
Algorithmic Reasoning about Böhm Trees

Luke Ong

University of Oxford

(Joint with Bahareh Afshari, Matthew Hague, Graham Leigh,
Steven Ramsay, and Takeshi Tsukada)

IMS Workshop on Higher-Order Model Checking

Singapore, 20-23 September 2016

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 1 / 27

What is higher order about higher-order model checking (HOMC)?

Higher-Order Model Checking Problem: Given HORS G and property ϕ,
does the tree [[G]] satisfy ϕ?

The generator G is higher order, but the tree [[G]] is not.

Desiderata:

1 Model check (higher-type) Böhm trees.
Why? Böhm trees are the computation trees of higher-type functional

programs.

2 Compositionalise higher-order model checking.
HOMC is (mostly) whole program analysis. This can seem surprising since

higher order is supposed to aid modular structuring of programs.

Challenging, because the elegant theorems of “Rabin’s Heaven” fail in the
world of Böhm trees.

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 2 / 27

Overview of Böhm Trees

- Böhm trees are the term-trees of possibly infinite λ-terms in β-NF.
- Assume Böhm trees are well-sorted (i.e. simply-typed) and η-long, and
use only finitely many free variables (names).

Böhm trees are term-trees defined coinductively (n ≥ 0):

to ::= ⊥ | xA sA1
1 · · · sAnn

sA ::= λxA1
1 · · ·x

An
n .to where A = A1 → · · · → An → o

- Böhm trees subsume ordinary (node-labelled, ranked) trees.
- Alternative presentation as Σ-binding trees (a version of data trees).

Böhm trees (of composable sorts) can compose. Thus Böhm trees are
higher-order functions on trees.

- λY-definable Böhm trees are a natural class of finitely-presentable Böhm
trees.
Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 3 / 27

Example Böhm Tree (“Semi-infinite Grid”): u∞

λx1

b

x1

66

λx2

a b

x2

55

λx3

x1

HH

b

a x3

66

λx4

x2

HH

x1

MM

a

u∞ uses infinitely many variable names,
and each variable occurs infinitely often.

u∞ has an undecidable MSO theory (Salvati;
Clairambault & Murawski FSTTCS13).

u∞ is λY-definable of order 4:

u∞ = BT(M) where

Γ ` Y (λf.λyo.λxo→o.b (x y) (f (x y))) a︸ ︷︷ ︸
M

: (o→ o)→ o

with Γ = a : o, b : o→ ((o→ o)→ o)→ o.

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 4 / 27

Model Checking Higher-type Böhm Trees (Tsukada & O. LICS14)

λx1

b

x1

66

λx2

a b

x2

55

λx3

x1

HH

b

a x3

66

λx4

x2

II

...

x1

MM

a

Property Φ :=
“There are only finitely many occurrences
of bound variables, xis, in each branch.”

Questions:

1. Is there a “logic”
that can describe properties such as Φ?

2. Is the “logic” decidable for Böhm trees?

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 5 / 27

Questions:

1. Is there a “logic” that can describe properties such as Φ := “There are
only finitely many occurrences of bound variables, xis, in each branch”?

2. Is the “logic” decidable for Böhm trees?

Answers: YES, (intersection) types, & YES. (Tsukada & O. LICS14)

1. A semantics: type-checking game, Γ |= t : τ , for Böhm trees t and
types τ
2. A decidable, complete proof system, Γ `M : τ , for λY-definable Böhm
trees: Γ `M : τ ⇐⇒ Γ |= BT(M) : τ

E.g. Böhm tree t satisfies Φ just if Γ |= t : (((q, 1)→ q, 1)→ q, 0) where
Γ = a : (q, 1), b : ((q, 0)→ (((q, 1)→ q, 1)→ q, 0)→ q, 1).

This talk: What kind of automata and (modal) logic correspond to these
intersection types for reasoning about Böhm trees?

These devices may aid understanding and facilitate applications.

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 6 / 27

Recall: A “Classical” Automata-Logic-Games Correspondence

APT Lµ

Parity Games

Lµ (Mu-Calculus) Model Checking Problem and Parity are
inter-reducible

⇒: Essentially: Fundamental Semantic Theorem [Streett and Emerson
Info & Comp 1989]

⇐: E.g. [Walukiewicz Info & Comp 2001]

Lµ and APT are effectively equi-expressive for tree languages [Emerson &
Jutla FoCS 91]

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 7 / 27

This talk: We give an Automata-Logic-Games Correspondence for
higher-type Böhm trees.

Summary:

Böhm Trees: ADTA

∩

L→
µ

∩

Type-Checking Games

∩

(Ranked) Trees: APT Lµ

Parity Games

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 8 / 27

Outline: Higher type Automata-Logic-Games Correspondences

0. Motivations: Model Checking Böhm Trees / Compositional
Higher-Order Model Checking

1 Alternating Dependency Tree Automata (ADTA)

2 Higher-Type Mu-Calculus, L→
µ

3 Conclusions and Further Directions

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 9 / 27

Alternating Dependency Tree Automata (ADTA)

ADTA are automata over Böhm trees presented as Σ-binding trees.

Given a binder-bindee alphabet Σ = Σvar] Σλ] Σaux, a Σ-binding tree is
a Σ-labelled tree equipped with a binder function.
Σ-binding trees are a kind of ranked data trees.

Stirling (FoSSaCS 2009) introduced ADTA for finite Böhm trees to
characterise solution sets of the Higher-Order Matching Problem.

We extend ADTA to infinite trees with ω-regular conditions.

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 11 / 27

Example: Böhm trees as Σ-binding trees

λfx

f

λz

f

λz

f

λz

z

ZZ

λ

z

GG

λ

z

HH

λ

x

II The order-4 sort

M = (((o→ o)→ o)→ o)→ o→ o

called monster, is inhabited by the terms

Mn := λf x.f(λz1.(f(λz2.(· · · f(λzn.zn(· · · z2(z1 x)))))))

for all n ≥ 0.

Let Σ = {f ((o→o)→o)→o, xo, zo→o}︸ ︷︷ ︸
Σvar

∪ {λf x, λz, λ}︸ ︷︷ ︸
Σλ

∪ {⊥}︸︷︷︸
Σaux

N.B. Σ is determined by the sort M.

We can represent Böhm trees of sort M as a Σ-binding tree.

E.g. M3 on LHS.

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 12 / 27

Alternating Dependency Tree Automata (ADTA)

An ADTA of sort A is a tuple A = (Q,ΣA, QI ,∆,Ω)

Q is a finite state-set; QI ⊆ Q are initial states

ΣA = Σλ ∪ Σvar ∪ {⊥} where

Σvar := {xB | B contravariant subsort of A}
Σλ := {λxB1

1 · · ·xBm
m | (B1 → · · · → Bm → o) covariant subsort of A}

∆ is a set of transition rules: 3 kinds
I Acceptor transitions
I Rejecter transitions
I ⊥ transitions

Ω assigns a priority to transitions

A Böhm tree t is accepted by A if Acceptor has a winning strategy in the
acceptance game GAcc(t,A).

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 13 / 27

Acceptor transitions of a ADTA: (q′, q)x⇒ (Q1, · · · , Qn)

Acceptor chooses transitions to read variables: Qi ⊆ Q

(q′, q)x⇒ (Q1, · · · , Qn)

Suppose we have a run to x:

λx q′

...

x q

FF

λy1 · · · λyn

...
...

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 14 / 27

Acceptor transitions of a ADTA: (q′, q)x⇒ (Q1, · · · , Qn)

Acceptor chooses transitions to read variables:

(q′, q)x⇒ (Q1, · · · , Qn)

Suppose we have a run to x:

λx q′

...

x q

FF

λy1 Q1 · · · λyn Qn

...
...

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 15 / 27

Rejecter transitions of a ADTA: q λy
e⇒ q′

Suppose Acceptor has just labelled the λy-node with Q′ ⊆ Q:

λy Q′

x

λz1 · · · λzn

...
...

Rejecter chooses some q ∈ Q′ and a transition

q λy
e⇒ q′

where e is the priority assigned by Ω

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 16 / 27

Rejecter transitions of a ADTA: q λy
e⇒ q′

Acceptor labels λ-nodes with a set of states Q′ ⊆ Q:

λy q

e

x q′

λz1 · · · λzn

...
...

Rejecter chooses some q ∈ Q′ and a transition

q λy
e⇒ q′

where e is the priority assigned by Ω. Acceptor wins if the maximum

infinitely-occurring priorities in the sequence labelling the transitions is
even.
Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 17 / 27

Properties of ADTA

ADTA are closed under union and intersection (Stirling FoSSaCS09).

ADTA are closed under complementation.

- Proofs: 1. Automata-theoretic. 2. Higher-type Mu-calculus: negated formulas

are equivalent to positive normal forms. 3. Types: see Tsukada’s talk.

Emptiness of ADTA is undecidable.

- By reducing PCF Observational Equivalence to ADTA emptiness (O. &

Tzvelekos LICS09).

Emptiness of nondeterministic DTA is decidable.

- Proofs: 1. Higher-type mu-calculus: Disjunctive formulas have Small Model

Property via tableaux. 2. Type-checking games.

ADTA Acceptance of λY-definable Böhm trees is decidable.

- Follows from decidability of type-checking games (Tsukada & O. LICS14), and

equivalence between ADTA and types.
Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 18 / 27

Correspondence between ADTA and Types

Given type α :: A, define [[α]] := {u ∈ BTA | |= u : α}.

Theorem (Effective Equi-expressivity)

Types and ADTA are equivalent for defining languages of Böhm trees.
I.e. There are algorithms

mapping ADTA A to types αA satisfying L(A) = [[αA]]

mapping types α to ADTA Aα satisfying [[α]] = L(Aα).

A delicacy:

We suppress the distinction between types and a subsystem of parity
permissive types. There is a similar distinction between ADTA and a
subclass of parity permissive ADTA.

The equi-expressivity result holds at both levels (general and parity
permissive).

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 19 / 27

Higher-Type Mu-Calculus, L→
µ

Formulas are sorted, ϕA.
Assume a set Σvar of sorted abstract variables ranged over by xB, yC , etc.

Syntax of L→
µ

ϕo ::= 〈⊥〉 | t | f | ϕo ∧ ϕo | ϕo ∨ ϕo | ¬ϕo |
vxB | [i](ϕB→C) | α | µα.ϕo | να.ϕo

ϕB→C ::= ϕB→C ∧ ϕB→C | ϕB→C ∨ ϕB→C |
¬ϕB→C | �xB .ϕC .

Two new constructs:

abstract-variable predicate, vxB : o

abstract-lambda formula, �xB .ϕ
C : B → C

which are detectors of variables and λ-abstractions respectively.

N.B. �xB .- is not a binding construct.
Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 21 / 27

Semantics of Higher-Type Mu-Calculus

Assume a set V of concrete variables.
A concretisation function, ζ : Σvar → Pfin(V), maps an abstract variable
to a finite set of concrete variables.

Idea. [[ϕB]]ρ(ζ) is a set of Böhm trees t of sort B where FV(t) ⊆ Im(ζ).

�xB .− matches an abstraction λyB.s and records y as a possible
concrete instantiation of xB in the concretisation function ζ. Thus

[[�xB .ϕ
C]]ρ(ζ) = {λyB.s | s ∈ [[ϕC]]ρ(ζ[xB 7→ ζ(x) ∪ {yB}])}.

vxB matches a concrete instantiation yB of x, according to the
concretisation function ζ. Thus

[[vxB]]ρ(ζ) = {y t1 · · · tn | y ∈ ζ(xB)}.

Hence, for any abstract x, ζ(x) is a set of concrete variable names that are
indistinguishable w.r.t. the property.
Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 22 / 27

Example: Semi-Infinite Grid u∞ Revisited

λx1

b

x1

66

λx2

a b

x2

55

λx3

x1

HH

b

a x3

66

λx4

x2

II

...

x1

MM

a

Property Φ :=
“There are only finitely many occurrences
of bound variables xis in each branch.”

Let
χ :=

�x.να.µβ.
((
vb ∧ ([1]β ∨ [2]�x.β)

)
∨
(
vx ∧ [1]α

))
.

χ says “there is a branch with
infinitely many occurrences of variables xis”.

Thus Φ is ¬χ;

and u∞ ∈ [[¬χ]]∅(ζ) where ζ : a, b 7→ {a}, {b}.

There exists a L→
µ -formula

ψ that classifies u∞, i.e., [[ψ]]∅(ζ) = {u∞}

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 23 / 27

Set-theoretic Semantics of Higher-Type Mu-Calculus

BT∆`B is the set of Böhm trees of sort B with free variables in ∆.
Define [[ϕB]]ρ ∈ P(BTΣvar`B).

[[vx]]ρ := {t ∈ BTΣvar`o | t(ε) = x}
[[α]]ρ := ρ(α)

[[�x.ϕ]]ρ := {λy.t | t ∈ [[ϕ]]ρ · (x ↑ y)}

[[[i]ϕ]]ρ := {x t1 · · · tn ∈ BTΣvar`o | ti ∈ [[ϕ]]ρ}

[[να.ϕ]]ρ :=
⋃
{S ∈ P(BTΣvar`o) | S ⊆ [[ϕ]]ρ[α 7→S]}

[[µα.ϕ]]ρ :=
⋂
{S ∈ P(BTΣvar`o) | [[ϕ]]ρ[α 7→S] ⊆ S}

[[¬ϕB]]ρ := BTΣvar`B \ [[ϕB]]ρ

where (x ↑ y) ζ := ζ[x 7→ ζ(x) ∪ {y}].

We view X ⊆ BTΣvar`B as a map ζ 7→ X(ζ) ⊆ BTIm(ζ)`B . Hence,

[[ϕB]]ρ(ζ) ∈ P(BTIm(ζ)`B).

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 24 / 27

Properties of Higher-Type Mu-Calculus

Characterisation by an intuitive model checking game GMC(t, ϕ, ζ):
- t ∈ [[ϕ]]∅(ζ) if and only if Verifier has a winning strategy for GMC(t, ϕ, ζ).

Theorem (Effective Equi-expressivity)

ADTA and L→
µ are equivalent for defining languages of Böhm trees.

I.e. There are algorithms

1 mapping ADTA A to L→
µ -formula ϕA satisfying L(A) = [[ϕA]]∅(∅)

2 mapping L→
µ -formula ϕ to ADTA Aϕ satisfying [[ϕ]]∅(∅) = L(Aϕ).

Proof.

1 Translate ADTA A to a L→
µ -formula in vectorial syntax, with length

of vectors equals the number of states of A.

2 Take a L→
µ -formula ϕ in a strongly-guarded canonical form. Define a

ADTA whose states are elements of the closure of ϕ.

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 25 / 27

Conclusions and Further Directions

ADTA, Higher-type Mu-calculus, and Type-checking Games are
equi-expressive for high-type Böhm trees.

Further Directions
What is finite model property for L→

µ ? Our proposal:

Finite Model Property (FMP): For all ϕ ∈ L→
µ , if ϕ is satisfiable then it is

satisfiable by a λY-definable Böhm tree.

Disjunctive L→
µ (equivalent to NDTP) enjoys FMP.

Question: Does L→
µ enjoy FMP?

Luke Ong (University of Oxford) ALG Correspondences at Higher Types IMS, 22 Sep 16 27 / 27

	Alternating Dependency Tree Automata (ADTA)
	Higher-Type Mu-Calculus, L
	Conclusions and Further Directions

