Limit-Deterministic Büchi Automata for Probabilistic Model Checking

Javier Esparza Jan Křetínský

Stefan Jaax Salomon Sickert

Technische Universität München

PROBABILISTIC MODEL CHECKING

• Markov Decision Process (MDP) .

At each state, a scheduler chooses a probability distribution, and then the next state is chosen stochastically according to the distribution.

Fixed scheduler: MDP \rightarrow Markov chain

- Qualitative Model Checking:
 - Input: MDP, LTL formula
 - Does the formula hold for all schedulers with probability 1?
- Quantitative Model Checking:
 - Input: MDP, LTL formula, threshold c
 - Does the formula hold for all schedulers with probability at least c?

LIMIT-DETERMINISTIC BÜCHI AUTOMATA

non-deterministic

QUALITATIVE PROB. MODEL CHECKING

QUANTITATIVE PROB. MODEL CHECKING

QUANTITATIVE PROB. MODEL CHECKING

LIMIT-DETERMINISM

In our construction:

Every runs "uses" nondeterminism at most once

PRELIMINARIES

Linear Temporal Logic in Negation Normal Form

 $\varphi ::= \mathbf{tt} \mid \mathbf{ff} \mid a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{F}\varphi \mid \varphi \mathbf{U}\varphi \mid \mathbf{X}\varphi \mid \mathbf{G}\varphi$

Only liveness operator.

- Monotonicity of NNF:
 - if w satisfies φ

w' satisfies all the subformulas of φ satisfied by w, and perhaps more

then w' satisfies φ

FIRST STEP: A DETERMINISTIC "TRACKING" AUTOMATON

- The automaton "tracks" the property that must hold now for the original property to hold at the beginning
- Formulas with F, X, U:
- Formulas with *G*: not good enough.

G-SUBFORMULAS

• Fix a formula φ and a word w. Let $G\psi$ be a *G*-subformula of φ .

• Informally: while reading the word w, the set of G-subformulas that hold cannot decrease, and eventually stabilizes to a set $TrueGs(w, \varphi)$.

SECOND STEP: JUMPING

- We modify the tracking automaton so that at any moment it can nondeterministically jump to an accepting component.
- From each state ψ we add a jump for every set G of G-subformulas of ψ .
- "Meaning" of a G-jump at state ψ : The automaton "guesses" that the rest of the word satisfies
 - 1. **G** (every formula of **G**), and
 - 2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

even if no other *G*-subformula of ψ ever becomes true.

 After the jump, the task of the accepting component is to "check that the guess is correct", i.e., accept iff the guess is correct.

SECOND STEP: JUMPING

- "Meaning" of the G-jump at state ψ : The automaton "guesses" that the rest of the run satisfies
 - 1. **G** (every formula of **G**), and

2. $\boldsymbol{\mathcal{G}} \Rightarrow \boldsymbol{\psi}$

even if no other *G*-subformula of ψ ever becomes true.

- $w \models \varphi$ iff the automaton can make a right guess.
 - Right guess before suffix $w' \to w' \vDash \psi \to w \vDash \varphi$ (tracking!)
 - $w \vDash \varphi \rightarrow w' \vDash \text{True}Gs(w, \varphi)$ for some suffix $w' \rightarrow \text{jump before } w' \text{ with } \mathcal{G} \coloneqq \text{True}Gs(w, \varphi)$ satisfies 1. and 2.

A DBA THAT CHECKS 1. & 2.

• Since DBA are closed under intersection, it suffices to construct two DBAs for 1. and 2.

CHECKING 2.

- $_{,,G} \Rightarrow \psi$ holds even if no other *G*-subformula of ψ ever becomes true"
- Reduces to checking the *G*-free formula $\psi[\ \mathbf{G} \setminus \mathrm{tt} \ , \ \mathbf{\overline{G}} \setminus \mathrm{ff} \]$
- Example: $\psi = G(a \lor Fb) \land (Gc \lor Xd)$

 $\boldsymbol{\mathcal{G}} = \{ \, G(a \lor Fb) \, \}$

reduces to checking Xd

• Since the formula is *G*-free, use the tracking automaton.

CHECKING 1.

- "*G* holds even if no other *G*-subformula of ψ ever becomes true"
- Reduces to checking a formula $G\rho$ where ρ is G-free.
- Example: $\psi = Fc \land GF(a \land (Gb \lor FGc))$ $\boldsymbol{\mathcal{G}} = \{Gb, GF(a \land (Gb \lor FGc))\}$

reduces to checking $Gb \wedge GFa \equiv G(b \wedge Fa)$

• We use the well-known breakpoint construction.

DBA FOR $G(a \lor Fb)$

COMPLETE LDBS FOR $\varphi = c \lor XG(a \lor Fb)$

- 1.Tracking DBA for φ (abbr. $\psi \coloneqq a \lor Fb$)
- 2. For every set *G* add a *G*-jump to the product
 of the automata
 checking *G* and the *G*-remainder

LDBA SIZE FOR A FORMULA OF LENGTH N

Part	Size		
Initial Component	2 ^{2ⁿ}		
G-Monitor	2 ^{2ⁿ⁺¹}		
Accepting Component	2 ^{2^{O(n)}}		
Total	2 ^{2^{O(n)}}		

SIZES OF AUTOMATA

MODEL CHECKING RUNTIME PNUELI-ZUCK MUTEX PROTOCOL

Oexpl	Our Implementation explicit, transition-based			ymbolic, ased	Rabinizer tate-based) n-based
#C	Clients					
(6) $\mathbb{P}_{max=?} \begin{bmatrix} (\mathbf{GF}p1=0 \lor \mathbf{FG}p2 \neq 0) \\ \land (\mathbf{GF}p2=0 \lor \mathbf{FG}p3 \neq 0) \end{bmatrix} \\ \land (\mathbf{GF}p3=0 \lor \mathbf{FG}p1 \neq 0) \end{bmatrix}$	4 5	< 1 10	78 1293	9 137	$\frac{3}{29}$	
$(\mathbf{GF}p1=0\vee\mathbf{FG}p1\neq0) \\ (7) \mathbb{P}_{max=?}[\stackrel{(\mathbf{GF}p1=0\vee\mathbf{FG}p1\neq0)}{\wedge(\mathbf{GF}p3=0\vee\mathbf{FG}p3\neq0)} \\ \stackrel{(\mathbf{GF}p3=0\vee\mathbf{FG}p3\neq0)}{\wedge(\mathbf{GF}p3=0\vee\mathbf{FG}p3\neq0)} $	4 5	< 1 1	< 1 < 1	$\begin{array}{c} 61 \\ 1077 \end{array}$	2 27	
(8) $\mathbb{P}_{min=?}\begin{bmatrix} (\mathbf{GF}_{p1\neq 10} \lor \mathbf{GF}_{p1=0} \lor \mathbf{FG}_{p1=1}) \\ \land \mathbf{GF}_{p1\neq 0} \land \mathbf{GF}_{p1=1} \end{bmatrix}$	$\frac{4}{5}$	< 1 1	$\frac{8}{145}$	8 190	1 16	
$(9) \mathbb{P}_{max=?}\begin{bmatrix} (\mathbf{G}p1\neq10\vee\mathbf{G}p2\neq10\vee\mathbf{G}p3\neq10)\\ \wedge(\mathbf{F}\mathbf{G}p1\neq1\vee\mathbf{G}\mathbf{F}p2=1\vee\mathbf{G}\mathbf{F}p3=1)\\ \wedge(\mathbf{F}\mathbf{G}p2\neq1)\vee\mathbf{G}\mathbf{F}p1=1\vee\mathbf{G}\mathbf{F}p3=1) \end{bmatrix}$	4 5	5 99	-	1195 -	$\frac{8}{125}$	
(10) $\mathbb{P}_{min=?}\begin{bmatrix} \mathbf{FG}p1\neq 0 \lor \mathbf{FG}p2\neq 0 \\ \lor \mathbf{GF}p3=0 \lor (\mathbf{FG}p1\neq 10 \\ \land \mathbf{GF}p2=10 \land \mathbf{GF}p3=10) \end{bmatrix}$	$\frac{4}{5}$	1 24	728 -	$\frac{33}{486}$	79	
(11) $\mathbb{P}_{min=?}[f_{0,0}] = \mathbb{P}_{min=?}[^{(\mathbf{GF}p1=10)\mathbf{U}}_{(p2=10)}]$	$\frac{4}{5}$	< 1 11	$\frac{17}{257}$	40 715	$2 \\ 23$	
(12) $\mathbb{P}_{max=?}[f_{0,4}] = \mathbb{P}_{max=?}[(\mathbf{GF}_{p1=10})\mathbf{U}]_{(\mathbf{XXXX}_{p2=10})}$	$\begin{bmatrix} 4\\5 \end{bmatrix}$	$< 1 \\ 5$	$3 \\ 20$	< 1 2	$\frac{1}{20}$	

CONCLUSION

- We have presented a translation from LTL to LDBA that
 - uses formulas as states
 - is modular

- optimisations of any module helps to reduce state space!
- yields in practice small ω -automata
- is usable for quantitative prob. model checking without changing the algorithm!
- Website: https://www7.in.tum.de/~sickert/projects/ltl2ldba/