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What’s This Talk About? 
 Relationship between two higher-order 

extensions of model checking: 
– HORS model checking [Knapik+ 01; Ong 06] 

– HFL model checking [Viswanathan&Viswanathan 04] 

 Type-based characterization of HFL model 
checking 
– L |= ψ  if and only if  |−L ψ 
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Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 

Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 
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Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 
Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 

HORS 
≈ 

Call-by-name simply-typed λ-calculus 
+ 

recursion, tree constructors 



HORS Model Checking 

 
 e.g.  
  - Does every finite path end with “c”? 
  - Does “a” occur below “b”? 

Given 
   G:  HORS 
   A:  alternating parity tree automaton (APT) 
       (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 

k-EXPTIME-complete [Ong, LICS06]        
(for order-k HORS)    

      p(x) 
     2 
   .. 
  2 
2 
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Higher-Order Modal Fixpoint Logic 
(HFL) [Viswanathan&Viswanathan 04] 

 Higher-order extension of the modal µ-calculus 
 ϕ ::= true 
        ϕ1 ∧ ϕ2 

        ϕ1 ∨ ϕ2 
        [a]ϕ     ϕ  must hold after a 
        <a>ϕ                  ϕ  may hold after a 
        X               propositional variable 
        µX.ϕ                   least fixpoint 
           νX.ϕ   greatest fixpoint 
            



Higher-Order Modal Fixpoint Logic 
(HFL) [Viswanathan&Viswanathan 04] 

 Higher-order extension of the modal µ-calculus 
 ϕ ::= true 
        ϕ1 ∧ ϕ2 

        ϕ1 ∨ ϕ2 
        [a]ϕ     ϕ  must hold after a 
        <a>ϕ                  ϕ  may hold after a 
        X               predicate variable 
        µXκ.ϕ                   least fixpoint 
           νXκ.ϕ   greatest fixpoint 
           λXκ. ϕ                  (higher-order) predicate 
       ϕ1 ϕ2  application 
 κ ::=  | κ1→κ2 

 



Selected Typing Rules for HFL 

 
   Γ, X:κ ┝ X:κ  

 
   Γ, X:κ1  ┝ ϕ:κ2  

−−−−−−−−−−−−−−−−−−  
 Γ┝ λX.ϕ: κ1 → κ2  

 

 
   Γ┝ ϕ: κ1 → κ2   Γ┝ ψ: κ1   
−−−−−−−−−−−−−−−−−−−−−−−−  

 Γ┝ ϕ ψ: κ2  
 

 
   Γ, X:κ  ┝ ϕ:κ  

−−−−−−−−−−−−−−−−−−  
 Γ┝ µX.ϕ: κ  

 

 
   Γ ┝ true:   

 
   Γ ┝ ϕ:   

−−−−−−−−−−−−−−−−−−  
 Γ┝ [a]ϕ:   

  
   Γ┝ ϕ:    Γ┝ ψ:    

−−−−−−−−−−−−−−−−−−−−−−−−  
 Γ┝ ϕ ∧ψ:  

 



Semantics 
[ϕ]I: the set of states that satisfy ϕ 
  L |=ϕ  sinit∈[ϕ]∅  (sinit: initial state of L)         
 [true]I ＝ States 
  [ϕ∧ψ]I= [ϕ]I ∩ [ψ]I        [ϕ∨ψ]I= [ϕ]I ∪ [ψ]I 
  [ [α] ϕ ]I= {s | ∀t.(s →α t implies t∈ [ϕ]I)} 
  [<α> ϕ ]I = {s | ∃t.(s →α t and t∈ [ϕ]I)} 
  [X]I ＝ I(X) 
  [µXκ.ϕ]I = lfp(λx∈[κ].[ϕ]I{X=x} ) 
  [νXκ.ϕ]I = gfp (λx∈[κ].[ϕ]I{X=x} ) 
                                               (Note: λx∈[κ].[ϕ]I{X=x} is monotonic) 

  [λXκ.ϕ]I  = λx∈[κ].[ϕ]I{X=x}  

  [ϕ ψ]I= [ϕ]I [ψ]I 
 
 
 

[] = 2States 

[κ1→κ2] = {f∈ [κ1] → [κ2]  
                | f: monotonic}  



Example 

(µF→→.λX.λY. (X∧Y) ∨ F (<a>X) (<b>Y)) A B 
= (A∧B) ∨  
   (µF→→.λX.λY. (X∧Y) ∨ 
                     F(<a>X)(<b>Y)) (<a>A)(<b>B) 
= (A∧B) ∨ (<a>A∧<b>B) ∨ (<a><a>A∧<b><b>B) ∨ ... 
 
For some n, <a>n A and <b>n B hold 
 

A 

B 

an 

bn 



HFL Model Checking 

 
 e.g.  L |= ϕ for: 

      L:  

Given 
 L: (finite-state) labeled transition system 
 ϕ:  HFL formula, 
does L satisfy ϕ? 

a 

b 
d c 

ϕ: (µF.λX.λY. (X∧Y)  
    ∨ F (<a>X) (<b>Y))  
    (<c>true)  (<d>true) 
 



HORS vs HFL model checking 
Model Spec.  complexity Applications 

HORS 
model 

checking 
HORS APT 

k-EXPTIME 
complete 

(for order-k  
HORS) 

Automated 
verification of 

functional 
programs 

[K 09][K+11]... 

HFL 
model 

checking 
LTS HFL 

k-EXPTIME 
complete 

(for order-k HFL) 

Assume-guarantee 
reasoning [VV 04] 

Process equivalence 
checking [Lange+ 14] 

APT: alternating parity tree automaton 
LTS: finite-state labeled transition system 



Hierarchical Equation Systems 
(HES) 

X1 =α1 ϕ1; ...; Xn =αn ϕn 

(αi∈ {µ, ν} ) 
  toHFL(X =α ϕ ) = αX.ϕ 

  toHFL(H; X =α ϕ ) =  
          toHFL([αX.ϕ / X]H)  
Example: 
  HFL:  νX.µY.(<a>X ∨ <b>Y) 
         (there exists a path (b*a)ω ) 

  HES:  X=ν Y; Y=µ <a>X ∨ <b>Y 
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From HORS to HFL model checking 
Input: 

– HORS G 
– APT A (with largest priority p) 

Output: 
– LTS LA 

– HFL formula ϕG,p 

such that  G |= A  iff  LA |= ϕG,p 
Intuition: 
  - LA simulates the transitions of A 
  - ϕG,p describes “LA has transitions corresponding  
     to an accepting run of A over Tree(G)” 
 
 

 
 



Construction of LA A: 
  δ(q0,a)= (1,q0) ∧ (2,q0)      δ(q1,a)= false 
  δ(q0,b)= δ(q1,b)= (1,q1)      δ(q0,c)= δ(q1,c)= true 
  Ω(q0)=0     Ω(q1)=1  

LA: 

q0 
q1 

(1,q0) ∧(2,q0) 

(1,q0) 

(2,q0) 

(1,q1) 

true 
false 

a0 

b0 
b1 

c0 

tt 

c1 

a1 

and 

and 

2 

1 1 
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The states of LA 
consist of: 
- states of A and 
- subformulas of 

δ(q,a) 
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A transition 
label is  
an input symbol 
annotated with a 
priority; or ... 



Construction of LA A: 
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A transition 
label is ...; or 
a constructor of 
transition 
formulas (i, and, 
or, tt) 
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From trees to HFL formulas 

ϕa c (b c) =  
 <a0> “can visit 1st and 2nd children with states  
         satisfying ϕc and ϕb c respectively” 
= <a0>( 
  <1>ϕc   /* case (1,q) */ 
 ∨<2>ϕb c   /* case (2,q) */ 
 ∨<tt>true /* case true */ q0 

q1 

(1,q0) ∧(2,q0) 

(1,q0) 

(2,q0) 

(1,q1) 
true false 

a0 

b0 
b0 c0 

tt 
c0 

a0 

and 2 

1 1 
and 

ϕT: “the current state has transitions 
     corresponding to an accepting run for T”  



From trees to HFL formulas 

ϕa c (b c) =  
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= <a0>( 
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    ∧ [and] 
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From trees to HFL formulas 

ϕa c (b c) =  
 <a0> “can visit 1st and 2nd children with states  
         satisfying ϕc and ϕb c respectively” 
= <a0>(νX. 
  <1>ϕc   /* case (1,q) */ 
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 ∨<tt>true /* case true */ 
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    ∧ [and]X) 

q0 
q1 

(1,q0) ∧(2,q0) 

(1,q0) 

(2,q0) 

(1,q1) 
true false 

a0 

b0 
b0 c0 

tt 
c0 

a0 

and 2 
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     corresponding to an accepting run for T”  



From trees to HFL formulas 

ϕa c (b c) =  
 <a0> “can visit 1st and 2nd children with states  
         satisfying ϕc and ϕb c respectively” 
= <a0>(νX. 
  <1>ϕc   /* case (1,q) */ 
 ∨<2>ϕb c   /* case (2,q) */ 
 ∨<tt>true /* case true */ 
 ∨(<and>true /*case f∧g */ 
    ∧ [and]X) 
 ∨ <or>X)   /*case f∨g */ 
 

q0 
q1 
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(1,q0) 

(2,q0) 

(1,q1) 
true false 

a0 

b0 
b0 c0 
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a0 
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and 
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From trees to HFL formulas 

ϕa c (b c) = <a0>(H2 ϕc ϕb c) 
 
where H2 = λY1. λY2.νX. 
  <1>Y1  /* case (1,q) */ 
 ∨<2>Y2   /* case (2,q) */ 
 ∨<tt>true /* case true */ 
 ∨(<and>true /*case f∧g */ 
    ∧ [and]X) 
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From trees to HFL formulas 

ϕa c (b c) = <a0>(H2 ϕc ϕb c)  
         = <a0>(H2 (<c0>H0) (<b0>H1 (<c0>H0)))  
where H2 = λY1. λY2.νX. 
  <1>Y1  /* case (1,q) */ 
 ∨<2>Y2   /* case (2,q) */ 
 ∨<tt>true /* case true */ 
 ∨(<and>true /*case f∧g */ 
    ∧ [and]X) 
 ∨ <or>X)   /*case f∨g */ 
 

q0 
q1 
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(2,q0) 

(1,q1) 
true false 
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b0 
b0 c0 

tt 
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     corresponding to an accepting run for T”  



From trees to HFL formulas 

ϕa c (b c) = <a0>(H2 ϕc ϕb c)  
         = <a0>(H2 (<c0>H0) (<b0>H1 (<c0>H0)))  
where H2 = λY1. λY2.νX. 
  <1>Y1  /* case (1,q) */ 
 ∨<2>Y2   /* case (2,q) */ 
 ∨<tt>true /* case true */ 
 ∨(<and>true /*case f∧g */ 
    ∧ [and]X) 
 ∨ <or>X)   /*case f∨g */ 
 

q0 
q1 

(1,q0) ∧(2,q0) 
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(2,q0) 

(1,q1) 
true false 

a0 
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b0 c0 

tt 
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     corresponding to an accepting run for T”  



From trees to HFL formulas 

q0 
q1 

(1,q0) ∧(2,q0) 

(1,q0) 

(2,q0) 

(1,q1) 
true false 

a0 

b0 
b0 c0 

tt 
c0 

a0 

and 2 

1 1 
and 

ϕT: “the current state has transitions 
     corresponding to an accepting run for T”  

ϕa T1 ... Tk  = <a0>(Hk ϕT1 ... ϕTk) 
           (co-inductively defined) 



From HORS to HFL 

  F → t  
  ⇒  F =ν t# 

    where: 
      F# = F     x# = x     
      (t1t2)# = (t1)#(t2)#  
      (λx.t)# = λx.(t)# 
      a# = λx1...λxk.<a0>(Hk x1 ... xk) 



Example 
HORS G 
    S  → F c 
    F x → a  x  (F (b x)) 

ϕG,0 
 S =ν F (<c0>H0) 
 F x =ν  
  <a0>(H2 x (F(<b0>(H1 x))) 

q0 
q1 

(1,q0) ∧(2,q0) 

(1,q0) 

(2,q0) 

(1,q1) 
true false 

a0 

b0 
b0 c0 

tt 
c0 

a0 

and 2 

1 1 
and 

A: 
  δ(q0,a)= (1,q0) ∧ (2,q0) 
  δ(q1,a)= false 
  δ(q0,b)= δ(q1,b)= (1,q1) 
   δ(q0,c)= δ(q1,c)= true 

LA 
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Challenge 
 How to translate the parity condition of APT: 

 “for every path of a run-tree, the largest priority 
visited infinitely often is even” 

  to a proper nesting of least/greatest  
  fixpoint formulas? 
e.g.  A: δ(qa,a)=δ(qb,a)=(1,qa)     δ(qa,b)=δ(qb,b)=(1,qb) 
          Ω(qa)=0,    Ω(qb)=1  
       G: S → a (b F)    F → a S  
  G |= A   but 

qa 
qb 

(1,qb) 

(1,qa) 

a0 

b0 

b1 

a1 1 

1 

S=ν <a0>(H1 (<b0>(H1 F)));  
F=ν <a1>(H1 S) |= 



Ideas 
 Duplicate each non-terminal for each priority 

S → a (b F)    F → a S  

S1 =µ <a0>(H1 (<b0>(H1 F0))); 
F1 =µ <a1>(H1 S1); 
S0 =ν <a0>(H1 (<b0>(H1 F0))); 
F0 =ν <a1>(H1 S1); 

The largest priority seen since the 
previous unfolding of a non-terminal.  

An appropriate copy is chosen,  
depending on the largest 

priority seen 
since the last unfolding 



Ideas 
 Duplicate each non-terminal for each priority 
 Duplicate also each argument, so that a 

function can choose an appropriate copy 
S → F G     F x → b (x S)    G y → a y 
 We cannot locally decide the priority annotation 
 for G; only F knows when G is unfolded. 

S1 =µ F0 G0 G1  
F1 x0 x1 =µ <b0>(H1 (x0 S0 S1))  
             ∨ <b1>(H1 (x1 S1 S1))  
... 



General construction of ϕG,p 
G: F1 x1 ... xk1 → t1, ..., Fn x1 ... xkn → tn 

F1
p x1

0 ... x1
p ... xk1

0 ... xk1
p =α(p) t1

#0; ...; 
Fn

p x1
0 ... x1

p ... xk1
0 ... xk1

p =α(p) tn
#0;  

...;  

F1
0 x1

0 ... x1
p ... xkn

0 ... xkn
p =α(0) t1

#0; ...; 
Fn

0 x1
0 ... x1

p ... xkn
0 ... xkn

p =α(0) tn
#0 

where α(i) = ν if i is even and µ otherwise 

 



General construction of ϕG,p 
G: F1 x1 ... xk1 → t1, ..., Fn x1 ... xkn → tn 

F1
p x1

0 ... x1
p ... xk1

0 ... xk1
p =α(p) t1

#0;  
...;  
Fn

0 x1
0 ... x1

p ... xkn
0 ... xkn

p =α(0) tn
#0 

(a)#i = λx1,0...λx1,p... λxk,0...λxk,p .  
            <a0>(Hk  x1,0 ... xk,0)∨ ... ∨ <ap>(Hk  x1,p ... xk,p) 
(x)#i = xi 

(F)#i = Fi 
(s t)#i = (s)#i  (t)#max(0,i) ... (t)#max(p,i)  



Correctness of Translation 

Theorem: 
     G |= A 
    if and only if 
     LA |= ϕG,p 

Follows from the type-based characterizations of  
HORS and HFL model checking: 

(new) 
G|=A    |-A G |-   ϕG,p LA 

LA |= ϕG,p 
[K&Ong 09] (new) 



Correctness of Translation 

Theorem: 
     G |= A 
    if and only if 
     LA |= ϕG,p 
 
|LA| is polynomial in |A| 
|ϕG,p| is polynomial in |G|, p 
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From HFL to HORS model checking 
 Input: 

– LTS L 
– HFL formula ϕ 

Output: 
– HORS Gϕ,c 

– APT AL 
such that L |= ϕ iff Gϕ,c |= AL for sufficiently large c 

Intuition: 
  - Gϕ,c  generates tree representation of the formula 
    obtained from ϕ  by unfolding fixedpoint operators  
    sufficiently many times 

  - AL accepts trees representing valid formulas 
 



HFL-to-HORS Translation: 
Overview 

F X =ν ϕ  
Remove fixpoint operators by finite unfoldings 

F(c) X=[F(c-1)/F]ϕ ;...;F(1) X=[F(0)/F] ϕ;F(0) X=true 
Convert it to HORS, which generates the tree 
representation of the formula 

F(c) X→[F(c-1)/F]ϕ’;...; F(1) X→[F(0)/F] ϕ’; F(0) X→true 

F m X→ if (Zero? m) true ([F (m-1) /F]ϕ’) 

Parameterize F by a number, and implement  
numbers (up to         ) as functions (cf. [Jones01])  

      n 
     2 
   .. 
  2 
2 



Correctness of Translation 

Theorem: 
     L |= ϕ 
    if and only if 
     Gϕ,|L| |= AL 
 
  |Gϕ,|L|| is polynomial in |ϕ| and |L| 
  |AL| is polynomial in |L| 
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Goal 
 Design a type system |−L such that: 

L |= ϕ 
if and only if 
 |−L ϕ 
(cf. K-Ong type system for HORS model checking 
[K&Ong, LICS09]) 
 
Applications: 
- correctness proof of HORS-to-HFL translation 
- practical model checkers for HFL 

(cf. practical HORS model checkers based on 
intersection types) 



Types 
τ ::= s       type of propositions that  

             hold at state s 
               (i.e. s |= ϕ   |− ϕ: s ) 
     σ→ τ       type of functions from σ to τ 
σ  ::=  τ1∧ ... ∧τn   intersection types 
 
 ∧  :   s → s → s  for every s 
 ∨ :  (s → T → s)∧(T→ s→ s)  for every s 
 
 



Typing Rules 

 
   Γ, X:τ ┝ X:τ  

 
   Γ, x:τ1 , ..., x:τk  ┝ ϕ:τ  
−−−−−−−−−−−−−−−−−−  

 Γ┝ λx.ϕ: τ1∧... ∧τk → τ 
 

Γ┝ ϕ: τ1∧... ∧τk → τ 
 

  Γ┝ ψ: τi for each i   
−−−−−−−−−−−−−−−−−−−−−−−−  

 Γ┝ ϕ ψ: τ  
 

 
   Γ ┝ true: s  

 
   Γ ┝ ϕ: s’    s →a s’ 

−−−−−−−−−−−−−−−−−−  
 Γ┝ <a>ϕ: s  

  
   Γ┝ ϕ: s   Γ┝ ψ: s   

−−−−−−−−−−−−−−−−−−−−−−−−  
 Γ┝ ϕ∧ψ: s 

 
 

   Γ ┝ ϕ: s’    
for every s’ such that s →a s’ 
−−−−−−−−−−−−−−−−−−−−−−−−−  

 Γ┝ [a]ϕ: s  
 



Typing Fixpoint Formulas 
 

   ∅┝ ϕ:τ     X=α ϕ 
−−−−−−−−−−−−−−−−−−  

 Γ┝ X: τ  
 

Definition:  
   |-L X1=α1 ϕ1 ; ...; Xn=αn ϕn 

   if  there is a possibly infinite derivation for 
      ∅|- X1:sinit  
   such that, for each infinite derivation path, 
   αj = ν for the least j such that  
   Xj is unfolded infinitely often. 



Example 

HES 
A=ν <a>(F A);  
F=µ λX.[b]X 

LTS: 
 s0 s1 

a 

b 

∅┝ <a>(F A):s0 
−−−−−−−−−−−−−−− 

    ∅┝ A:s0 
  

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
∅┝ F A: s1 

−−−−−−−−−−−−−−−−−−−−− 

X: s0 |-X: s0 
−−−−−−−−−−−−−−− 

X: s0 |-[b]X: s1 
−−−−−−−−−−−−−−− 

∅┝ λX.[b]X: s0 → s1 
−−−−−−−−−−−−−−− 

    ∅┝ F: s0 → s1 
  

... 
−−−−−−−−−−−− 

∅┝ <a>(F A):s0 
−−−−−−−−−−−−−−− 

    ∅┝ A:s0 



Correctness of Type System 
 Theorem: 
     L |= ϕ 
    if and only if 
       |-L ϕ 
 

 Corollary: 
  L |= ϕ can be decided in time polynomial in the 
size of ϕ, if the following parameters are fixed: 
 - L 
   - the largest size of types in ϕ 
   - alternation depth of ϕ 



Outline 
 Reviews of HORS model checking and HFL 

model checking 
 From HORS to HFL model checking 
 From HFL to HORS model checking 
 Type system for HFL model checking 
 Related work and Conclusion 



Related Work 
HORS model checking 

– decidability [Knapik+02][Ong06]... 
– type-based characterization [K09][K&Ong09] 
– algorithms [K09][K11][Ramsay+14]... 
– applications [K09][K+11][Ong+11]... 

 

HFL model checking 
– decidability [Viswanathan2 04] 
– complexity [Axelsson+ 07] 
– applications [Viswanathan2 04][Lange+ 12] 

 



Related Work 
 Type-based characterization of HORS model 

checking [K 09][K&Ong 09] 
inspired: 
– translation from HORS to HFL model checking 
– type-based characterization 

 
 Encoding of big numbers as functions  

[Jones 01][Tsukada&K 14] 
 

 Reduction from HORS model checking to  
nested least/greatest fixedpoint computation 
[Salvati&Walukiewicz, CSL15]  



Conclusion 

Revealed close relationships between 
HORS/HFL model checking through: 
– order-preserving mutual reductions 
– type-based characterization of HFL 
model checking similar to that of HORS 
model checking 

Future work: mutual transfer of 
results (e.g. practical model checking 
algorithms)  


	On two notions of�higher-order model checking
	What’s This Talk About?
	What’s This Talk About?
	What’s This Talk About?
	What’s This Talk About?
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	HORS Model Checking
	Outline
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Selected Typing Rules for HFL
	Semantics
	Example
	HFL Model Checking
	HORS vs HFL model checking
	Hierarchical Equation Systems (HES)
	Outline
	From HORS to HFL model checking
	Construction of LA
	Construction of LA
	Construction of LA
	Construction of LA
	Outline
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From trees to HFL formulas
	From HORS to HFL
	Example
	Outline
	Challenge
	Ideas
	Ideas
	General construction of jG,p
	General construction of jG,p
	Correctness of Translation
	Correctness of Translation
	Outline
	From HFL to HORS model checking
	HFL-to-HORS Translation: Overview
	Correctness of Translation
	Outline
	Goal
	Types
	Typing Rules
	Typing Fixpoint Formulas
	Example
	Correctness of Type System
	Outline
	Related Work
	Related Work
	Conclusion

