Information Flow
and
Program Analysis

Markus Muller-Olm
Westfélische Wilhelms-Universitat Miinster, Germany

IFIP WG 2.2 Meeting
Singapore, September 13-16, 2016

Project Context

Work in progress from a joint project with G. Snelting (KIT)

Information flow control for mobile components based on
precise analysis of paralle programs

Part of priority programme 1496

Reliably Secure Software Systems (RS3)
funded by DFG (German Research Foundation)

Special thanks to Benedikt Nordhoff

Markus Miller-Olm, WWU Minster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

What This Talk is About

Theme:
How can program analysis-like technology help
PDG-based information flow analysis?

Program analysis:
Fixpoint-based methods:
data-flow analysis, abstract interpretation

Information flow analysis:
see next slide

Markus Miller-Olm, WWU Minster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

Information Flow: Example

Free Email-App

Start of App —> Ad-Server

Contacts and
Emails

—> Display

Reference scenario of SPP RS3:
® Software security for mobile devices
® Prototype of certifying app store for Android (Lortz et. al., ...)

Markus Miller-Olm, WWU Minster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

Non-Interference

For simplicity: transformational terminating programs only

Semantic setup:

Variables: Var = Low U High
States: Y={o|o:Var— Val}
Program semantics: [n]:X—X

Low-equivalence of states:
G~ 0 & Oliow= 0w

Program = is called non-interferent iff f.a. ,6'e X:
6~ 0 = [n](o) ~ [=](c)

Markus Miller-Olm, WWU Midnster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

Possibilistic Non-Interference

Semantics of non-deterministic programs:

[] : X — 2%
Refinement:
Tt & Vo: [n](c) C [r](c)

Program = is called non-interferent iff f.a.c;,0,eX:
6~ 0 = Vpe[n](o): Ip'e [n](c) : p~Lp’

Observation: Non-interference is not preserved by refinement.
Example: |:=7? is non-interferent, its refinement |:= his not

Reason: Non-interference is a ,hyper-property*

Markus Miller-Olm, WWU Minster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

A Fundamental Problem

® Abstraction is inherent to program analysis

® However, as just observed:
Non-interference does not transfer from abstractions

e Consequence:
Program analysis cannot be directly applied to non-interference

Markus Miller-Olm, WWU Minster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 7

Program Dependence Graphs (PDGs)

® A structure known from program slicing

® Nodes correspond to statements and conditions;
we add artificial nodes for initial and final value of program variables

® Edges capture data dependences and control dependences
® PDGs can be applied for non-interference analysis
Analysis principle:

If there is no path in PDG from high input to low output
then the program is non-interferent

Markus Miller-Olm, WWU Midnster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

Direct and Indirect Flows

Direct flows:
h:= 99 h?
| :=h N e
QA L
[:=h
captured by data dependence edges in PDG
Indirect flows:
if h>0
11
if h>0 then 1:=0 else |:=1 o,

| =0 4/. \> [:=1

captured by control dependence edges in PDG

Markus Miiller-Olm, WWU Miinster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 9

Example 1

h?
!
!
I:i=h v
l.'Th
| .
v
if [>0 ifl >0
11
true/ \@lse ;0
] = [:=1] =0 PR NS

0
NS

There is a path from h? to Il. Hence: Program may be interferent

Markus Miiller-Olm, WWU Miinster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 10

Example 2

h?

l

|

v

=)

)

=10 [:=10

l

|

v) \"4
if 1> 0 130
truc/ \@lse / ‘\‘

] = | =] [=0 </ \> [=1

0\ / ‘\\ //’

s> €=

There is no path from h? to Il. Hence: Program is non-interferent

Markus Miller-Olm, WWU Midnster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

1

[Snelting]

Path Conditions

Goal: Improve precision of PDG-based dependence analysis

|ldea: For each path in the PDG indicating critical flow, read off a
necessary condition for flow from the guards. If all these conditinos
are unsatisfiable, there is no flow.

Caveat: Requires SSA-form of programs

Markus Miller-Olm, WWU Minster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 12

Path conditions improve precision of PDGs

if flag
true / \Ialse

x:=h X =

if (!flag)
tru% \false

N

[:=

PDG alone: false alarm
+ path conditions: OK

flag / ! flag

- || €= === __
~

/
\

T v

Markus Miiller-Olm, WWU Miinster

IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

13

Further Improvements by Data Analysis Desirable

h?
if' b S
true ~ “\Jalse i {, N
|
o= h X .'Zh K// ,. -\ \\4
goLeft :=false g?ﬁ =true yimh < Ny yomh
\ I |
| I
if (goLeft) ! !
I
tru% \false I ’l
f
li=y i=x | if(golef)
| 1 |
\ / J ./' v M
. l:y </ \> [:=x.
PDG + path conditions: false alarm \ ;
. . /
+ invariant; OK .. v
=>] €~

For left path: bA goleft A golLeft=1b
For right path: Ib A I'golLeft A golLeft=1b

The Show Stopper

[:=true .
X . =false |
i v
. if h
if h]: | X :=false
¢ alse /7 A\ !
rue / \£ AN) Li=true
X:= true : X:=true < > ’ l
N | -7 '
| Pl I
if (Ix) ‘\ .’ "
/
alse \ !
g N o ,
I = false - > if (Ix) ;
11 /
\ / ;0 //
)) ’ /
l.:(alse</ > L/
.y /7
PDG + path conditions ‘o 7
~ P
+ invariant: unsound > 1<~

hAIxAXx=h

Markus Miiller-Olm, WWU Miinster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 15

A Glimpse on Data Flow Slicing

® QGuiding intuition: Flow happens along PDG paths only

® Add new type of dependencies (data control dependencies) to avoid
soundness problem

® Define executions along a PDG path

® Prove: If program has no execution along a critical PDG path, then
program is non-interferent (Isabelle!)

® Actual analysis

® Generate a program whose executions correspond exactly to the executions
along critical PDG paths

® Check by data flow analysis/abstract interpretation whether final control point
is reachable

® Note: Approach allows to check non-interference by safety analysis !

Markus Miller-Olm, WWU Midnster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 16

A Glimpse on Data Flow Slicing: Example

goLeﬁ =false g oLeft =true

N

if (goLeft)
tru% \false
[:=y [:=x

NS

Original program

T

goLeft

IS if (goLefy

\ /

Generated program

true

N

tiy

\%

T

\%Se
=h T
goLeft ‘=true

l

if (goLeft)
l false

[:=x

true

Constant propagation on the generated program proves absence of

critical information flow

Markus Miiller-Olm, WWU Miinster

IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016 17

Discussion

Further work:

® Use DPNs to help PDG-based non-interference analysis of
parallel programs based on LSOD

® Use DPNs to help type-based non-interference analysis of
parallel programs

Alternative approaches:
® Self-composition

® Hyper-logics

Certifying App Store

Markus Miller-Olm, WWU Midnster IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

18

Thank you |

Markus Miiller-Olm, WWU Miinster

IFIP WG 2.2 Meeting, Singapore,, September 13-16, 2016

19

