
On two notions of
higher-order model checking

Naoki Kobayashi
University of Tokyo

Joint work with Etienne Lozes (ENS Cachan)
and Florian Bruse (University of Kassel)

What’s This Talk About?
 Relationship between two higher-order

extensions of model checking:

Models Logic
finite state

model checking finite state systems modal
µ-calculus

What’s This Talk About?
 Relationship between two higher-order

extensions of model checking:
– HORS model checking [Knapik+ 01; Ong 06]

Models Logic
finite state

model checking finite state systems modal
µ-calculus

HORS
model checking

higher-order
recursion schemes

(HORS)

modal
µ-calculus

What’s This Talk About?
 Relationship between two higher-order

extensions of model checking:
– HORS model checking [Knapik+ 01; Ong 06]

– HFL model checking [Viswanathan&Viswanathan 04]

Models Logic
finite state

model checking finite state systems modal
µ-calculus

HORS
model checking

higher-order
recursion schemes

(HORS)

modal
µ-calculus

HFL
model checking finite state systems

higher-order
modal fixpoint

logic (HFL)

What’s This Talk About?
 Relationship between two higher-order

extensions of model checking:
– HORS model checking [Knapik+ 01; Ong 06]

– HFL model checking [Viswanathan&Viswanathan 04]

 Type-based characterization of HFL model
checking
– L |= ψ if and only if |−L ψ

Outline
 Reviews of HORS model checking and HFL

model checking
– HORS model checking
– HFL model checking

 From HORS to HFL model checking
 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

→A c

c A(b c)

→ a

 → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths
are labeled by

am+1 bm c

S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

HORS
≈

Call-by-name simply-typed λ-calculus
+

recursion, tree constructors

HORS Model Checking

 e.g.
 - Does every finite path end with “c”?
 - Does “a” occur below “b”?

Given
 G: HORS
 A: alternating parity tree automaton (APT)
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

 p(x)
 2
 ..
 2
2

Outline
 Reviews of HORS model checking and HFL

model checking
– HORS model checking
– HFL model checking

 From HORS to HFL model checking
 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

Higher-Order Modal Fixpoint Logic
(HFL) [Viswanathan&Viswanathan 04]

 Higher-order extension of the modal µ-calculus
 ϕ ::= true
 ϕ1 ∧ ϕ2

 ϕ1 ∨ ϕ2
 [a]ϕ ϕ must hold after a
 <a>ϕ ϕ may hold after a
 X propositional variable
 µX.ϕ least fixpoint
 νX.ϕ greatest fixpoint

Higher-Order Modal Fixpoint Logic
(HFL) [Viswanathan&Viswanathan 04]

 Higher-order extension of the modal µ-calculus
 ϕ ::= true
 ϕ1 ∧ ϕ2

 ϕ1 ∨ ϕ2
 [a]ϕ ϕ must hold after a
 <a>ϕ ϕ may hold after a
 X predicate variable
 µXκ.ϕ least fixpoint
 νXκ.ϕ greatest fixpoint
 λXκ. ϕ (higher-order) predicate
 ϕ1 ϕ2 application
 κ ::=  | κ1→κ2

Selected Typing Rules for HFL

 Γ, X:κ ┝ X:κ

 Γ, X:κ1 ┝ ϕ:κ2

−−−−−−−−−−−−−−−−−−
 Γ┝ λX.ϕ: κ1 → κ2

 Γ┝ ϕ: κ1 → κ2 Γ┝ ψ: κ1
−−−−−−−−−−−−−−−−−−−−−−−−

 Γ┝ ϕ ψ: κ2

 Γ, X:κ ┝ ϕ:κ

−−−−−−−−−−−−−−−−−−
 Γ┝ µX.ϕ: κ

 Γ ┝ true: 

 Γ ┝ ϕ: 

−−−−−−−−−−−−−−−−−−
 Γ┝ [a]ϕ: 

 Γ┝ ϕ:  Γ┝ ψ: 

−−−−−−−−−−−−−−−−−−−−−−−−
 Γ┝ ϕ ∧ψ: 

Semantics
[ϕ]I: the set of states that satisfy ϕ
 L |=ϕ  sinit∈[ϕ]∅ (sinit: initial state of L)
 [true]I ＝ States
 [ϕ∧ψ]I= [ϕ]I ∩ [ψ]I [ϕ∨ψ]I= [ϕ]I ∪ [ψ]I
 [[α] ϕ]I= {s | ∀t.(s →α t implies t∈ [ϕ]I)}
 [<α> ϕ]I = {s | ∃t.(s →α t and t∈ [ϕ]I)}
 [X]I ＝ I(X)
 [µXκ.ϕ]I = lfp(λx∈[κ].[ϕ]I{X=x})
 [νXκ.ϕ]I = gfp (λx∈[κ].[ϕ]I{X=x})
 (Note: λx∈[κ].[ϕ]I{X=x} is monotonic)

 [λXκ.ϕ]I = λx∈[κ].[ϕ]I{X=x}

 [ϕ ψ]I= [ϕ]I [ψ]I

[] = 2States

[κ1→κ2] = {f∈ [κ1] → [κ2]
 | f: monotonic}

Example

(µF→→.λX.λY. (X∧Y) ∨ F (<a>X) (Y)) A B
= (A∧B) ∨
 (µF→→.λX.λY. (X∧Y) ∨
 F(<a>X)(Y)) (<a>A)(B)
= (A∧B) ∨ (<a>A∧B) ∨ (<a><a>A∧B) ∨ ...

For some n, <a>n A and n B hold

A

B

an

bn

HFL Model Checking

 e.g. L |= ϕ for:

 L:

Given
 L: (finite-state) labeled transition system
 ϕ: HFL formula,
does L satisfy ϕ?

a

b
d c

ϕ: (µF.λX.λY. (X∧Y)
 ∨ F (<a>X) (Y))
 (<c>true) (<d>true)

HORS vs HFL model checking
Model Spec. complexity Applications

HORS
model

checking
HORS APT

k-EXPTIME
complete

(for order-k
HORS)

Automated
verification of

functional
programs

[K 09][K+11]...

HFL
model

checking
LTS HFL

k-EXPTIME
complete

(for order-k HFL)

Assume-guarantee
reasoning [VV 04]

Process equivalence
checking [Lange+ 14]

APT: alternating parity tree automaton
LTS: finite-state labeled transition system

Hierarchical Equation Systems
(HES)

X1 =α1 ϕ1; ...; Xn =αn ϕn

(αi∈ {µ, ν})
 toHFL(X =α ϕ) = αX.ϕ

 toHFL(H; X =α ϕ) =
 toHFL([αX.ϕ / X]H)
Example:
 HFL: νX.µY.(<a>X ∨ Y)
 (there exists a path (b*a)ω)

 HES: X=ν Y; Y=µ <a>X ∨ Y

Outline
 Reviews of HORS model checking and HFL

model checking
– HORS model checking
– HFL model checking

 From HORS to HFL model checking
 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

From HORS to HFL model checking
Input:

– HORS G
– APT A (with largest priority p)

Output:
– LTS LA

– HFL formula ϕG,p

such that G |= A iff LA |= ϕG,p
Intuition:
 - LA simulates the transitions of A
 - ϕG,p describes “LA has transitions corresponding
 to an accepting run of A over Tree(G)”

Construction of LA A:
 δ(q0,a)= (1,q0) ∧ (2,q0) δ(q1,a)= false
 δ(q0,b)= δ(q1,b)= (1,q1) δ(q0,c)= δ(q1,c)= true
 Ω(q0)=0 Ω(q1)=1

LA:

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)

true
false

a0

b0
b1

c0

tt

c1

a1

and

and

2

1 1

Construction of LA A:
 δ(q0,a)= (1,q0) ∧ (2,q0) δ(q1,a)= false
 δ(q0,b)= δ(q1,b)= (1,q1) δ(q0,c)= δ(q1,c)= true
 Ω(q0)=0 Ω(q1)=1

LA:

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)

true
false

a0

b0
b1

c0

tt

c1

a1

and

and

2

1 1

The states of LA
consist of:
- states of A and
- subformulas of

δ(q,a)

Construction of LA A:
 δ(q0,a)= (1,q0) ∧ (2,q0) δ(q1,a)= false
 δ(q0,b)= δ(q1,b)= (1,q1) δ(q0,c)= δ(q1,c)= true
 Ω(q0)=0 Ω(q1)=1

LA:

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)

true
false

a0

b0
b1

c0

tt

c1

a1

and

and

2

1 1

A transition
label is
an input symbol
annotated with a
priority; or ...

Construction of LA A:
 δ(q0,a)= (1,q0) ∧ (2,q0) δ(q1,a)= false
 δ(q0,b)= δ(q1,b)= (1,q1) δ(q0,c)= δ(q1,c)= true
 Ω(q0)=0 Ω(q1)=1

LA:

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)

true
false

a0

b0
b1

c0

tt

c1

a1

and

and

2

1 1

A transition
label is ...; or
a constructor of
transition
formulas (i, and,
or, tt)

Outline
 Reviews of HORS model checking and HFL

model checking
 From HORS to HFL model checking

– construction of LA

– construction of ϕG,p
• case p=0
• general case

 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

From trees to HFL formulas

ϕa c (b c) =
 <a0> “can visit 1st and 2nd children with states
 satisfying ϕc and ϕb c respectively”
= <a0>(
 <1>ϕc /* case (1,q) */
 ∨<2>ϕb c /* case (2,q) */
 ∨<tt>true /* case true */ q0

q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

From trees to HFL formulas

ϕa c (b c) =
 <a0> “can visit 1st and 2nd children with states
 satisfying ϕc and ϕb c respectively”
= <a0>(
 <1>ϕc /* case (1,q) */
 ∨<2>ϕb c /* case (2,q) */
 ∨<tt>true /* case true */
 ∨(<and>true /*case f∧g */
 ∧ [and]

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

From trees to HFL formulas

ϕa c (b c) =
 <a0> “can visit 1st and 2nd children with states
 satisfying ϕc and ϕb c respectively”
= <a0>(νX.
 <1>ϕc /* case (1,q) */
 ∨<2>ϕb c /* case (2,q) */
 ∨<tt>true /* case true */
 ∨(<and>true /*case f∧g */
 ∧ [and]X)

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

From trees to HFL formulas

ϕa c (b c) =
 <a0> “can visit 1st and 2nd children with states
 satisfying ϕc and ϕb c respectively”
= <a0>(νX.
 <1>ϕc /* case (1,q) */
 ∨<2>ϕb c /* case (2,q) */
 ∨<tt>true /* case true */
 ∨(<and>true /*case f∧g */
 ∧ [and]X)
 ∨ <or>X) /*case f∨g */

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

From trees to HFL formulas

ϕa c (b c) = <a0>(H2 ϕc ϕb c)

where H2 = λY1. λY2.νX.
 <1>Y1 /* case (1,q) */
 ∨<2>Y2 /* case (2,q) */
 ∨<tt>true /* case true */
 ∨(<and>true /*case f∧g */
 ∧ [and]X)
 ∨ <or>X) /*case f∨g */

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

From trees to HFL formulas

ϕa c (b c) = <a0>(H2 ϕc ϕb c)
 = <a0>(H2 (<c0>H0) (<b0>H1 (<c0>H0)))
where H2 = λY1. λY2.νX.
 <1>Y1 /* case (1,q) */
 ∨<2>Y2 /* case (2,q) */
 ∨<tt>true /* case true */
 ∨(<and>true /*case f∧g */
 ∧ [and]X)
 ∨ <or>X) /*case f∨g */

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

From trees to HFL formulas

ϕa c (b c) = <a0>(H2 ϕc ϕb c)
 = <a0>(H2 (<c0>H0) (<b0>H1 (<c0>H0)))
where H2 = λY1. λY2.νX.
 <1>Y1 /* case (1,q) */
 ∨<2>Y2 /* case (2,q) */
 ∨<tt>true /* case true */
 ∨(<and>true /*case f∧g */
 ∧ [and]X)
 ∨ <or>X) /*case f∨g */

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

From trees to HFL formulas

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

ϕT: “the current state has transitions
 corresponding to an accepting run for T”

ϕa T1 ... Tk = <a0>(Hk ϕT1 ... ϕTk)
 (co-inductively defined)

From HORS to HFL

 F → t
 ⇒ F =ν t#

 where:
 F# = F x# = x
 (t1t2)# = (t1)#(t2)#
 (λx.t)# = λx.(t)#
 a# = λx1...λxk.<a0>(Hk x1 ... xk)

Example
HORS G
 S → F c
 F x → a x (F (b x))

ϕG,0
 S =ν F (<c0>H0)
 F x =ν
 <a0>(H2 x (F(<b0>(H1 x)))

q0
q1

(1,q0) ∧(2,q0)

(1,q0)

(2,q0)

(1,q1)
true false

a0

b0
b0 c0

tt
c0

a0

and 2

1 1
and

A:
 δ(q0,a)= (1,q0) ∧ (2,q0)
 δ(q1,a)= false
 δ(q0,b)= δ(q1,b)= (1,q1)
 δ(q0,c)= δ(q1,c)= true

LA

Outline
 Reviews of HORS model checking and HFL

model checking
 From HORS to HFL model checking

– construction of LA

– construction of ϕG,p
• case p=0
• general case

 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

Challenge
 How to translate the parity condition of APT:

 “for every path of a run-tree, the largest priority
visited infinitely often is even”

 to a proper nesting of least/greatest
 fixpoint formulas?
e.g. A: δ(qa,a)=δ(qb,a)=(1,qa) δ(qa,b)=δ(qb,b)=(1,qb)
 Ω(qa)=0, Ω(qb)=1
 G: S → a (b F) F → a S
 G |= A but

qa
qb

(1,qb)

(1,qa)

a0

b0

b1

a1 1

1

S=ν <a0>(H1 (<b0>(H1 F)));
F=ν <a1>(H1 S) |=

Ideas
 Duplicate each non-terminal for each priority

S → a (b F) F → a S

S1 =µ <a0>(H1 (<b0>(H1 F0)));
F1 =µ <a1>(H1 S1);
S0 =ν <a0>(H1 (<b0>(H1 F0)));
F0 =ν <a1>(H1 S1);

The largest priority seen since the
previous unfolding of a non-terminal.

An appropriate copy is chosen,
depending on the largest

priority seen
since the last unfolding

Ideas
 Duplicate each non-terminal for each priority
 Duplicate also each argument, so that a

function can choose an appropriate copy
S → F G F x → b (x S) G y → a y
 We cannot locally decide the priority annotation
 for G; only F knows when G is unfolded.

S1 =µ F0 G0 G1
F1 x0 x1 =µ <b0>(H1 (x0 S0 S1))
 ∨ <b1>(H1 (x1 S1 S1))
...

General construction of ϕG,p
G: F1 x1 ... xk1 → t1, ..., Fn x1 ... xkn → tn

F1
p x1

0 ... x1
p ... xk1

0 ... xk1
p =α(p) t1

#0; ...;
Fn

p x1
0 ... x1

p ... xk1
0 ... xk1

p =α(p) tn
#0;

...;

F1
0 x1

0 ... x1
p ... xkn

0 ... xkn
p =α(0) t1

#0; ...;
Fn

0 x1
0 ... x1

p ... xkn
0 ... xkn

p =α(0) tn
#0

where α(i) = ν if i is even and µ otherwise

General construction of ϕG,p
G: F1 x1 ... xk1 → t1, ..., Fn x1 ... xkn → tn

F1
p x1

0 ... x1
p ... xk1

0 ... xk1
p =α(p) t1

#0;
...;
Fn

0 x1
0 ... x1

p ... xkn
0 ... xkn

p =α(0) tn
#0

(a)#i = λx1,0...λx1,p... λxk,0...λxk,p .
 <a0>(Hk x1,0 ... xk,0)∨ ... ∨ <ap>(Hk x1,p ... xk,p)
(x)#i = xi

(F)#i = Fi
(s t)#i = (s)#i (t)#max(0,i) ... (t)#max(p,i)

Correctness of Translation

Theorem:
 G |= A
 if and only if
 LA |= ϕG,p

Follows from the type-based characterizations of
HORS and HFL model checking:

(new)
G|=A    |-A G |- ϕG,p LA

LA |= ϕG,p
[K&Ong 09] (new)

Correctness of Translation

Theorem:
 G |= A
 if and only if
 LA |= ϕG,p

|LA| is polynomial in |A|
|ϕG,p| is polynomial in |G|, p

Outline
 Reviews of HORS model checking and HFL

model checking
 From HORS to HFL model checking
 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

From HFL to HORS model checking
 Input:

– LTS L
– HFL formula ϕ

Output:
– HORS Gϕ,c

– APT AL
such that L |= ϕ iff Gϕ,c |= AL for sufficiently large c

Intuition:
 - Gϕ,c generates tree representation of the formula
 obtained from ϕ by unfolding fixedpoint operators
 sufficiently many times

 - AL accepts trees representing valid formulas

HFL-to-HORS Translation:
Overview

F X =ν ϕ
Remove fixpoint operators by finite unfoldings

F(c) X=[F(c-1)/F]ϕ ;...;F(1) X=[F(0)/F] ϕ;F(0) X=true
Convert it to HORS, which generates the tree
representation of the formula

F(c) X→[F(c-1)/F]ϕ’;...; F(1) X→[F(0)/F] ϕ’; F(0) X→true

F m X→ if (Zero? m) true ([F (m-1) /F]ϕ’)

Parameterize F by a number, and implement
numbers (up to) as functions (cf. [Jones01])

 n
 2
 ..
 2
2

Correctness of Translation

Theorem:
 L |= ϕ
 if and only if
 Gϕ,|L| |= AL

 |Gϕ,|L|| is polynomial in |ϕ| and |L|
 |AL| is polynomial in |L|

Outline
 Reviews of HORS model checking and HFL

model checking
 From HORS to HFL model checking
 From HFL to HORS model checking
 Type system for HFL model checking
 Conclusion

Goal
 Design a type system |−L such that:

L |= ϕ
if and only if
 |−L ϕ
(cf. K-Ong type system for HORS model checking
[K&Ong, LICS09])

Applications:
- correctness proof of HORS-to-HFL translation
- practical model checkers for HFL

(cf. practical HORS model checkers based on
intersection types)

Types
τ ::= s type of propositions that

 hold at state s
 (i.e. s |= ϕ  |− ϕ: s)
 σ→ τ type of functions from σ to τ
σ ::= τ1∧ ... ∧τn intersection types

 ∧ : s → s → s for every s
 ∨ : (s → T → s)∧(T→ s→ s) for every s

Typing Rules

 Γ, X:τ ┝ X:τ

 Γ, x:τ1 , ..., x:τk ┝ ϕ:τ
−−−−−−−−−−−−−−−−−−

 Γ┝ λx.ϕ: τ1∧... ∧τk → τ

Γ┝ ϕ: τ1∧... ∧τk → τ

 Γ┝ ψ: τi for each i
−−−−−−−−−−−−−−−−−−−−−−−−

 Γ┝ ϕ ψ: τ

 Γ ┝ true: s

 Γ ┝ ϕ: s’ s →a s’

−−−−−−−−−−−−−−−−−−
 Γ┝ <a>ϕ: s

 Γ┝ ϕ: s Γ┝ ψ: s

−−−−−−−−−−−−−−−−−−−−−−−−
 Γ┝ ϕ∧ψ: s

 Γ ┝ ϕ: s’
for every s’ such that s →a s’
−−−−−−−−−−−−−−−−−−−−−−−−−

 Γ┝ [a]ϕ: s

Typing Fixpoint Formulas

 ∅┝ ϕ:τ X=α ϕ
−−−−−−−−−−−−−−−−−−

 Γ┝ X: τ

Definition:
 |-L X1=α1 ϕ1 ; ...; Xn=αn ϕn

 if there is a possibly infinite derivation for
 ∅|- X1:sinit
 such that, for each infinite derivation path,
 αj = ν for the least j such that
 Xj is unfolded infinitely often.

Example

HES
A=ν <a>(F A);
F=µ λX.[b]X

LTS:
 s0 s1

a

b

∅┝ <a>(F A):s0
−−−−−−−−−−−−−−−

 ∅┝ A:s0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∅┝ F A: s1

−−−−−−−−−−−−−−−−−−−−−

X: s0 |-X: s0
−−−−−−−−−−−−−−−

X: s0 |-[b]X: s1
−−−−−−−−−−−−−−−

∅┝ λX.[b]X: s0 → s1
−−−−−−−−−−−−−−−

 ∅┝ F: s0 → s1

...
−−−−−−−−−−−−

∅┝ <a>(F A):s0
−−−−−−−−−−−−−−−

 ∅┝ A:s0

Correctness of Type System
 Theorem:
 L |= ϕ
 if and only if
 |-L ϕ

 Corollary:
 L |= ϕ can be decided in time polynomial in the
size of ϕ, if the following parameters are fixed:
 - L
 - the largest size of types in ϕ
 - alternation depth of ϕ

Outline
 Reviews of HORS model checking and HFL

model checking
 From HORS to HFL model checking
 From HFL to HORS model checking
 Type system for HFL model checking
 Related work and Conclusion

Related Work
HORS model checking

– decidability [Knapik+02][Ong06]...
– type-based characterization [K09][K&Ong09]
– algorithms [K09][K11][Ramsay+14]...
– applications [K09][K+11][Ong+11]...

HFL model checking
– decidability [Viswanathan2 04]
– complexity [Axelsson+ 07]
– applications [Viswanathan2 04][Lange+ 12]

Related Work
 Type-based characterization of HORS model

checking [K 09][K&Ong 09]
inspired:
– translation from HORS to HFL model checking
– type-based characterization

 Encoding of big numbers as functions

[Jones 01][Tsukada&K 14]

 Reduction from HORS model checking to
nested least/greatest fixedpoint computation
[Salvati&Walukiewicz, CSL15]

Conclusion

Revealed close relationships between
HORS/HFL model checking through:
– order-preserving mutual reductions
– type-based characterization of HFL
model checking similar to that of HORS
model checking

Future work: mutual transfer of
results (e.g. practical model checking
algorithms)

	On two notions of�higher-order model checking
	What’s This Talk About?
	What’s This Talk About?
	What’s This Talk About?
	What’s This Talk About?
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	HORS Model Checking
	Outline
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Selected Typing Rules for HFL
	Semantics
	Example
	HFL Model Checking
	HORS vs HFL model checking
	Hierarchical Equation Systems (HES)
	Outline
	From HORS to HFL model checking
	Construction of LA
	Construction of LA
	Construction of LA
	Construction of LA
	Outline
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From HORS to HFL
	Example
	Outline
	Challenge
	Ideas
	Ideas
	General construction of jG,p
	General construction of jG,p
	Correctness of Translation
	Correctness of Translation
	Outline
	From HFL to HORS model checking
	HFL-to-HORS Translation: Overview
	Correctness of Translation
	Outline
	Goal
	Types
	Typing Rules
	Typing Fixpoint Formulas
	Example
	Correctness of Type System
	Outline
	Related Work
	Related Work
	Conclusion

