
Limit-Deterministic Büchi Automata for

Probabilistic Model Checking

Technische Universität München

Javier Esparza Jan Křetínský

Salomon SickertStefan Jaax

PROBABILISTIC MODEL CHECKING

• Markov Decision Process (MDP) .

At each state, a scheduler chooses a probability distribution, and then the next
state is chosen stochastically according to the distribution.

Fixed scheduler: MDP → Markov chain

• Qualitative Model Checking:

• Input: MDP, LTL formula

• Does the formula hold for all schedulers with probability 1?

• Quantitative Model Checking:

• Input: MDP, LTL formula, threshold c

• Does the formula hold for all schedulers with probability at least c?

LIMIT-DETERMINISTIC
BÜCHI AUTOMATA

Initial
Component

Accepting
Component

(possibly)
non-deterministic

deterministic

“Jumps”

QUALITATIVE
PROB. MODEL CHECKING

MDP

Limit-det. Büchi

LTL

Nondet. Büchi

Product

Prob=1?
Yes/No

Vardi [85]
Courcoubetis,and Yannakakis

[88,95]

Vardi [85]
Courcoubetis, and Yannakakis

[88,95]

• Non-optimal: double exponential
• Other algorithms with single

exponential complexity

Safra [89]

MDP

Det. Rabin

LTL

Nondet. Büchi

Product

P≥0,7?
Yes/No

QUANTITATIVE
PROB. MODEL CHECKING

• In practice large automata
• Hard to implement efficiently
• Rise of “safraless” approaches:

• Acacia, ltl3dra, Rabinizer, …

Asymp. optimal: double exponential

QUANTITATIVE PROB. MODEL
CHECKING

Our
Construction

MDP

Limit-det. Büchi

LTL

Product

P≥0.7?
Yes/No

• Optimal: 22O(n)

• Simpler construction
• Smaller automata
• Same MC algorithm as for

det. automata

LIMIT-DETERMINISM

Initial
Component

Accepting
Component

non-deterministic deterministic

“Jumps”

In our construction:

deterministic

Every runs „uses“ nondeterminism at most once

PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form

Only liveness operator.

• Monotonicity of NNF:
if ݓ satisfies ߮	

ᇱݓ satisfies all the subformulas of ߮ satisfied by ݓ,
and perhaps more

then ᇱݓ satisfies ߮

FIRST STEP: A DETERMINISTIC
„TRACKING“ AUTOMATON

tt

• The automaton „tracks“ the
property that must hold now for
the original property to hold at
the beginning

• Formulas with ܨ, ܺ, ܷ: ✔

• Formulas with not good :ܩ
enough.

ܽܨ

ܽ

ܽ

ܽ ff

ܽ

ܽ

ܾܨ ∧
ܺܺܽ

ܾ

ܾ
ܾܨ ∧
ܺܽ

ܽܨܩ	

ܽܽ,

	ܺܽ
ܽ, ܽ

-SUBFORMULAS

• Fix a formula and a word
Let be a -subformula of .

• Informally: while reading the word , the set of
-subformulas that hold cannot decrease, and

eventually stabilizes to a set

߰ܩ

ρܩ

߰ܩ ߰ܩ ߰ܩ ߰ܩ ߰ܩ ߰ܩ …
ρܩ ρܩ ρܩ ρܩ …

cb a ba b c c …
ݓ

SECOND STEP: JUMPING
• We modify the tracking automaton so that at any moment it

can nondeterministically jump to an accepting component.

• From each state we add a jump for every set of
-subformulas of .

• „Meaning“ of a -jump at state : The automaton „guesses“
that the rest of the word satisfies

1. (every formula of), and

2.

even if no other -subformula of ever becomes true.

• After the jump, the task of the accepting component is to
„check that the guess is correct“, i.e., accept iff the guess is
correct.

SECOND STEP: JUMPING

• iff the automaton can make a right guess.
• Right guess before suffix ᇱ ᇱ

(tracking!)
• for some suffix

jump before with satisfies 1.
and 2.

• „Meaning“ of the -jump at state : The automaton
„guesses“ that the rest of the run satisfies

1. (every formula of), and

2.

even if no other subformula-ܩ of ߰	 ever becomes true.

A DBA THAT CHECKS 1. & 2.

• Since DBA are closed under intersection, it

suffices to construct two DBAs for 1. and 2.

CHECKING 2.

• Example:

reduces to checking

• „ holds even if no other -subformula of

ever becomes true”

• Reduces to checking the -free formula
 \ tt ,

• Since the formula is -free, use the tracking automaton.

CHECKING 1.

• Example:

reduces to checking

• „ holds even if no other -subformula of ever

becomes true”

• Reduces to checking a formula where is -free.

Tracking automaton
for ܺ݀

X

Automaton
for ሺܽܩ ∨ ሻܾܨ

Guess
ሺܽ ∨ ሻܾܨ

ε

ሺܽܩ ∨ ሻܾܨ
∧	

ሺܿܩ ∨ ܺ݀ሻ

?
tt

݀

ff

݀ ݀

	ܺ݀ ݀, ݀

• We use the well-known breakpoint construction.

A DBA FOR

cb a b

ሺܽܩ ∨ ሻܾܨ

tt tt

ܾܨ

ܽ	 ∨ ܾܨ	

ܽ	 ∨ ܾܨ	

ܽ	 ∨ ܾܨ	

ܽ	 ∨ ܾܨ	

ܽ	 ∨ ܾܨ	

tt

ܾܨ

tt

tt

tt

tt

tt

• Put new goals on hold while tracking current goal
• Accept if infinitely often the current goal is proven
• “Breakpoint Construction”

DBA FOR

COMPLETE LDBS FOR

1.Tracking DBA for ߮
(abbr. ߰ ≔ ܽ ∨ ሻܾܨ

2. For every set ऑ add a
ऑ-jump to the product
of the automata
checking ऑ and the
ऑ –remainder

LDBA SIZE FOR A FORMULA OF
LENGTH N

Part Size

Initial Component 22n

G-Monitor 22n+1

Accepting Component 22O(n)

Total 22O(n)

SIZES OF AUTOMATA

LDBA Safra
(spot+ltl2dstar)

Rabinizer

IscasMC
explicit, transition-based

PRISM+Rabinizer
symbolic, state-based

PRISM symbolic,
state-based

MODEL CHECKING RUNTIME
PNUELI-ZUCK MUTEX PROTOCOL

Our Implementation
explicit, transition-based

#Clients

CONCLUSION

• We have presented a translation from LTL to LDBA that

• uses formulas as states

• is modular

• optimisations of any module helps to reduce state space!

• yields in practice small ω-automata

• is usable for quantitative prob. model checking without changing the
algorithm!

• Website: https://www7.in.tum.de/~sickert/projects/ltl2ldba/

