,\ 1+2,\ 1+3,\ \ldots) \\ &= (1,1,1,\ldots) \oplus (1,2,3,\ldots) \\ &= \overline{1} \oplus \text{nat} \end{aligned}$$

where \oplus denotes the elementwise sum of streams.

For the product $\sigma \odot \tau$, we have

$$(\sigma \odot \tau)' = (\sigma(0) \cdot \tau(0), \ \sigma(1) \cdot \tau(1), \ \sigma(2) \cdot \tau(2), \ \ldots)'$$
$$= (\sigma(1) \cdot \tau(1), \ \sigma(2) \cdot \tau(2), \ \sigma(3) \cdot \tau(3), \ \ldots)$$
$$= \sigma' \odot \tau'$$

These properties of nat' and $(\sigma \odot \tau)'$ imply:

$$\begin{split} (nat^3)' &= (nat \odot nat \odot nat)' \\ &= nat' \odot nat' \odot nat' \\ &= (\overline{1} \oplus nat) \odot (\overline{1} \oplus nat) \odot (\overline{1} \oplus nat) \\ &= \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \overline{1} \oplus \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot nat \oplus \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot nat^2 \oplus \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot nat^3 \end{split}$$

using some elementary properties of \oplus and \odot , and defining $k \cdot \sigma$ by

$$k \cdot \sigma = (k \cdot \sigma(0), k \cdot \sigma(1), k \cdot \sigma(2), \ldots)$$

$$\mathsf{nat}^3 = \Sigma \, \circ \, \textit{D}_2 \, \circ \, \Sigma \, \circ \, \textit{D}_3 \, \circ \, \Sigma \, \circ \, \textit{D}_4 \, (\overline{1})$$

So for the stream on the left, we have:

$$(\text{nat}^3)' = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \overline{1} \hspace{0.2cm} \oplus \hspace{0.2cm} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot \text{nat} \hspace{0.2cm} \oplus \hspace{0.2cm} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot \text{nat}^2 \hspace{0.2cm} \oplus \hspace{0.2cm} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot \text{nat}^3$$

$$\text{nat}^3 = \Sigma \, \circ \, \textit{D}_2 \, \circ \, \Sigma \, \circ \, \textit{D}_3 \, \circ \, \Sigma \, \circ \, \textit{D}_4 \, (\overline{1})$$

Turning to the right hand side, we observe:

$$\overline{1}'=\overline{1}$$

For the drop operators, we have

$$(D_2 \sigma)' = (\sigma(0), \sigma(2), \sigma(4), \ldots)'$$

$$= (\sigma(2), \sigma(4), \sigma(6), \ldots)$$

$$= D_2 \sigma''$$

And, similarly,

$$(D_3 \sigma)^{(2)} = D_3 \sigma^{(3)}$$

 $(D_4 \sigma)^{(3)} = D_4 \sigma^{(4)}$

where the repeated derivatives are defined as usual:

$$\sigma^{(0)} = \sigma$$

$$\sigma^{(k+1)} = (\sigma^{(k)})'$$

For the drop operators, we have

$$(D_2 \sigma)' = (\sigma(0), \sigma(2), \sigma(4), \ldots)'$$

= $(\sigma(2), \sigma(4), \sigma(6), \ldots)$
= $D_2 \sigma''$

And, similarly,

$$(D_3 \sigma)^{(2)} = D_3 \sigma^{(3)}$$

 $(D_4 \sigma)^{(3)} = D_4 \sigma^{(4)}$

where the repeated derivatives are defined as usual:

$$\sigma^{(0)} = \sigma$$

$$\sigma^{(k+1)} = (\sigma^{(k)})'$$

$$\begin{split} (\Sigma \, \sigma)' &= (\sigma(0), \, \sigma(0) + \sigma(1), \, \sigma(0) + \sigma(1) + \sigma(2), \, \ldots)' \\ &= (\sigma(0) + \sigma(1), \, \sigma(0) + \sigma(1) + \sigma(2), \, \ldots) \\ &= (\sigma(0), \sigma(0), \sigma(0), \ldots) \quad \oplus \\ &\qquad (\sigma(1), \, \sigma(1) + \sigma(2), \, \sigma(1) + \sigma(2) + \sigma(3), \, \ldots) \\ &= \overline{\sigma(0)} \, \oplus \, \Sigma \left(\sigma'\right) \end{split}$$

where

$$\overline{\sigma(0)} = (\sigma(0), \sigma(0), \sigma(0), \ldots)$$

Together, these properties imply:

$$\begin{split} &(\; \Sigma \mathrel{\circ} D_{2} \mathrel{\circ} \Sigma \mathrel{\circ} D_{3} \mathrel{\circ} \Sigma \mathrel{\circ} D_{4} \left(\overline{1}\right))' \\ &= \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \;\; \overline{1} \\ &\oplus \;\; \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot \;\; \Sigma \mathrel{\circ} D_{2} \left(\overline{1}\right) \\ &\oplus \;\; \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot \;\; \Sigma \mathrel{\circ} D_{2} \mathrel{\circ} \Sigma \mathrel{\circ} D_{3} \left(\overline{1}\right) \\ &\oplus \;\; \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot \;\; \Sigma \mathrel{\circ} D_{2} \mathrel{\circ} \Sigma \mathrel{\circ} D_{3} \mathrel{\circ} \Sigma \mathrel{\circ} D_{4} \left(\overline{1}\right) \end{split}$$

(The details would fill 1 or 2 additional slides.)

Together, these properties imply:

$$\begin{split} &(\ \Sigma \circ D_2 \circ \Sigma \circ D_3 \circ \Sigma \circ D_4 \, (\overline{1})\)' \\ &= \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \ \overline{1} \\ &\oplus \ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot \ \Sigma \circ D_2 \, (\overline{1}) \\ &\oplus \ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot \ \Sigma \circ D_2 \circ \Sigma \circ D_3 \, (\overline{1}) \\ &\oplus \ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot \ \Sigma \circ D_2 \circ \Sigma \circ D_3 \circ \Sigma \circ D_4 \, (\overline{1}) \end{split}$$

(The details would fill 1 or 2 additional slides.)

Proving Moessner's theorem (k = 3)

$$\mathsf{nat}^3 = \Sigma \, \circ \, \textit{D}_2 \, \circ \, \Sigma \, \circ \, \textit{D}_3 \, \circ \, \Sigma \, \circ \, \textit{D}_4 \, (\overline{1})$$

All in all, we have found:

Proving Moessner's theorem (k = 3)

$$\mathsf{nat}^3 = \Sigma \, \circ \, \mathit{D}_2 \, \circ \, \Sigma \, \circ \, \mathit{D}_3 \, \circ \, \Sigma \, \circ \, \mathit{D}_4 \, (\overline{1})$$

All in all, we have found:

$$\oplus \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot \mathsf{nat}^3 \qquad \oplus \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot \ \Sigma \circ D_2 \circ \Sigma \circ D_3 \circ \Sigma \circ D_4 (\overline{1}) \quad \mathsf{M3}$$

$$\mathsf{nat}^k = \Sigma \, \circ \, D_2 \, \circ \, \cdots \, \circ \, \Sigma \, \circ \, D_{k+1} \, (\overline{1})$$

And so we define $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ by

$$R = \{ \langle \operatorname{nat}^k, \ \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1}(\overline{1}) \rangle \mid k \geq 0 \}$$

Is R a bisimulation relation?

No, but almost: R is a bisimulation relation **up to sum**!

And so we define $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ by

$$R = \{ \langle \operatorname{nat}^k, \ \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1}(\overline{1}) \rangle \mid k \geq 0 \}$$

Is R a bisimulation relation?

No, but almost: *R* is a bisimulation relation **up to sum!**

And so we define $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ by

$$R = \{ \langle \operatorname{nat}^k, \ \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1}(\overline{1}) \rangle \mid k \geq 0 \}$$

Is R a bisimulation relation?

No, but almost: *R* is a bisimulation relation **up to sum**!

Bisimulations up to sum

A relation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a bisimulation relation **up to sum** if, for all $(\sigma, \tau) \in R$,

- (i) if $(\sigma, \tau) \in R$ then $\sigma(0) = \tau(0)$
- (ii) there are $n_1, \ldots, n_l \in \mathbb{N}$ and $\sigma_1, \ldots, \sigma_l, \tau_1, \ldots, \tau_l \in \mathbb{N}^{\omega}$ such that

$$\sigma' = n_1 \cdot \sigma_1 \oplus \cdots \oplus n_l \cdot \sigma_l$$

$$\tau' = n_1 \cdot \tau_1 \oplus \cdots \oplus n_l \cdot \tau_l$$

and

$$(\sigma_1, \tau_1) \in R$$
, ..., $(\sigma_l, \tau_l) \in R$

Coinduction up to sum

Theorem

Let $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ be a bisimulation **up to sum**.

$$\forall \sigma, \tau \in \mathbb{N}^{\omega} : (\sigma, \tau) \in \mathbf{R} \Rightarrow \sigma = \tau$$

Proof: We define $R^c \subseteq \mathbb{N}^\omega \times \mathbb{N}^\omega$ as the smallest relation s.t.

- 1. $R \subseteq R^c$
- 2. if $(\sigma, \tau) \in R^c$ then $(n \cdot \sigma, n \cdot \tau) \in R^c$ (all $n \in \mathbb{N}$)
- 3. if (σ_1, τ_1) , $(\sigma_2, \tau_2) \in R^c$ then $(\sigma_1 \oplus \sigma_2, \tau_1 \oplus \tau_2) \in R^c$

It is easy to see that R^c is an (ordinary) bisimulation. Now the theorem follows by (ordinary) coinduction.

Coinduction up to sum

Theorem

Let $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ be a bisimulation **up to sum**.

$$\forall \sigma, \tau \in \mathbb{N}^{\omega} : (\sigma, \tau) \in \mathbf{R} \Rightarrow \sigma = \tau$$

Proof: We define $\mathbb{R}^c \subseteq \mathbb{N}^\omega \times \mathbb{N}^\omega$ as the smallest relation s.t.

- 1. $R \subseteq R^c$
- 2. if $(\sigma, \tau) \in R^c$ then $(n \cdot \sigma, n \cdot \tau) \in R^c$ (all $n \in \mathbb{N}$)
- 3. if (σ_1, τ_1) , $(\sigma_2, \tau_2) \in R^c$ then $(\sigma_1 \oplus \sigma_2, \tau_1 \oplus \tau_2) \in R^c$

It is easy to see that R^c is an (ordinary) bisimulation. Now the theorem follows by (ordinary) coinduction.

Coinduction up to sum

Theorem

Let $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ be a bisimulation **up to sum**.

$$\forall \sigma, \tau \in \mathbb{N}^{\omega} : (\sigma, \tau) \in \mathbf{R} \Rightarrow \sigma = \tau$$

Proof: We define $R^c \subseteq \mathbb{N}^\omega \times \mathbb{N}^\omega$ as the smallest relation s.t.

- 1. $R \subseteq R^c$
- 2. if $(\sigma, \tau) \in R^c$ then $(n \cdot \sigma, n \cdot \tau) \in R^c$ (all $n \in \mathbb{N}$)
- 3. if (σ_1, τ_1) , $(\sigma_2, \tau_2) \in R^c$ then $(\sigma_1 \oplus \sigma_2, \tau_1 \oplus \tau_2) \in R^c$

It is easy to see that R^c is an (ordinary) bisimulation. Now the theorem follows by (ordinary) coinduction.

$$R = \{ \langle \operatorname{nat}^k, \ \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1}(\overline{1}) \rangle \mid k \geq 0 \}$$

is a bisimulation up to sum:

$$R = \{ \langle \operatorname{nat}^k, \ \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1}(\overline{1}) \rangle \mid k \geq 0 \}$$

is a bisimulation up to sum:

$$R = \{ \langle \operatorname{nat}^k, \ \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1}(\overline{1}) \rangle \mid k \ge 0 \}$$

is a bisimulation up to sum.

It follows by coinduction up to sum that

$$\mathsf{nat}^k = \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1} (\overline{1})$$

for all $k \geq 0$.

$$R = \{ \langle \operatorname{nat}^k, \ \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1}(\overline{1}) \rangle \mid k \geq 0 \}$$

is a bisimulation up to sum.

It follows by coinduction up to sum that

$$\mathsf{nat}^k = \; \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1} (\overline{1})$$

for all k > 0.

Derivatives in a picture

$$\sigma \longrightarrow \sigma' \longrightarrow \sigma^{(2)} \longrightarrow \sigma^{(3)} \longrightarrow \cdots$$

More generally, if

$$\sigma' = n_1 \cdot \sigma_1 \oplus \cdots \oplus n_l \cdot \sigma_l$$

then we will write

Derivatives in a picture

$$\sigma \longrightarrow \sigma' \longrightarrow \sigma^{(2)} \longrightarrow \sigma^{(3)} \longrightarrow \cdots$$

More generally, if

$$\sigma' = n_1 \cdot \sigma_1 \oplus \cdots \oplus n_l \cdot \sigma_l$$

then we will write

Since

$$\overline{1}' = (1, 1, 1, \ldots)' = \overline{1}$$

we write:

$$\overline{1} \longrightarrow \overline{1} \longrightarrow \overline{1} \longrightarrow \cdots$$

or, equivalently,

Since for the stream nat = (1, 2, 3, ...), we have

$$\begin{aligned} \text{nat'} &= (2,3,4,\ldots) \\ &= (1+1,\ 1+2,\ 1+3,\ \ldots) \\ &= (1,1,1,\ldots) \oplus (1,2,3,\ldots) \\ &= \overline{1} \oplus \text{nat} \end{aligned}$$

we write:

$$nat \longrightarrow \overline{1} \oplus nat \longrightarrow \overline{1} \oplus \overline{1} \oplus nat \longrightarrow \cdots$$

or, equivalently

1 nat
$$\longrightarrow \overline{1}$$
 1

Since for the stream nat = (1, 2, 3, ...), we have

$$\begin{aligned} \text{nat'} &= (2,3,4,\ldots) \\ &= (1+1,\ 1+2,\ 1+3,\ \ldots) \\ &= (1,1,1,\ldots) \oplus (1,2,3,\ldots) \\ &= \overline{1} \oplus \text{nat} \end{aligned}$$

we write:

$$nat \longrightarrow \overline{1} \oplus nat \longrightarrow \overline{1} \oplus \overline{1} \oplus nat \longrightarrow \cdots$$

or, equivalently,

$$1$$
 nat $\longrightarrow \overline{1}$ $\longrightarrow 1$

Since

$$(\mathsf{nat}^k)' = \binom{k}{0} \cdot \overline{1} \oplus \binom{k}{1} \cdot \mathsf{nat}^1 \oplus \cdots \oplus \binom{k}{k} \cdot \mathsf{nat}^k$$

we have

And similarly, we have found

 $\binom{k}{0}$

$$\mathsf{nat}^k = \; \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1} (\overline{1})$$

Both streams are the same ...

because they **behave** the same . . .

because they are represented by:

the same weighted automaton.

$$\mathsf{nat}^k = \; \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1} (\overline{1})$$

Both streams are the same ...

because they **behave** the same . . .

because they are represented by:

the same weighted automaton.

$$\mathsf{nat}^k = \; \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1} (\overline{1})$$

Both streams are the same ...

because they behave the same ...

because they are represented by:

$$\mathsf{nat}^k = \; \Sigma \circ D_2 \circ \cdots \circ \Sigma \circ D_{k+1} (\overline{1})$$

Both streams are the same ...

because they behave the same ...

because they are represented by:

the same weighted automaton.

- We take streams σ as **basic entities**, instead of focussing on their individual **elements** $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

- We take streams σ as **basic entities**, instead of focussing on their individual **elements** $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

- We take streams σ as **basic entities**, instead of focussing on their individual **elements** $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

- We take streams σ as **basic entities**, instead of focussing on their individual **elements** $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

- We take streams σ as **basic entities**, instead of focussing on their individual **elements** $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.