
Information Flow
and
Program AnalysisProgram Analysis

Markus Müller-Olm

Westfälische Wilhelms-Universität Münster, Germany

IFIP WG 2.2 Meeting

Singapore, September 13-16, 2016

Project Context

Work in progress from a joint project with G. Snelting (KIT)

Information flow control for mobile components based on

precise analysis of paralle programs

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 2

Part of priority programme 1496

Reliably Secure Software Systems (RS3)

funded by DFG (German Research Foundation)

Special thanks to Benedikt Nordhoff

What This Talk is About

Theme:

How can program analysis-like technology help

PDG-based information flow analysis?

Program analysis:

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 3

Fixpoint-based methods:

data-flow analysis, abstract interpretation

Information flow analysis:

see next slide

Information Flow: Example

Free Email-App

Start of App

Contacts and

Ad-Server

Display

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 4

Contacts and

Emails
Display

Reference scenario of SPP RS3:

� Software security for mobile devices

� Prototype of certifying app store for Android (Lortz et. al., ...)

Non-Interference

For simplicity: transformational terminating programs only

Semantic setup:

Variables: Var = Low ∪∪∪∪ High

States: Σ = { σ | σ : Var → Val }

Program semantics: � π � : Σ→ Σ

Low-equivalence of states:

σ ∼Lσ‘ :⇔ σ|Low = σ‘|Low

Program π is called non-interferent iff f.a. σ,σ‘∈Σ:

σ ∼L σ‘ ⇒ � π �(σ) ∼L � π �(σ‘)

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 5

Possibilistic Non-Interference

Semantics of non-deterministic programs:

� π � : Σ→ 2Σ

Refinement:

π ⊑ π‘ ⇔ ∀σ: � π �(σ) ⊆ � π �(σ‘)

Program π is called non-interferent iff f.a. σ ,σ ∈Σ:Program π is called non-interferent iff f.a. σ1,σ2∈Σ:

σ ∼L σ‘ ⇒ ∀ρ∈� π �(σ) : ∃ρ‘∈ � π �(σ‘) : ρ ∼L ρ‘

Observation: Non-interference is not preserved by refinement.

Example: l := ? is non-interferent, its refinement l := h is not

Reason: Non-interference is a „hyper-property“

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 6

A Fundamental Problem

� Abstraction is inherent to program analysis

� However, as just observed:

Non-interference does not transfer from abstractions

Consequence:� Consequence:

Program analysis cannot be directly applied to non-interference

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 7

Program Dependence Graphs (PDGs)

� A structure known from program slicing

� Nodes correspond to statements and conditions;

we add artificial nodes for initial and final value of program variables

Edges capture data dependences and control dependences� Edges capture data dependences and control dependences

� PDGs can be applied for non-interference analysis

Analysis principle:

If there is no path in PDG from high input to low output

then the program is non-interferent

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 8

Direct and Indirect Flows

Direct flows:

l := h

captured by data dependence edges in PDG

h?

l :=h

h:= 99

Indirect flows:

if h>0 then l := 0 else l := 1

captured by control dependence edges in PDG

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 9

l :=0 l :=1

if h>0

Example 1

l:=h

if l > 0

h?

l:=h

if l > 0

There is a path from h? to l!. Hence: Program may be interferent

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 10

l :=0

l!

l :=1l :=0

.

l :=1

true false

Example 2

l:=10

h?

l:=h

l:=10

l:=h

There is no path from h? to l!. Hence: Program is non-interferent

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 11

l :=0

l!

l :=1

if l > 0

l :=0

.

l :=1

if l > 0

true false

Path Conditions

Goal: Improve precision of PDG-based dependence analysis

Idea: For each path in the PDG indicating critical flow, read off a
necessary condition for flow from the guards. If all these conditinos
are unsatisfiable, there is no flow.

[Snelting]

Caveat: Requires SSA-form of programs

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 12

Path conditions improve precision of PDGs

h?

x:= h x:=7

if flag

if (! flag)

x:= h x :=7

if flag

true false

true false

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 13

l := x

l!

.

if (! flag)

PDG alone: false alarm

+ path conditions: OK

l := x

.

.

true false

flag ∧ ! flag

Further Improvements by Data Analysis Desirable

h?

y:= h x:=h

if b

if (goLeft)

y:= h x :=h

if b

true false

goLeft :=false goLeft :=true

l := y

l!

l := x.
PDG + path conditions: false alarm

+ invariant: OK

l := y

.

l := x

if (goLeft)

true false

For left path: b ∧ goLeft ∧ goLeft = ! b

if (goLeft)

For right path: ! b ∧ ! goLeft ∧ goLeft = ! b

The Show Stopper

h?

x:= true .

if h

if (!x)

x:= true .

if h

true false

x :=false

l :=true

x :=false

l :=true

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 15

l := false

l!

.

PDG + path conditions

+ invariant: unsound

l := false

.

.

if (!x)

true false

h ∧ !x ∧ x = h

if (!x)

A Glimpse on Data Flow Slicing

� Guiding intuition: Flow happens along PDG paths only

� Add new type of dependencies (data control dependencies) to avoid
soundness problem

� Define executions along a PDG path

� Prove: If program has no execution along a critical PDG path, then� Prove: If program has no execution along a critical PDG path, then
program is non-interferent (Isabelle!)

� Actual analysis

� Generate a program whose executions correspond exactly to the executions
along critical PDG paths

� Check by data flow analysis/abstract interpretation whether final control point
is reachable

� Note: Approach allows to check non-interference by safety analysis !

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 16

A Glimpse on Data Flow Slicing: Example

if (goLeft)

y:= h x :=h

if b

true false

goLeft :=false goLeft :=true

⊤

⊤

true
false

y:= h x :=h

if b
true false

goLeft :=false goLeft :=true

if (goLeft)if (goLeft)
true

⊤

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 17

Original program

l := y

.

l := x

if (goLeft)

true false

Constant propagation on the generated program proves absence of
critical information flow

Generated program

⊤

⊥

l := y

l!

l := x
.

true false
truefalse

Discussion

Further work:

� Use DPNs to help PDG-based non-interference analysis of
parallel programs based on LSOD

� Use DPNs to help type-based non-interference analysis of
parallel programs

Alternative approaches:

� Self-composition

� Hyper-logics

Certifying App Store

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 18

Thank you !Thank you !

Markus Müller-Olm, WWU Münster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 19

