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Logic and Big Data

It’s 9:15am.

People might be a bit too slow to arrive.

The talk starts with important definitions.

So let’s spend the first few minutes on the role of logic in the Big Data
world.
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Logic and Big Data cont’d

What’s the most successful application of logic (other than propositional)
in CS?

Databases. Nothing else comes close to $25B/year.

Main language: SQL. The core of it: first-order logic.

What do we often hear from data science, big data, etc crowds? That
it’s all about data mining, machine learning, statistics. Logic? Not really.

Is it true? Absolutely not! Not now, not in the future.
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Logic in the big data world: SQL is the preferred tool
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Tool: language, data platform, analytics
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Logic in the big data world: SQL will remain the preferred
tool
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A quick introduction

We deal with first-order logic, FO over finite structures.

Model-checking: Given a structure S and a formula ϕ, is ϕ true in S?

I is S |= ϕ true?

Validity: Given a a formula ϕ, is it true in every (finite) structure S?

I is |= ϕ true?

We are interested in a constrained version of validity:

I Given a formula ϕ, and a class K of structures, is ϕ true in every
structure S ∈ K?
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A quick introduction cont’d

How to define K?

Let’s assume it is given by a formula ψ.

Then we are just checking validity of ψ → ϕ.

But what if ψ – and K – is somehow given by another structure D?

Then we want to reduce constrained validity to model-checking:

I replace |= ψ → ϕ with D |= ϕ
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Validity vs model-checking: flavors
I Problem to solve: is ψ → ϕ valid?
I Known: ψ is given with the help of a structure D

Possibilities:
Ideal solution — validity is model-checking:

|= ψ → ϕ ⇔ D |= ϕ

A semi-ideal situation — validity can be checked algorithmically:

|= ψ → ϕ ⇔ algorithm(D, ϕ) = true

An approximate solution — replace ϕ with ϕ′ so that:

D |= ϕ′ ⇒ |= ψ → ϕ
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Restricted validity: how to get K and ψ

Class K will typically be of the form:

KD = {S | there is a homomorphism h : D → S}

I a usual homomorphism;

I or an onto homomorphism: universe of S = h(universe of D)

I or a strong onto homomorphism: S = h(D)

For usual homomorphisms, ψ is just the positive diagram of D:

ψD = ∃ universe of D
∧

facts of D

Why? This is how we answer queries over incomplete data. But first...
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Complexity of model-checking

I Problem: Given ϕ and S , is S |= ϕ?
I Two types of complexity:

I Combined complexity: both ϕ and S are the input.
I Data complexity: ϕ is fixed, only S is the input.
I Often an exponential gap between them.
I Also parameterized complexity, but we don’t deal with it here.

I For FO:
I Combined – PSPACE.
I Data – AC0.
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Complexity of model-checking lowered

Conjunctive queries – the ∃,∧-fragment of first-order logic:

ϕ(x̄) = ∃ȳ
(
R1(ū1) ∧ . . . ∧ Rn(ūn)

)

I where ūi list variables among x̄ , ȳ

I they capture select-project-join queries; the best studied class of
database queries.

I Combined complexity: NP.

I The same is true for unions of conjunctive queries, i.e., existential
positive formulae (the ∃,∧,∨-fragment of FO).
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Validity: Complexity

I Version 1: Given ϕ, it is true in every finite structure?

I Version 2: Given D and ϕ, is ψD → ϕ true in every finite structure?

I For FO: both are undecidable.

I But if ϕ is a conjunctive query, it is in NP (Chandra/Merlin 1978):

|= ψD → ϕ ⇔ D |= ϕ

I A similar argument works for unions of conjunctive queries.

I Thus, validity is reduced to model-checking
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Incomplete information

I It is everywhere.

I The more data we accumulate, the more incomplete data we
accumulate.

I Sources:
I Traditional (missing data, wrong entries, etc)
I The Web
I Integration/translation/exchange of data, etc

I One tries to clean but not always possible
I The importance of it was recognized early

I Codd, “Understanding relations (installment #7)”, 1975.

I And yet the state is very poor:
I Both practice and theory
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Incomplete information: basic idea

We have an incomplete database D.

It represents many possible complete databases D ′.

Refer to them as the semantics of an incomplete database:

JDK = { all D ′ that D represents }
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Models of incompleteness: missing data

Semantics is most commonly defined via homomorphisms.

Query answering: Given ϕ and an incomplete D, want to check if ϕ is
true with certainty:

∀D ′ ∈ JDK : D ′ |= ϕ

If JDK is given by ψD , this is |= ψD → ϕ — validity!

Want to reduce to model checking, or query evaluation, ideally D |= ϕ

Turning a highly intractable problem into a highly tractable one.

The idea goes back to the 1980s (Imielinski/Lipski 1984, Reiter 1986,
Vardi 1986)
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Definitions

Vocabularies: relation names R1, . . . ,Rn and their arities.

Relational structures, also known as databases:

D = 〈U, R1, . . . , Rn 〉

I U is the universe

I RD
i ⊆ Uarity(Ri )

I Convention: every element of U occurs in some relation RD
i

I Convention: often omit superscript D from RD
i
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Relational databases

Finite first-order structures of relational vocabulary. In the example
below, we have R1 of arity 3, and R2 of arity 2.

In databases, columns are named (they are attributes of a relation).

R1:

A B C

1 2 5

3 4 3

2 5 1

2 6 3

R2:

B D

2 7

3 5

4 1

Queries: fragments of first-order logic (FO)

A very common fragment – conjunctive queries – the ∃,∧ fragment of FO

Example: ϕ(x) = ∃y , z R1(x , y , z) ∧ R2(z , y)
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Relational databases with missing information

Domain: disjoint union of

I constants like 1,2, etc

I nulls, denoted by ⊥1, ⊥2, etc.

I Meaning: a value is missing, unknown at present.

R1:

A B C

1 2 ⊥1

⊥2 ⊥1 3

⊥3 5 1

2 ⊥3 3

R2:

B D

2 ⊥2

3 5

4 ⊥4
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Homomorphisms

For two databases

D = 〈U,RD
1 , . . . ,R

D
n 〉 and D ′ = 〈U ′,RD′

1 , . . . ,RD′
n 〉

a homomorphism is a map h : U → U ′ such that:

I h(c) = c if c ∈ CCC

I if ā ∈ RD
i , then h(ā) ∈ RD′

i .

A homomorphism is

I onto if h(U) = U ′

I strong onto if h(D) = D ′

A homomorphism is a valuation (of nulls) if h(U) ⊂ CCC.
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Two common semantics

Semantics via valuation of nulls

A B C

1 2 ⊥1

⊥2 ⊥1 3

⊥3 5 1

2 ⊥3 3
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Closed-World-Assumption semantics (CWA semantics):

[[D]]cwa =
{
v(D)

∣∣∣∣ v is a valuation
}
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Open-World-Assumption semantics (OWA semantics):

[[D]]owa =

{
complete D ′

∣∣∣∣ v(D) ⊆ D ′ for some valuation v

}
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Formulae ψD defining semantics

Complete models of ψD = JDK

I D =
1 2

3 ⊥

I under OWA: ∃x D(1, 2) ∧ D(3, x) – a conjunctive query

I under CWA:

∃x

 D(1, 2) ∧ D(3, x)

∧ ∀y , z D(y , z)→
(

(y , z) = (1, 2)
∨ (y , z) = (3, x)

) 
I We’ll see this class later: positive formulae with universal guards
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Query evaluation: certain answers

Given:

I an incomplete database D

I a query ϕ, for now a sentence

we want to find certain answers:

certain(ϕ,D) =
∧

D′∈JDK

ϕ(D ′)

i.e., the answer that does not depend on the interpretation of nulls.

Certain answers = validity of ψD → ϕ.
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Complexity of certain answers

Language: first-order logic. Known results (Abiteboul, Kanellakis,
Grahne, 1991; Gheerbrant, L., Tan, 2012):

For OWA: undecidable, even in data complexity.

I Trakhtenbrot’s theorem for combined complexity (for data
complexity too, but some work is needed).

For CWA: coNP-complete.

I Just guess a valuation so that v(D) |= ¬ϕ.
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When validity = model checking/query evaluation

We have good answers for both OWA and CWA.
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Näıve evaluation for conjunctive queries
Suppose ϕ is a conjunctive query. Then

certain(ϕ,D) = true
m

ψD → ϕ is valid
m

D |= ϕ

When ϕ,ψ are conjunctive queries, the following are equivalent:

I |= ψ → ϕ

I there is a homomorphism from CDϕ to CDψ
I CD∃x̄ R1(ū1)∧...,Rn(ūn) = {R1(ū1), . . . ,Rn(ūn)}

I CDψ |= ϕ

Since CDψD
= D we have |= ψD → ϕ ⇔ D |= ϕ
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Näıve evaluation for conjunctive queries cont’d

Database people call this näıve evaluation of queries over incomplete
databases:

I evaluate ϕ as if nulls were values (e.g., ⊥1 = ⊥1, ⊥1 6= ⊥2,
⊥1 6= 5 etc)

I Continues to work for unions of conjunctive queries

I At the core of many database applications (especially in data
integration and exchange)

First discovered in 1984 by Imielinski and Lipski.

Works for unions of conjunctive queries (existential positive queries):

I essentially the same argument
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Limits of naive evaluation

How far can we push this?

Certain answers to ϕ can be found by näıve evaluation if for all S :

certain(D, ϕ) = true ⇔ D |= ϕ

Within FO, cannot extend this at all:

Theorem

(L., 2011, an application of Rossman’s theorem) Let ϕ be an FO
sentence such that certain answers to ϕ can be found by näıve
evaluation under OWA. Then ϕ is equivalent to a union of
conjunctive queries (i.e., an existential positive formula).
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Can this be extended beyond OWA?

Approach of Gheerbrant, L., Sirangelo, 2013:

I Order databases by D � D ′ iff JD ′K ⊆ JDK
I Idea: D ′ is more informative

I If D |= ϕ and D � D ′ imply D ′ |= ϕ then

certain(ϕ,D) = true = D |= ϕ

I Condition D |= ϕ, D � D ′ ⇒ D ′ |= ϕ:

preservation under �
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Preservation and näıve evaluation

I What are the orderings � for OWA and CWA?
I D � D ′ iff

I For OWA: there is a homomorphism from D to D ′

I For CWA: there is a strong onto homomorphism from D to D ′

Hence reduction of certain answers/validity to model checking =
preservation under homomorphisms

Remark: there is a semantics that corresponds to preservation under onto
homomorphisms, called weak closed-world. Won’t deal with it here.

Singapore, August 2016 validity/uncertain data 29/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

Preservation and näıve evaluation

I What are the orderings � for OWA and CWA?
I D � D ′ iff

I For OWA: there is a homomorphism from D to D ′

I For CWA: there is a strong onto homomorphism from D to D ′

Hence reduction of certain answers/validity to model checking =
preservation under homomorphisms

Remark: there is a semantics that corresponds to preservation under onto
homomorphisms, called weak closed-world. Won’t deal with it here.

Singapore, August 2016 validity/uncertain data 29/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

Preservation under homomorphisms

Classical results in model theory for FO formulae:

I Preservation under homomorphisms = existential positive formulae
I built using ∧,∨,∃
I Rossman 2005: both finite and infinite cases

I Preservation under onto homomorphisms = positive formulae
I built using ∧,∨,∃,∀
I Lyndon 1959, for all models; fails in the finite (Stolboushkin 1995)

I Preservation under strong onto homomorphism: a more complicated
story

I A result by Keisler 1965, only for a vocabulary of graphs
I A rather unpleasant syntax
I May well be true but a crucial lemma is false
I But another fragment, discovered by Compton 1983, works
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Fragment Pos∀G (positive + universal guards)

Rules for positive formulae:

I Atoms R(x̄) and x = y are in Pos∀G

I If ϕ,ψ are in Pos∀G then so are ϕ ∨ ψ and ϕ ∧ ψ
I If ϕ is in Pos∀G then so are ∃xϕ and ∀xϕ
I If ϕ is in Pos∀G then so are ∃xϕ and ∀xϕ

New guard rule:

I If ϕ is in Pos∀G, and ψ(x̄) is an atom, then

∀x̄ (ψ(x̄) → ϕ)

is in Pos∀G.

Singapore, August 2016 validity/uncertain data 31/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

Pos∀G

I Pos∀G formulae are preserved under strong onto
homomorphisms.

I Consequently, under CWA,

certain(ϕ,D) = true ⇔ D |= ϕ

Can this class be further extended? Probably not, or not much.

Pos∀G describes the fragment of FO preserved under strong onto
homomorphisms on all structures.
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Another look at it

Reminder – relational algebra: a procedural language on relations
equivalent to FO.

That’s – in theory – how FO queries are implemented in databases in
practice.

Operations:

I Projection π

I Selection σ

I Cartesian product ×
I Union ∪
I Difference −

I Derived operations: intersection ∩, join on, division ÷

Existential positive = σ, π,×,∪
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Going beyond existential positive

Reminder – relational algebra division

A B

a 1

a 2

b 1

÷
B

1

2

=
A

a

Very common in queries with universal conditions/negation (“find
suppliers who supply all parts”)

For a query Q expressed with

I σ, π,on,∪, and

I R ÷ S , where S is a relation in the database,

certain answers are computed by naive evaluation of Q
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What if D |= ϕ does not check validity?

Next thing:

certain(ϕ,D) = true ⇔ algorithm(ϕ,D) says yes

The algorithm better be tractable.
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When can this work?

I We need to add some form of negation to existential positive
formulae: for them, everything works

I Possibility 1: add inequalities to conjunctive queries
I E.g., ∃x , y S(x , y) ∧ x 6= y

I Possibility 2: add Boolean combinations of conjunctive queries
I E.g., ϕ1 ∧ (¬ϕ2 ∨ ϕ3) ∧ ¬ϕ4 where the ϕi s are conjunctive queries.

I Good news: in both cases the combined complexity of certain
answers is in Πp

2
I follows from Sagiv/Yannakakis 1980 and Klug 1988
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Beyond unions of conjunctive queries cont’d

I We want tractable data complexity: computing certain(ϕ,S)
polynomial in S

I Bad news: for conjunctive queries with inequalities, data complexity
is coNP-complete (Klug; Fagin et al)

A simple proof for unions of conjunctive queries with inequalities

I Given a graph G = 〈V ,E 〉 with V = {⊥1, . . . ,⊥n}.
I Consider

ϕ = ∃x E (x , x) ∨ ∃x1, x2, x3, x4

∧
i 6=j

xi 6= xj

I certain(ϕ,G ) = true iff G is not 3-colorable.
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Beyond unions of conjunctive queries cont’d

Good news: for Boolean combinations of conjunctive queries, data
complexity stays in PTIME (Gheerbrant, L., 2012)

I of course we cannot use näıve evaluation

I but we can effectively search for a counter-model instead

I works for both OWA and CWA, but algorithms are different

I We sketch them now, by means of simple examples.
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The OWA algorithm by example

The basic case: q = ψ → ϕ, where

I ψ is a conjunctive query,

I ϕ is a union of conjunctive queries.

It has only one falsifying valuation

ψ ϕ ψ → ϕ

false false true

true true true

true false false

false true true
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The algorithm by example

Relation D:

1 3 ⊥1

2 3 ⊥1

Queries:

I ψ: there is a tuple (1, ,4) is in the relation.

I ϕ: there is a tuple (2, ,4) is in the relation.

I q = ψ → ϕ
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The OWA algorithm by example cont’d

1. Convert ψ into its tableau and glue it into D:

1 3 ⊥1

2 3 ⊥1

1 ⊥2 4

2. Evaluate ϕ näıvely on the new relation.

3. Verdict: it’s not true.

4. We found our counter model.

5. Hence certain(q,D) = false.
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Generalization to arbitrary Boolean combinations

1. list every falsifying valuations for the Boolean combination;

2. apply the previous procedure for each one of them;

3. the number of valuations is fixed since the query is fixed.
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It still works under CWA

Idea: We want to extend D (in a “closed-world” way) so that it satisfies
ψ when we deal with queries ψ → ϕ.

1 3 ⊥1

2 3 ⊥1

There is only one way to do it for the query
∃x D(1, x , 4) → ∃y D(2, y , 4)

1 3 4

2 3 4

The counter model search aborted: certainCWA(ψ → ϕ,D) = true.

Singapore, August 2016 validity/uncertain data 43/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

Will this work?

By work we mean: in real databases.

Not a chance, this is not how query evaluation algorithms are
implemented.

Only suitable for “small data”.

Let’s see now what happens in real databases and what we can do.
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Incomplete information

We accumulate a lot of incomplete data, but handling incomplete
information by relational database products (SQL) is very problematic:

I “Those SQL features are . . . fundamentally at odds with the way
the world behaves” (Date & Darwen, ‘A Guide to SQL Standard’)

I “If you have any nulls in your database, you’re getting wrong
answers to some of your queries . . . you have no way of knowing
which queries you’re getting wrong answers to”

I “You can never trust the answers you get from a database with
nulls” (Date, ‘Database in Depth’)
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Company database – orders, customers, payments

Orders Pay Customer
order id title price

Ord1 “Big Data” 30
Ord2 “SQL” 35
Ord3 “Logic” 50

cust id order
c1 Ord1
c2 Ord2

cust id name
c1 John
c2 Mary

Queries, as we teach students to write them:

Unpaid orders Customers without an order
SELECT O.order id select C.cust id from Customer C

FROM Orders O where not exists

where O.order id not in (SELECT * from Orders O, Pay P

(select order from Pay) where C.cust id=P.cust id

and P.order=O.order id)

Answer: Ord3 Answer: none
Answer: //////Ord3 none Answer: /////none c2
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What it’s blamed on: 3-valued logic

SQL used 3-valued logic, or 3VL, for databases with nulls.

Normally we have two truth values: true t, false f. But comparisons
involving nulls evaluate to unknown (u): for instance, 5 = null is u.

They are propagated using 3VL rules:

∧ t f u
t t f u
f f f f
u u f u

∨ t f u
t t t t
f t f u
u t u u

∨
t f
f t
u u

I Committee design from 30 years ago, leads to many problems,

I but is efficient and used everywhere
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What does theory have to offer?

The notion of correctness — certain answers.

I Answers independent of the interpretation of missing information.

I Typically defined as

certain(Q,D) =
⋂
{Q(D ′) | D ′ ∈ JDK

I Of course now queries are more than sentences: they can return sets
of tuples.

I Standard approach, used in all applications: data integration and
exchange, inconsistent data, querying with ontologies, data cleaning.

I If we model true as {()} and false as {}, this is exactly what we had
before for sentences.
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Correctness guarantees: involving nulls

A small problem with the above definition: it eliminates all tuples with
nulls.

Consider

R =
1 2

3 ⊥

and Q is R(x , y) (just return R itself).

certain(Q,R) = 1 2
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Correctness guarantees: involving nulls
A natural extension of the standard definition of certain answers
(proposed by Lipski in 1984 but quickly forgotten).

A tuple without nulls ā is a certain answer if

ā ∈ Q(h(D)) for every valuation h of nulls.

An arbitrary tuple ā is a certain answers with nulls, certain⊥(Q,D), if

h(ā) ∈ Q(h(D)) for every valuation h of nulls.

Known: certain(Q,D) is the set of null free tuples in certain⊥(Q,D)

certain(Q,D) ⊆ certain⊥(Q,D) ⊆ naive evaluation of Q on D
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An arbitrary tuple ā is a certain answers with nulls, certain⊥(Q,D), if
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Certain answers and conjunctive queries

A very typical picture:

I Certain answers can be computed efficiently for conjunctive queries
I perhaps extensions like unions of conjunctive queries
I or perhaps a fragment of conjunctive queries

I Outside conjunctive queries, certain answers are computationally
intractable

I often see coNP, Πp
2 , coNEXP lower bounds, even undecidability

I The behavior of a database theoretician: move on to the next
problem, establish more lower bounds outside of conjunctive queries
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How can SQL differ from certain answers?

I SQL can produce false negatives: miss some of the certain answers

I SQL can produce false positives: return answers that are not certain.

I We view false positives as being much worse: telling a lie as opposed
to not telling the whole truth.

I We want to impose correctness guarantees: no false positives.
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Life beyond conjunctive queries

Question 1: Does SQL compute wrong (non-certain) answers for
real-life queries?

Question 2: If SQL cannot compute certain answers, can it approximate
them?
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Do wrong answers really occur?

Wrong answers (false positives) are tuples that

I returned by SQL evaluation, but

I are not certain answers.

What we know (L., 2015; Console, Guagliardo, L. 2016):

I For SQL queries without negation, there are no false positives.

I Otherwise (e.g., with not exists), they can occur.

I If we use Boolean logic to evaluate ∧,∨,¬, they will occur.

But how big of a problem is it for real-life queries?
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Wrong answers and queries with negation

I A good source of queries: TPC benchmarks (especially TPC-H,
typical decision support queries)

I Issues:

1. surprisingly few have negation (Q21 and Q22)
2. the standard data generator does not produce nulls
3. checking for certain answers is coNP-hard

I Solutions:

1. complement with typical textbook queries that involve negation
2. generate nulls randomly in nullable attributes
3. For queries in our experiments, design – by hand – algorithms that let

us quickly find lower bounds on the number of nulls.
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False positives – lots of them

Nullrate: the probability a null occurs in an attribute that has not been
declared as not null
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SQL and certain answers

Can SQL evaluation be changed to coincide with certain answers?

No!

Complexity argument:

I Finding certain answers for relational calculus queries in coNP-hard

I SQL is very efficient (DLOGSPACE; even AC0)

Can SQL evaluation be changed to produce only certain answers?

Yes!

In more than a single way.
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Old solutions

Reiter 1986, Vardi 1986:

I Represented databases as logical theories;

I Queries must be logical formulae in a special shape, so that
application of negation is restricted.

Wouldn’t work for real databases, but introduced two important ideas:

I approximations for certain answers computed by evaluating queries
on a database with nulls;

I the idea of matching/unification for handling queries with negation.

We’ll see now how these ideas work in modern solutions.
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The first solution

There is an effective translation of queries (L., 2015)

Q 7→
(
Qt ,Q f

)
such that:

I Qt approximates certain answers to Q

I Q f approximates certain answers to the negation of Q

I both queries have AC0 data complexity

certain⊥(Q,D) certain⊥(¬Q,D)Qt(D) Q f(D)

Singapore, August 2016 validity/uncertain data 59/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

Relational algebra translations: Qt

For a relation R: Rt = R

For op ∈ {∩ , ∪ , ×}: (Q1 op Q2)t = Qt
1 op Qt

2

For projection: πα(Q)t = πα(Qt)

For difference: (Q1 − Q2)t = Qt
1 ∩ Q f

2

For selection: σθ(Q)t = σθ∗(Q
t)

where (A = B)∗ = (A = B)

(A 6= B)∗ = (A 6= B) ∧ not null(A) ∧ not null(B)

(θ1 op θ2)∗= θ∗1 op θ∗2 for op ∈ {∧ , ∨}
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Relational algebra translations: Q f

R f =
{
r̄ ∈ adomar(R) | r̄ does not match any tuple inR

}
(Q1 ∪ Q2)f = Q f

1 ∩ Q f
2

(Q1 ∩ Q2)f = Q f
1 ∪ Q f

2

(Q1 − Q2)f = Q f
1 ∪ Qt

2

(σθ(Q))f = Q f ∪ σ(¬θ)∗
(
adomar(Q)

)
(Q1 × Q2)f = Q f

1 × adomar(Q2) ∪ adomar(Q1) × Q f
2(

πα(Q)
)f

= πα(Q f)− πα
(
adomar(Q) − Q f

)
adom: the universe (set of all elements in the database)
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Does it work in practice?

Not a chance: With as few as 1000 tuples and 3 attributes
bad queries start computing relations with billions of tuples!

Inefficient translations

R f =
{
r̄ ∈ adomar(R) | r̄ does not match any tuple inR

}
(σθ(Q))f = Q f ∪ σ(¬θ)∗

(
adomar(Q)

)
(Q1 × Q2)f = Q f

1 × adomar(Q2) ∪ adomar(Q1) × Q f
2(

πα(Q)
)f

= πα(Q f)− πα
(
adomar(Q)−Q f

)
With the best tricks we can only handle a few hundred tuples:

AC0 and efficiency are NOT the same!
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With the best tricks we can only handle a few hundred tuples:

AC0 and efficiency are NOT the same!
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Let’s rethink the basics

We only needed Q f to handle difference: (Q1 − Q2)t = Qt
1 ∩ Q f

2

Intuition: A tuple is for sure in Q1 − Q2 if

I it is certainly in Q1 and

I it is certainly not in Q2

This is not the only possibility

A tuple is for sure in Q1 − Q2:

I it is certainly in Q1 and

I it does not match any tuple that could be in Q2
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What is “match”?

Unification: Two tuples unify if there is an instantiation of nulls
with constants that makes them equal

Left unification antijoin

R nu S =
{
r̄ ∈ R | @s̄ ∈ S : s̄ unifies with r̄

}
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Unifying tuples: an illustration

Two tuples t̄1 and t̄2 unify if there is a mapping h of nulls to constants
such that h(t̄1) = h(t̄2).

( 1 ⊥ 1 3 )
( ⊥′ 2 ⊥′ 3 )

=⇒ ( 1 2 1 3 )

but
( 1 ⊥ 2 3 )
( ⊥′ 2 ⊥′ 3 )

do not unify.

This can be checked in linear time.
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New translation

Translate Q into
(
Q+, Q?

)
where:

I Q+ approximates certain answers

I Q? represents possible answers

certain⊥(Q,D)

Q?(D)Q+(D)

(Q1 − Q2)+ = Q+
1 nu Q

?
2

R? = R

(Q1 ∪ Q2)? = Q?
1 ∪ Q?

2

(Q1 ∩ Q2)? = Q?
1 nu Q

?
2

(Q1 − Q2)? = Q?
1 − Q+

2(
σθ(Q)

)?
= σ¬(¬θ)∗

(
Q?
)

(Q1 × Q2)? = Q?
1 × Q?

2(
πα(Q)

)?
= πα

(
Q?
)
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Certain and possible answers

(Guagliardo, L., 2016) For every valuation h of nulls:

h(Q+(D)) ⊆ Q(h(D))

Q(h(D)) ⊆ h(Q?(D))

I in particular, Q+(D) ⊆ certain⊥(Q,D)
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New translation: example

For queries with difference, Q+ is much more efficient than Qttt .

Q = R −
(
πα(T )− σθ(S)

)
of arity k.

Translations:

Qttt = R ∩
(
(πα(adomk nu T )− πα(adomk nu T )) ∪ σθ∗(S)

)
(uncomputable in practice) but

Q+ = R nu

(
πα(T )− σθ∗(S)

)
(easy to compute)
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Does it work in practice?
We ran our queries and translations on TPC-H instances with nulls
and measured the relative runtime performance of Q+ w.r.t. Q

I SQL was designed for efficiency
=⇒ we cannot expect to outperform native SQL

I but we can hope for the overhead to be acceptable

We observed the following behaviors:

I The good: small overhead
(less than < 4%)

I The fantastic: significant speed-up
(more than 103 times faster)

I The tolerable: moderate slow-down
(half the speed on 1GB instances, a quarter on 10GB ones)
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The good

Q3 Find orders supplied entirely by a specific supplier

SELECT o_orderkey

FROM orders

WHERE NOT EXISTS (

SELECT *

FROM lineitem

WHERE l_orderkey = o_orderkey

AND l_suppkey <> $supp_key

)

In relational algebra: πo orderkey

(
ordersnθ lineitem

)
becomes πo orderkey

(
ordersn¬(¬θ)∗ lineitem

)
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The good: Results

< 4% overhead (the same behavior scales up to 10GB instances)
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The fantastic

Q2 Identify countries where there are customers
who may be likely to make a purchase

SELECT c_custkey, c_nationkey

FROM customer

WHERE c_nationkey IN ($countries)
AND c_acctbal > (

SELECT avg(c_acctbal) FROM customer

WHERE c_acctbal > 0.00

AND c_nationkey IN ($countries) )

AND NOT EXISTS (

SELECT * FROM orders

WHERE o_custkey = c_custkey )

Singapore, August 2016 validity/uncertain data 72/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

The fantastic

Q2 Identify countries where there are customers
who may be likely to make a purchase

SELECT c_custkey, c_nationkey

FROM customer

WHERE c_nationkey IN ($countries)
AND c_acctbal > (

SELECT avg(c_acctbal) FROM customer

WHERE c_acctbal > 0.00

AND c_nationkey IN ($countries) )

AND NOT EXISTS (

SELECT * FROM orders

WHERE o_custkey = c_custkey

OR o_custkey IS NULL )

Singapore, August 2016 validity/uncertain data 72/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

The fantastic

Q2 Identify countries where there are customers
who may be likely to make a purchase

SELECT c_custkey, c_nationkey

FROM customer

WHERE c_nationkey IN ($countries)
AND c_acctbal > (

SELECT avg(c_acctbal) FROM customer

WHERE c_acctbal > 0.00

AND c_nationkey IN ($countries) )

AND NOT EXISTS (

SELECT * FROM orders

WHERE o_custkey = c_custkey )

AND NOT EXISTS (

SELECT * FROM orders

WHERE o_custkey IS NULL )

Singapore, August 2016 validity/uncertain data 72/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

The fantastic: Results

Over 103 times faster (same or better up to 10GB)
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The original query spends most of the time looking for wrong answers
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The tolerable

Q4 Orders not supplied with any part of a specific color
by any supplier from a specific country

SELECT o_orderkey

FROM orders

WHERE NOT EXISTS (

SELECT *

FROM lineitem, part, supplier, nation

WHERE l_orderkey = o_orderkey

AND l_suppkey = s_suppkey

AND p_name LIKE ’%’||$color||’%’

AND s_nationkey = n_nationkey

AND n_name = $nation )
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AND ( s_nationkey = n_nationkey

OR s_nationkey IS NULL )

AND n_name = $nation )
Singapore, August 2016 validity/uncertain data 74/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

The tolerable: Problems with the optimizer

Query times out. Reason: optimizer resorts to a nested loop plan.

On the smallest benchmark instance, we have relations with

I 6, 000, 000 tuples,

I 200, 000 tuples,

I 10, 000 tuples,

I 100 tuples.

Nested loop: look at 1, 200, 000, 000, 000, 000, 000 tuples.

No chance.
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Join processing by example

R(A,B), S(B,C )

R on S = {(x , y , z) | (x , y) ∈ R, (y , z) ∈ S

I Nested loop: look at all tuples (x , y) ∈ R, (y ′, z) ∈ S and check if
y = y ′.

I Hopelessly O(n2) — terrible on large data.

I Sort-merge join: Sort on B in O(n log n) and merge sorted lists.
I Without too many repetitions of values of B, sort dominates, merge

is fast, i.e., often O(n log n).

I Hash-join: apply a (good) hash function on the B attribute, only
join tuples with the same hash value.

I As sort-merge, often O(n log n) under some assumptions. Most
commonly used in query processing.
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The tolerable: Problems with the optimizer

Joins with disjunctions in correlated subqueries

R nR.A=S.A

(
S onS .B=T .B ∨ null(S .B) T︸ ︷︷ ︸

nested-loop join

)
As bad as computing a Cartesian product

We can do better

R nR.A=S.A

(
S onS.B=T .B T︸ ︷︷ ︸

hash join

)
∩ R nnull(S .B)

(
S n T︸ ︷︷ ︸

decorrelated EXISTS

)
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Towards an improved translation

Conditions NOT EXISTS ( .... OR .... OR .....)

¬∃(. . . ∨ . . . ∨ . . .) ⇒ ¬∃
∨
ϕi ⇒

∧
i

¬∃ϕi

Eliminate ORs and get conjunctions of nested NOT EXISTS subqueries.

Note: exponential blowup!
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The tolerable: translation
Instructions: don’t read.

WITH part_view AS (SELECT p_partkey FROM part WHERE p_name IS NULL

UNION SELECT p_partkey FROM part WHERE p_name LIKE ’%’||$color||’%’ ),

supp_view AS (SELECT s_suppkey FROM supplier WHERE s_nationkey IS NULL

UNION SELECT s_suppkey FROM supplier, nation WHERE s_nationkey=n_nationkey

AND n_name=’$nation’ )

SELECT o_orderkey FROM orders

WHERE NOT EXISTS (SELECT *

FROM lineitem, part_view, supp_view

WHERE l_orderkey=o_orderkey AND l_partkey=p_partkey AND l_suppkey=s_suppkey)

AND NOT EXISTS (SELECT *

FROM lineitem, supp_view

WHERE l_orderkey=o_orderkey AND l_partkey IS NULL AND l_suppkey=s_suppkey

AND EXISTS (SELECT * FROM part_view))

AND NOT EXISTS (SELECT *

FROM lineitem, part_view
WHERE l_orderkey=o_orderkey AND l_partkey=p_partkey AND l_suppkey IS NULL

AND EXISTS (SELECT * FROM supp_view))

AND NOT EXISTS (SELECT * FROM lineitem
WHERE l_orderkey=o_orderkey AND l_partkey IS NULL AND l_suppkey IS NULL

AND EXISTS (SELECT * FROM part_view) AND EXISTS (SELECT * FROM supp_view))
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What we’ve done

I Exponential blowup of the query.

I Complexity went from |D|O(|Q|) to |D|2O(|Q|)
.

I Double-exponential query complexity!
I Theory teaches us that this is impossible to evaluate.

I Split one nested subquery into several ones.
I Practice teaches us that this is much harder to evaluate.

I What happens in real life?
I The query becomes several orders of magnitude faster!
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The tolerable: Results

Half the speed (on 1GB; a quarter on 10GB instances)
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The bad and the ugly

I Optimizers (we used PostgreSQL, others seem to be similar).

I Many translations amount to

A = B 7→ A = B OR B IS NULL.

I They can’t handle it, throw away the original plan and resort to
nested loops!

I Why?

I We saw part of the reason above but there is more to it.
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Join size estimate

I We observed that the query planner often underestimates the size of
joins.

I Actually, this is known:
Leis, Gubichev, Boncz, Kemper, Neumann: How Good Are Query
Optimizers, Really? VLDB 2015

I All major ones (Microsoft, Oracle, IBM) and Postgres underestimate
join sizes, sometimes by several orders of magnitude.

I If they wrongly think the join is small, O(n2) nested loop is no big
deal to them compared to O(n log n)
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Disjunctions

I It is not just the IS NULL condition that is problematic, it is also the
OR.

I Take some TPC-H queries, and change conditions like R.A=S.B into
(R.A=S.B OR S.B=0)

I Basic benchmark queries: good plans, low costs

I Modified benchmark queries: nested-loops, high costs, queries dont
terminate.

I In fact optimizers don’t optimize with ORs!

I From Postgres’ optimizer source code:
/* We stop as soon as we hit a non-AND item */
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SQL nulls vs marked nulls

I All theoretical translations assumed the model of marked nulls –
these are special values distinct from the usual ones:

1 2 ⊥1

⊥2 ⊥3 3

⊥4 5 1

I Subtle differences with SQL nulls: comparing a SQL null with itself
is unknown, comparing a marked null with itself is true

I SELECT R.A FROM R WHERE R.B=R.B

I On 1 null it returns nothing.

I On 1 ⊥1 it returns 1
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What’s next

I If one wants to live with wrong answers, who are we to tell them
that they cannot?

I Very true in the UK now; perhaps in the US in November?

I But for whose who care, two new modes of evaluation:

SELECT CERTAIN and SELECT POSSIBLE

to under- and over-approximate certain answers.
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What’s needed for SELECT CERTAIN/POSSIBLE?

I Well under way or done:
I Implementation of marked nulls in Postgres for better translations
I Direct SQL-to-SQL translation
I Incorporating integrity constraints (keys, foreign keys).
I Bag semantics.

I Uncharted territory:
I Aggregate queries.
I Other nulls (especially nonapplicable: outerjoins).

Singapore, August 2016 validity/uncertain data 87/88



Intro IncompleteInfo Validity=MC Tractable validity Approximations In practice Future

References

1. A. Gheerbrant, L., C. Sirangelo. Näıve evaluation of queries over
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Thank you!

Questions?
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