On two notions of higher-order model checking

Naoki Kobayashi University of Tokyo

Joint work with Etienne Lozes (ENS Cachan) and Florian Bruse (University of Kassel)

Relationship between two higher-order extensions of model checking:

	Models	Logic
finite state model checking	finite state systems	modal µ-calculus

- Relationship between two higher-order extensions of model checking:
 - HORS model checking [Knapik+ 01; Ong 06]

	Models	Logic
finite state model checking	finite state systems modal µ-calcul	
HORS model checking	higher-order recursion schemes (HORS)	modal µ-calculus

- Relationship between two higher-order extensions of model checking:
 - HORS model checking [Knapik+ 01; Ong 06]
 - HFL model checking [Viswanathan&Viswanathan 04]

	Models	Logic
finite state model checking	finite state systems µ-calo	
HORS model checking	higher-order recursion schemes (HORS)	modal µ-calculus
HFL model checking	finite state systems	 higher-order modal fixpoint logic (HFL)

- Relationship between two higher-order extensions of model checking:
 - HORS model checking [Knapik+ 01; Ong 06]
 - HFL model checking [Viswanathan&Viswanathan 04]
- Type-based characterization of HFL model checking
 - L |= ψ if and only if |-L ψ

Outline

- Reviews of HORS model checking and HFL model checking
 - HORS model checking
 - HFL model checking
- From HORS to HFL model checking
- From HFL to HORS model checking
- Type system for HFL model checking
 Conclusion

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Higher-Order Recursion Scheme (HORS)

Grammar for generating an infinite tree

Order-1 HORS $S \rightarrow A c$ $A \times \rightarrow a \times (A (b \times))$ S: o, A: o \rightarrow o HORS \approx Call-by-name simply-typed λ -calculus recursion, tree constructors

HORS Model Checking

Given

G: HORS

 A: alternating parity tree automaton (APT) (a formula of modal μ-calculus or MSO), does A accept Tree(G)?

e.g.

- Does every finite path end with "c"?
- Does "a" occur below "b"?

k-EXPTIME-complete [Ong, LICSO6] k (for order-k HORS)

Outline

- Reviews of HORS model checking and HFL model checking
 - HORS model checking
 - HFL model checking
- From HORS to HFL model checking
- From HFL to HORS model checking
- Type system for HFL model checking
 Conclusion

Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]

- \blacklozenge Higher-order extension of the modal $\mu\text{-calculus}$
 - ϕ ::= true

Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]

- \blacklozenge Higher-order extension of the modal $\mu\text{-calculus}$
 - ϕ ::= true
 - $\varphi_1 \land \varphi_2$ $\phi_1 \lor \phi_2$ ϕ must hold after a **[α]**φ ϕ may hold after a **<α>**φ predicate variable X μ**Χ^κ.**φ least fixpoint ν**Χ^κ.**φ greatest fixpoint λ**Χ**^κ. φ (higher-order) predicate application $\varphi_1 \varphi_2$ $\kappa ::= \bullet \mid \kappa_1 \rightarrow \kappa_2$

Selected Typing Rules for HFL

 $\Gamma \vdash \mathsf{true:} \bullet$

Г, Х:к ⊢Х:к

$$\Gamma \vdash \lambda X. \varphi \colon \kappa_1 \to \kappa_2$$

$$\frac{\Gamma \vdash \varphi \colon \kappa_1 \to \kappa_2 \quad \Gamma \vdash \psi \colon \kappa_1}{\Gamma \vdash \varphi \: \psi \colon \kappa_2}$$

Semantics

 $[\phi]_{\tau}$: the set of states that satisfy ϕ $L \models \phi \Leftrightarrow s_{init} \in [\phi]_{\emptyset}$ (s_{init}: initial state of L) $[true]_{T} = States$ $[\phi \land \psi]_T = [\phi]_T \cap [\psi]_T$ [•] = 2^{States} $[\kappa_1 \rightarrow \kappa_2] = \{ \mathbf{f} \in [\kappa_1] \rightarrow [\kappa_2] \}$ | f: monotonic} $[\langle \alpha \rangle \phi]_{I} = \{s \mid \exists t.(s)$ $[X]_{T} = I(X)$ $[\mu X^{\kappa}.\phi]_{I} = \mathsf{lfp}(\lambda x \in [\kappa].[\phi]_{I\{X=x\}})$ $[vX^{\kappa}.\phi]_{I} = gfp(\lambda x \in [\kappa].[\phi]_{I\{X=x\}})$ (Note: $\lambda x \in [\kappa] . [\phi]_{I\{X=x\}}$ is monotonic) $[\lambda X^{\kappa}.\phi]_{T} = \lambda X \in [\kappa].[\phi]_{I\{X=x\}}$ $[\phi \ \psi]_{T} = [\phi]_{T} [\psi]_{T}$

Example

- $(\mu F^{\bullet \rightarrow \bullet} \lambda X.\lambda Y. (X A Y) \vee F (\langle a \rangle X) (\langle b \rangle Y)) A B$
- = (A∧B) ∨ (μF^{•→•→}.λX.λY. (X∧Y) ∨ F(<a>X)(Y)) (<a>A)(B)
- = (A^B) \langle (<a>A^B) \langle (<a><a>A^B) \langle ...

B

For some n, <a>n A and n B hold

bn

an

HFL Model Checking

Given

- L: (finite-state) labeled transition system
- φ : HFL formula,

does L satisfy ϕ ?

e.g.
$$L \models \phi$$
 for:

L:

φ: (μF.λX.λY. (X∧Y) ∨ F (<a>X) (Y)) (<c>true) (<d>true)

HORS vs HFL model checking

	Model	Spec.	complexity	Applications
HORS model checking	HORS	APT	k-EXPTIME complete (for order-k HORS)	Automated verification of functional programs [K 09][K+11]
HFL model checking	LTS	HFL	k-EXPTIME complete (for order-k HFL)	Assume-guarantee reasoning [VV 04] Process equivalence checking [Lange+ 14]

APT: alternating parity tree automaton LTS: finite-state labeled transition system

Hierarchical Equation Systems (HES)

 $X_{1} =_{\alpha 1} \varphi_{1}; ...; X_{n} =_{\alpha n} \varphi_{n}$ $(\alpha_{i} \in \{\mu, \nu\})$ $toHFL(X =_{\alpha} \varphi) = \alpha X.\varphi$ $toHFL(H; X =_{\alpha} \varphi) =$ $toHFL([\alpha X.\varphi / X]H)$ Example:

HFL:
$$vX.\mu Y.(\langle a \rangle X \lor \langle b \rangle Y)$$

(there exists a path (b*a) ^{ω})
HES: $X=_{v} Y$; $Y=_{\mu} \langle a \rangle X \lor \langle b \rangle Y$

Outline

Reviews of HORS model checking and HFL model checking

- HORS model checking
- HFL model checking
- From HORS to HFL model checking
- From HFL to HORS model checking
- Type system for HFL model checking
 Conclusion

From HORS to HFL model checking

- Input:
 - HORS G
 - APT A (with largest priority p)
- ♦ Output:
 - LTS LA
 - HFL formula $\phi_{G,p}$

such that $G \models A$ iff $L_A \models \phi_{G,p}$

Intuition:

- L_A simulates the transitions of A
- $\phi_{G,p}$ describes "L_A has transitions corresponding to an accepting run of A over Tree(G)"

Construction of L_A

Construction of L_A

Construction of L_A

Outline

- Reviews of HORS model checking and HFL model checking
- From HORS to HFL model checking
 - construction of L_A
 - construction of $\varphi_{G,p}$
 - case p=0
 - general case
- From HFL to HORS model checking
- Type system for HFL model checking
- Conclusion

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

φa c (b c) =

<a_{0} ``can visit 1st and 2nd children with states satisfying φ_c and φ_b_c respectively"

 $= < a_0 > ($ (2,q₀) <1>\phi_c /* case (1,q) */ and \vee < 2> ϕ_{bc} /* case (2,q) */ a $(1,q_0) \land (2,q_0)$ **q**0 and v<tt>true /* case true */ **q**₁ $(1,q_0)$ b∩ b_0 C_0 a_0 $(1,q_1)$ false C_0

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

and

 $(1,q_0) \land (2,q_0)$

 C_0

b∩

q₁

 \mathbf{a}_0

false

φa c (b c) =

<a_{0} > "can visit 1st and 2nd children with states satisfying φ_c and φ_b_c respectively"

= $<a_0>($ $<1>\phi_c$ /* case (1,q) */ $<<2>\phi_{bc}$ /* case (2,q) */ <<tt>true /* case true */ $<math><(<and>true /* case f \land g$ */ \land [and] $<(1,q_0)$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$ $<_0$

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

Φa c (b c) =

<a_{0} ``can visit 1st and 2nd children with states satisfying φ_c and φ_b_c respectively"

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

 ϕ ac(bc)=

<a_{0} ``can visit 1st and 2nd children with states satisfying φ_c and φ_b_c respectively"

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

 $\varphi_{a c (b c)} = \langle a_0 \rangle (H_2 \varphi_c \varphi_{b c})$

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

$$\begin{array}{l} \varphi_{a \ c \ (b \ c)} = \langle a_{0} \rangle (H_{2} \ \varphi_{c} \ \varphi_{b \ c}) \\ = \langle a_{0} \rangle (H_{2} (\langle c_{0} \rangle H_{0}) (\langle b_{0} \rangle H_{1} (\langle c_{0} \rangle H_{0}))) \\ \text{where } H_{2} = \lambda Y_{1} . \lambda Y_{2} . \nu X . \\ \langle 1 \rangle Y_{1} \ /^{*} \ case \ (1,q) \ */ \\ \vee \langle 2 \rangle Y_{2} \ /^{*} \ case \ (2,q) \ */ \\ \langle \langle and \rangle true \ /^{*} \ case \ true \ */ \\ \wedge \ [and]X) \\ \vee \langle or \rangle X) \ /^{*} \ case \ f \lor g \ */ \\ true \ true \ c_{0} \ false \end{array}$$

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

$$\begin{aligned} \varphi_{a \ c \ (b \ c)} &= \langle a_{0} \rangle (H_{2} \ \varphi_{c} \ \varphi_{b \ c}) \\ &= \langle a_{0} \rangle (H_{2} (\langle c_{0} \rangle H_{0}) (\langle b_{0} \rangle H_{1} (\langle c_{0} \rangle H_{0}))) \\ \text{where } H_{2} &= \lambda Y_{1} . \lambda Y_{2} . \nu X. \\ &\langle 1 \rangle Y_{1} \ /^{*} \ case \ (1,q) \ */ \\ &\langle \langle 2 \rangle Y_{2} \ /^{*} \ case \ (2,q) \ */ \\ &\langle \langle 2 \rangle Y_{2} \ /^{*} \ case \ (2,q) \ */ \\ &\langle \langle 4nd \rangle true \ /^{*} \ case \ f \land g \ */ \\ &\land \ [and]X) \\ &\lor \langle \circ r \rangle X) \ /^{*} \ case \ f \lor g \ */ \ ++ \ true \ \langle c_{0} \ false \ fal$$

 ϕ_{T} : "the current state has transitions corresponding to an accepting run for T"

From HORS to HFL

 $F \rightarrow t$ \Rightarrow F =, t[#] where: $F^{\#} = F = x^{\#} = x$ $(t_1t_2)^{\#} = (t_1)^{\#}(t_2)^{\#}$ $(\lambda x.t)^{\#} = \lambda x.(t)^{\#}$ $a^{\#} = \lambda \mathbf{x}_1 \dots \lambda \mathbf{x}_k \cdot \langle \mathbf{a}_0 \rangle (\mathbf{H}_k \mathbf{x}_1 \dots \mathbf{x}_k)$

Example **A**: HORS G $\delta(q_0,a) = (1,q_0) \land (2,q_0)$ $\delta(q_1,a)$ = false $S \rightarrow Fc$ $\delta(q_0,b) = \delta(q_1,b) = (1,q_1)$ $F x \rightarrow a x (F (b x))$ $\delta(q_0,c) = \delta(q_1,c) = true$ LA (2,q₀) *ΦG*,0 and $S =_{v} F (< c_{0} > H_{0})$ \mathbf{a}_{0} $(1,q_0) \land (2,q_0)$ and **q**0 $F x =_{v}$ **q**₁ $(1,q_0)$ $(a_0)(H_2 \times (F((b_0)(H_1 \times))))$ b_∩ b_0 c₀\ a_0 (1,q₁) false true **c**₀

Outline

- Reviews of HORS model checking and HFL model checking
- From HORS to HFL model checking
 - construction of L_A
 - construction of $\varphi_{G,p}$
 - case p=0
 - general case
- From HFL to HORS model checking
- Type system for HFL model checking
- Conclusion

Challenge

How to translate the parity condition of APT: "for every path of a run-tree, the largest priority visited infinitely often is even"

to a proper nesting of least/greatest fixpoint formulas?

e.g. A: $\delta(q_a, a) = \delta(q_b, a) = (1, q_a)$ $\delta(q_a, b) = \delta(q_b, b) = (1, q_b)$ $\Omega(q_a) = 0$, $\Omega(q_b) = 1$ G: S $\rightarrow a$ (b F) F $\rightarrow a$ S

G ⊭ A but

 $= S=_{v} <a_{0}>(H_{1} (<b_{0}>(H_{1} F)));$ $F=_{v} <a_{1}>(H_{1} S)$

Ideas

Duplicate each non-terminal for each priority

$$S \rightarrow a \text{ (b F)} \quad F \rightarrow a S$$

$$since the last unfolding$$

$$s_{1}^{1} = _{\mu} \langle a_{0} \rangle (H_{1} (\langle b_{0} \rangle (H_{1} F^{0})));$$

$$F_{1}^{1} = _{\mu} \langle a_{1} \rangle (H_{1} S^{1});$$

$$s_{0}^{0} = _{\nu} \langle a_{0} \rangle (H_{1} (\langle b_{0} \rangle (H_{1} F^{0})));$$

$$F_{0}^{0} = _{\nu} \langle a_{1} \rangle (H_{1} S^{1});$$

The largest priority seen since the previous unfolding of a non-terminal.

Ideas

- Duplicate each non-terminal for each priority
- Duplicate also each argument, so that a function can choose an appropriate copy

$$S \rightarrow F G$$
 $F x \rightarrow b (x S)$ $G y \rightarrow a y$

We cannot locally decide the priority annotation for G; only F knows when G is unfolded.

$$S^{1} =_{\mu} F^{0} G^{0} G^{1}$$

$$F^{1} x^{0} x^{1} =_{\mu} \langle b_{0} \rangle (H_{1} (x^{0} S^{0} S^{1}))$$

$$\vee \langle b_{1} \rangle (H_{1} (x^{1} S^{1} S^{1}))$$

General construction of $\varphi_{G,p}$
$G: F_1 \times_1 \ldots \times_{k1} \to t_1, \ldots, F_n \times_1 \ldots \times_{kn} \to t_n$
$F_1^p \times_1^0 \ldots \times_1^p \ldots \times_{k1}^0 \ldots \times_{k1}^p =_{\alpha(p)} t_1^{\#0}; \ldots;$
$F_n^p x_1^0 \dots x_1^p \dots x_{k1}^0 \dots x_{k1}^p =_{\alpha(p)} t_n^{\#0};$
• • • •
$F_1^0 \times_1^0 \ldots \times_1^p \ldots \times_{kn}^0 \ldots \times_{kn}^p =_{\alpha(0)} t_1^{\#0}; \ldots;$
$F_n^0 X_1^0 \dots X_1^p \dots X_{kn}^0 \dots X_{kn}^p =_{\alpha(0)} t_n^{\#0}$
where $\alpha(i) = v$ if i is even and μ otherwise

$$\begin{array}{c} \textbf{General construction of } \phi_{G,p} \\ \hline G: F_{1} \times_{1} \dots \times_{k_{1}} \to t_{1}, \dots, F_{n} \times_{1} \dots \times_{k_{n}} \to t_{n} \\ \hline \\ \hline \\ F_{1}^{p} \times_{1}^{0} \dots \times_{1}^{p} \dots \times_{k_{1}^{0}} \dots \times_{k_{1}^{p}} =_{\alpha(p)} t_{1}^{\#0}; \\ \hline \\ \dots; \\ F_{n}^{0} \times_{1}^{0} \dots \times_{1}^{p} \dots \times_{k_{n}^{0}} \dots \times_{k_{n}^{p}} =_{\alpha(0)} t_{n}^{\#0} \\ \hline \\ (a)^{\#i} = \lambda \times_{1,0} \dots \lambda \times_{1,p} \dots \lambda \times_{k,0} \dots \lambda \times_{k,p} \dots \times_{k_{n}^{0}} (H_{k} \times_{1,p} \dots \times_{k,p}) \\ \hline \\ (x)^{\#i} = x^{i} \\ \hline \\ (F)^{\#i} = F^{i} \\ (s t)^{\#i} = (s)^{\#i} (t)^{\#max(0,i)} \dots (t)^{\#max(p,i)} \end{array}$$

Correctness of Translation

♦ Theorem:

$$G \mid = A$$

if and only if
 $L_A \mid = \varphi_{G,P}$

Follows from the type-based characterizations of HORS and HFL model checking:

$$G \models A \Leftrightarrow \mid -_A G \Leftrightarrow \mid -_A \phi_{G,p} \Leftrightarrow \mid L_A \mid = \phi_{G,p}$$
[K&Ong 09] (new) (new) (new)

Correctness of Translation

♦ Theorem:

$$G \mid = A$$

if and only if
 $L_A \mid = \varphi_{G,P}$

$|L_A|$ is polynomial in |A| $|\varphi_{G,p}|$ is polynomial in |G|, p

Outline

- Reviews of HORS model checking and HFL model checking
- From HORS to HFL model checking
- From HFL to HORS model checking
- Type system for HFL model checking
- Conclusion

From HFL to HORS model checking

- ♦ Input:
 - LTS L
 - HFL formula ϕ
- ♦ Output:
 - HORS $G_{\phi,c}$
 - APT AL

such that L $\models \phi$ iff ${\pmb G}_{\phi,c} \models {\pmb A}_L$ for sufficiently large c Intuition:

- $G_{\phi,c}$ generates tree representation of the formula obtained from ϕ by unfolding fixedpoint operators sufficiently many times
- A_L accepts trees representing valid formulas

HFL-to-HORS Translation: Overview

Remove fixpoint operators by finite unfoldings

 $F^{(c)} X = [F^{(c-1)}/F]\phi ; ...; F^{(1)} X = [F^{(0)}/F]\phi; F^{(0)} X = true$

Convert it to HORS, which generates the tree representation of the formula

$F^{(c)} X \rightarrow [F^{(c-1)}/F] \varphi'; \ldots; F^{(1)} X \rightarrow [F^{(0)}/F] \varphi'; F^{(0)} X \rightarrow true$

Parameterize F by a number, and implement numbers (up to k^{n}) as functions (cf. [Jones01])

F m X \rightarrow if (Zero? m) true ([F (m-1)/F] ϕ ')

Correctness of Translation

♦ Theorem:

L |=
$$\varphi$$

if and only if
 $G_{\varphi} \parallel 1$ |= A₁

 $|G_{\varphi,|L|}|$ is polynomial in $|\varphi|$ and |L| $|A_L|$ is polynomial in |L|

Outline

- Reviews of HORS model checking and HFL model checking
- From HORS to HFL model checking
- From HFL to HORS model checking
- Type system for HFL model checking
- Conclusion

Goal

- Design a type system |-L such that:
 - L |= φ if and only if
 - $|-L \varphi$ (cf. K-Ong type system for HORS model checking [K&Ong, LICS09])

Applications:

- correctness proof of HORS-to-HFL translation
- practical model checkers for HFL (cf. practical HORS model checkers based on intersection types)

Types

- - $\wedge : s \to s \to s \text{ for every } s$
 - \lor : $(s \rightarrow T \rightarrow s) \land (T \rightarrow s \rightarrow s)$ for every s

Typing Rules
$$\Gamma \vdash true: s$$
 $\Gamma \vdash \phi: s' \quad s \rightarrow_a s'$ $\Gamma \vdash \phi: s \quad \Gamma \vdash \psi: s$ $\Gamma \vdash \phi \Rightarrow s \quad \Gamma \vdash \psi: s$ $\Gamma \vdash \phi \Rightarrow s \quad \Gamma \vdash \phi: s'$ $\Gamma \vdash \phi \Rightarrow s \quad \Gamma \vdash \phi: s'$ $\Gamma \vdash \phi \Rightarrow s \quad \Gamma \vdash [a] \phi: s$ $\Gamma \vdash \phi: \tau_1 \land \dots \land \tau_k \rightarrow \tau$ $\Gamma \vdash \phi: \tau_i \text{ for each } i$ $\Gamma \vdash \phi: \tau_i \land \tau$ $\Gamma \vdash \phi: \tau_1 \land \dots \land \tau_k \rightarrow \tau$ $\Gamma \vdash \phi: \tau_i \land \tau$ $\Gamma \vdash h \Rightarrow \tau_i \land \tau_1 \land \dots \land \tau_k \rightarrow \tau$

Typing Fixpoint Formulas

Definition: $|-_{L} X_{1}=_{\alpha 1} \varphi_{1}; ...; X_{n}=_{\alpha n} \varphi_{n}$ if there is a possibly infinite derivation for $\emptyset|-X_{1}:s_{init}$ such that, for each infinite derivation path, $\alpha_{j} = v$ for the least j such that X_{j} is unfolded infinitely often.

Example

 $X: s_0 | -X: s_0$ **X**: s_0 |-[b]**X**: s_1 ... $\emptyset \vdash \lambda X.[b]X: s_0 \rightarrow s_1 \qquad \emptyset \vdash \langle a \rangle (F A): s_0$ $\emptyset \vdash \mathbf{F}: s_0 \rightarrow s_1$ $\emptyset \vdash \mathbf{A}:\mathbf{s}_0$ $\emptyset \vdash \mathbf{F} \mathbf{A}: \mathbf{s}_1$ $\emptyset \vdash \langle a \rangle (F A) : s_0$ $\emptyset \vdash \mathbf{A}:\mathbf{s}_0$ HES LTS: A=_v <α>(F A); S₀ S₁ $F=_{II} \lambda X.[b]X$ b

Correctness of Type System

♦ Theorem:

$$L \mid = \varphi$$

if and only if
$$\mid -_{L} \varphi$$

Corollary:

L |= φ can be decided in time polynomial in the size of φ, if the following parameters are fixed:
 L

- the largest size of types in $\boldsymbol{\phi}$
- alternation depth of $\boldsymbol{\phi}$

Outline

- Reviews of HORS model checking and HFL model checking
- From HORS to HFL model checking
- From HFL to HORS model checking
- Type system for HFL model checking
- Related work and Conclusion

Related Work

HORS model checking

- decidability [Knapik+02][Ong06]...
- type-based characterization [K09][K&Ong09]
- algorithms [K09][K11][Ramsay+14]...
- applications [K09][K+11][Ong+11]...

♦ HFL model checking

- decidability [Viswanathan² 04]
- complexity [Axelsson+ 07]
- applications [Viswanathan² 04][Lange+ 12]

Related Work

- Type-based characterization of HORS model checking [K 09][K&Ong 09] inspired:
 - translation from HORS to HFL model checking
 - type-based characterization
- Encoding of big numbers as functions [Jones 01][Tsukada&K 14]
- Reduction from HORS model checking to nested least/greatest fixedpoint computation [Salvati&Walukiewicz, CSL15]

Conclusion

- Revealed close relationships between HORS/HFL model checking through:
 - order-preserving mutual reductions
 - type-based characterization of HFL model checking similar to that of HORS model checking
- Future work: mutual transfer of results (e.g. practical model checking algorithms)