Automata-based Analysis of
Threaded Programs

Markus Muller-Olm
Westfélische Wilhelms-Universitat Miinster, Germany

Workshop HOMC + CDPS
Singapore, September 19-23, 2016

What This Talk is About

L ast decades:

Tremendous progress on automatic analysis of infinite-state
systems

One line of research:
Automata-based methods / regular model-checking

This talk:

Automata-based analysis of recursive multi-threaded
programs synchronizing via locks/monitors

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 2

Communicating

istributed

P arameterised

ystems

Synchronization via lock

Parallelism, no globally shared state

Dynamic thread creation

Networks of pushdown systems

Markus Miiller-Olm, WWU Miinster

HOMC + CDPS Workshop, September 19-23, 2015

Dynamic Pushdown Networks (DPNSs)

DPN: An automata-based model for multi-threaded recursive programs

A natural extension of push-down systems:

py—— gw lwl <2
py—gwt>q'y lwl=l1

Generic methods for lock-sensitive iterated reachability analysis based
on word- and tree-automata

Applied for data-race and information-flow analysis of Java

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 5

Recursive Programs with Thread Creation

Entry point, e,
Procedures of Q
Thread

P Q creation } Q: 9
Recursive
[procedure calls }& 9
callP | spawn Q
(2 (&
B { Branching &
{ Basic Oeping @

statements
Return point, r,
of Q

+ finite-state abstraction of (thread-local) global and local variables

|
|

Modelling Program Behavior with DPNs

a la [Esparza/Knoop, FOSSACS’99]
abstraction of J

current
control point

abstraction of
global state

local state

for basic edge e: EA g<l,u %g'<l',v>, if ((g,l),(g',l'))e Abstr(A)

for call edge e: icall P g <l,u>% 8 <linitaep><l’v>

for return point of ret
each procedure 8 <l’ rP> > 8

for spawn edge e: ispawn P g <l,u>% g <1,V> > it <linit,ep>

Execution Semantics of DPNs on
Word-shaped Configurations

A configuration of a DPN is a word in (PT"™)*:

DWW DyW,y *+ W, (withp,€ P,w, e I,k >0)

... an infinite state space

The transition relation of a DPN:

(P?’%C]W)EA (p}f%qw>q'w')eA

UPpYV —— ugwy Upyv —— uqg'w'gwv

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015

Example

ADPN: pyr—2 5 pywy>q,¥ g0y ——q,¥

world

YV — 4,

One of its many execution sequences:

Sbawn Spbawn
py B, oy pyy P g vaoy Yy o g gy Y22 gy pyyy o g0 v pyyy

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 9

Spawns are Fundamentally Different
from Parallel Procedure Calls

P induces trace language: L=U{A"- (B"® (C- D) |n>m>0,i>j>0}

Cannot characterize L by constraint system with ,-“ and ,®".

Trace languages of DPNs differ from those of PA processes.
[Bouajjani, MO, Touili: CONCUR 2005]

Basic Results on Reachability Analysis of DPNs

[Bouajjani, MO, Touili, CONCUR 2005]
Definition
pre [L](C) = {cl3de C,we L:c—2—>*d}

post [L](C) = {d13ce C,we L:c—2—>*d}

Forward-Reachability
@ 1) post*[Act*](C) is in general non-regular for regular C.

2) post*[A*](C) is effectiv. context-free for context-free C and A C Act (in polytime)

@ 3) Membership in post*[L](C) is in general undecidable for regular L.

Backward-Reachability
© 1) pre*[A*](C) is effectively regular for regular C and A C Act (in polytime).
@ 2) Membership in pre*[L](C) is in general undecidable for regular L.

Single Steps
© 1) pre’[A](C) and post*[A](C) are effectively regular for regular C and A C Act
(in polyn. time).

Example: Backward Reachability Analysis for DPNs

Consider a DPN with just the rule

spawn

pPYy————>pry>qy
and the infinite set of states

Bad = (qyqypy’) = L(A)

Analysis problem: can Bad be reached from py ?

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 13

Example: Backward Reachability Analysis for DPNs

1. Step: Saturate automaton for Bad with the DPN rule: py—==pyy>qy

Generalization of [Bouajjani/Esparza/Maler, CONCUR 97]
method for pushdown systems

spawn

Upyy——uqypyy

Resulting automaton A ... represents pre*(Bad) !

2. Step: Check, whether py is accepted by A .. or not

Result: Bad is reachable from py, as A .. accepts py !

Some Applications of pre*~-Computations with
unrestricted L (i.e. L = Act*)

Reachability of regular sets of configurations,
e,g. conflict analysis, data race analysis etc.
Set Bad of configurations is reachable from initial configuration pgY,
iff
PoYo € pre’[Act’](Bad)

used in JMoped of Schwoon/Esparza

Bounded model checking

By iterated pre*-computations alternating with single steps
corresponding to synchronizations/communications

Bit-vector data-flow analysis problems 2 '2[Fsparzaiknoop, FOSSACS99]

Variable x is live at program point u
iff g . <lm, eMam> € pre*[Act*](Atu M pre*[NonDef *)(pre*[Use,)(Conf)))

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 15

Lock-/Monitor-sensitive Analysis

Assume finite set of locks (or monitors)

Have acquire- and release actions
e acql,relLe Act f.a.locksL

Intuition: At any time a lock can be held by at most one thread

The Goal: lock-sensitive analysis

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015

22

A Multi-Threaded Java Program

class MyThread extends Thread {
private Objekt I;
private int secret = 42;
private int x = 0;

public MyThread (Object) {

this.l=1;
/
public void run() {

synchronized () {

X=secret;

} public static void main (String[] args) {
} Object | = new Object();
public static void main (...) { MyThread t = new MyThread(l);
. // see right column System.out.printin(t.x);
} synchronized () {

} tstart ();

System.out.printin(t.x);

/

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 23

Lock-sensitive Analysis

Main: o.
output (x) acquire |
1 0
acquire | 2 « ‘= secret
spawn P 3 C4>release |
— —— @
(4 ;
output (x)
Power of different analyses:
release | e Pure lock sets: 3

e Analysis sensitive to thread creation, e.g., [BMOTO05], [LMOO07]:
1,2

e Lock-sensitive analysis from [LMOOQ08], [LMOWO09]: 1,2,3,4
Of course, we also treat branching, loops, recursion !

The Results of Kahlon and Gupta

Theorem 1 [Kahlon/Gupta, LICS 2006]

Reachability is undecidable for two pushdown-systems running in parallel
and synchronizing by release- and acquire-operations used in an
unstructured way.

|ldea: Can simulate synchronous communication

Theorem 2 [Kahlon/Gupta, LICS 2006]

Reachability is decidable for two pushdown-systems running in parallel and
synchronizing by release- and acquire-operations used in a nested fashion.

|dea: Collect information about lock usage of each process in ,,acquisition
histories” and check mutual consistency of the collected histories.

Our goal: Lock-sensitive analysis for systems with thread creation

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 25

Example: Locksets are not Precise Enough

Thread 1: Thread 2:
acquire L1 acquire L2;
acquire L2 acquire L1;
release L2 release L1;

X: Y:

Must-Lockset computed at X: { L1} Must-Lockset computed at Y: { L2}

We have disjoint locksets at Xand Y: {L1}n{L2}={}.

Nevertheless, X and Y are not reachable simultaneously !

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 26

A Tree-Based View of Executions: Action Trees

ADPN: pyr—2 5 pywy>q,¥ g0y ——q,¥

world

97— 49

Execution sequences:

a.yprry > 4, PYY
W WA
4 sSpawn
GYPYY — qo7qo7pm—>he”0 q17qo7pm—>wo”ld 04907 PYVY ”e”o
\%’
hello

world

Y. YeYrY — 7> nhello a7, Y pPYYy

Action tree: T: spawn

We write: P7’—T>* 9,9,y PYyry

A Tree-Based View of Executions
Definition
pre [L(C) = {cl3de C,we L:c—2>*d} where L C Act*
preT' [M](C) = {cl3de C,Te M :c——*d} where M < Trees(Act)

Recall:

Membership in pre*[L](C) is undecidable for regular L already for very simple
languages C (e.g. singletons).

Theorem 1 [Lammich, MO, Wenner, CAV 2009]

preT*[M](C) is effectively regular for regular C and regular M (on trees).

Theorem 2 [Lammich, MO, Wenner, CAV 2009]

In a DPN that uses locks in a well-nested and non-reentrant fashion:
Set of tree-shaped executions having a lock-sensitive schedule is regular.

|dea of proof: Generalize Kahlon and Gupta's acquisition histories.

Size of automaton exponential in number of locks...

acqg X

spawn

Which of these action trees
have a lock-sensitive schedule?

acqg X

rel X

acqg X

spawn

rel X acq X

€ rel X

€

Yes: (0,acq X),(0,sp),(0,rel X),
(1,acq X),(1,rel X)

X Y

spawn
acq X acqY
acq Y acq X
rel Y rel X
€ €
No!

N

X Y

4

An Even More Regular View to Executions:

Execution Trees

Joint work (VMCAI‘11) with:
e Thomas Gawlitza, Helmut Seidl (TU Miinchen)
e Peter Lammich, Alexander Wenner (WWU Munster)

Realised for Java analysis: Benedikt Nordhoff‘s diploma thesis

Example:
Call :

Spawn :
NoMore :

Return :

call

py———p'yy

spawn

p'y———py>qy

no _more

py————p'Y

Hello: qy—% ¢4

return

p"7/ Ep"

Markus Miiller-Olm, WWU Miinster

HOMC + CDPS Workshop, September 19-23, 2015 30

An Even More Regular View to Executions

The DPN:
Call - py—L s p'yy
Spawn : p'y—= py>qy
NoMore: py—="">p"y
Return: pn;/ return pn
Hello: gy —2L 5 ¢

Execution tree: Call

Spawn
NoMore

Return

Action tree:

call

spawn

no_more

return

return

return

Execution Trees

Recall: post*[Act*](pyY,) is non-regular in general.

Observation 1:
Set of all execution trees from given initial config., postE*(p,Y,), is regular !

Observation 2:

Set of execution trees that have a lock-sensitive schedule is regular, e.g. for:
* nested non-reentrant locking (even with structured form of joins)
 reentrant block-structured locking (monitors, synchronized-blocks)

Observation 3:
Set of execution trees reaching a given regular set C of configs is regular

Obtain homogenous approach to, e.g., lock-sensitive reachability:
Reg. set C is lock-sensitively reachable from start config pyY,
iff
POStE*(pyY,) N LockSensTrees n ExecTrees(C) is non-empty.

Applications

Lock-join-sensitive ...

e ... reachability analysis to regular sets of configurations,
e.g. conflict analysis, data race analysis etc.

e ... bounded model checking

e ... DFA of bitvector problems

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015

33

Realization for Java

Benedikt Nordhoff
Uses:

o WALA from IBM: T.J. Watson Libraries for Analysis
o XSB: A Prolog-like system with tabulating evaluation

|dentifies object references that can be used as locks
o Object creation sites visited at most once
o Experiments with Kidd et. al.‘s random isolation technique

For practicality:
e Pre-analysis of WALA flow graph and (massive) pruning
e Modular formulation of automata-based analysis
o Clever evaluation strategy for tree automata construction

Experimental applications:
o Lock-sensitive data-race analyzer for Java
e With KIT: Improve PDG-based IFC analysis of concurrent Java programs

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015 40

i

Java Data-Race Finder: Screenshot 1

Java - de.wwu.sdpn.testapps/src/main/java/bnord /examples/datarace /BSP03.java - Eclipse SDK

&=

E:

[J] BSPO3.java 3

Owerall Result: @ Race free: 2/3 Possible race: 1/3

F @ Field: bnord.examples.datarace.BSP03.lock] of type: bnord.examples.Lock
F @ Field: bnord.examples.datarace.B5P03.thread of type: bnord.examples.datarace.BSP03
P @ Field: bnord.examples.datarace.BSP0O3.x of type: |

| Writable Smart Insert 11: 20

E|ﬁ'ﬁ'%' & |E§@>. (B f@@&lﬁl |£¥ivﬁ}.v*{‘;l{‘,:lv v (':.:'\QJiCRJ'-".CCESS :l[ﬁ|?ﬂava
= " .é.
package bnord.examples.datarace; =
o=
import brord.exomples.lLock;
public class B5P23 extends Thread {
static long x;
public static void main(String[] args) {
synchronized (lockI) {
thread.start(); :
X = 42; Race found!
} ¥ There might be a race in your program
See result view.
public veoid run() {
x =17;
¢ | OK |
static Lock lockl = new Lock();
static BSP@3 thread = new BSPB3I();
Problems @ Javadoc Declaration aa Data race result £3 m

Java Data-Race Finder: Screenshot 2

§ Java - de.wwu.sdpn.testapps/src/main/java/bnord/examples/datarace /BSP03.java - Eclipse SDK

&

i

- g public woid run() {

[J] BSPO3.java 52

package bnord.examples.datarace;

import bnord.examples.lLock;

Witness View

| O, Quick Access

public class BSP@3 extends Thread {
static long x;

= public static void main(String[] args) {
synchronized (lockl) {
thread. start();
x = 42;
1
x = 17;

} Nilin BSPO3.run.

static Lock lockl = new Lock();

static BSPA3 thread = new BSPR3I(D;

. Problems @ Javadoc |&, Declaration S3& Data race result 23

Overall Result: @ Race free: 2/3 Possible race: 1/3
T TTETO OO O Al T T TS Ol G 2

C:O0IFUJTULK L UT LT, TNTUTU-CAANMTHTES LUK
b @ Field: bnord.examples.datarace.BSPO3.thread of type: bnord.examples.datarace.BSP03
¥ @ Field: bnord.examples.datarace.BSP0O3.x of type: |
¥ @ Field on static object: <Application,Lbnord fexamples/datarace/BSP03 >

\Cie

Java Data-Race Finder: Screenshot 3

Java - de.wwu.sdpn.testapps/src/main/java/bnord/examples/datarace/BSP03.java - Eclipse SDK

= |35y O Qv

X |G

(8 e

Rl E () e et e

(‘L:-\ Quick Access

&

E:

[J] BSPO3 java i3

package bnord.examples.datarace;
import bnord.examples.Lock;

public class BS5P@3 extends Thread {
static long x;

- public static void main{5tring[] args) {
synchronized (lock1) {
thread.start(); T U
X = 42; C =

There is no race in your program

}

J i
&

a g public void run() {

synchronized (lock1) {

Ey
x

= 17;
}

static Lock lockl = new Lock{);

Problems @ Javadoc |2, Declaration & Data race result £3

Owverall Result: @ Race free: 3/3 Possible race: 0/3

e

P @ Field: bnord.examples.datarace.BSP03.lock]l of type: bnord.examples.Lock
P @ Field: bnord.examples.datarace.BSP03.thread of type: bnord.examples.datarace.BSP03
P @ Field: bnord.examples.datarace.BSP0O3.x of type: |

Writable Smart Insert 16 : 31

i

Experimental Integration with Joana: Screenshot

Scala - jSDG-sdpn/src/main/javaj/examples/Example.java - Eclipse SDK - [Users/bnord/Documents/workspaces /joana-sdpn-ws

I:]||“_1'J|#§”{3"'%'r \@‘|[§‘f' IEIIEI|D| |§|"i}"¢¢" M E’|3§’Java & Scala

(O, Quick Access)

&

i
=

[J] Example.java 2 @ [J] Integration]UnitTest. java = O a

5 - i . . i . .
b Lo JSDG-sdpn Pk JJ_-% src/main fjava # EB examples # @ Example » @ run() : void EE
static String x3
staotic Lock lock = new Lock();
stotic Example otherThread = new Example();

= public static void main{String[] args) {
System.out.printlnx);
synchronized{loeck){
atherThread. start():
System.out. printlnix);

}

a = public void rundy {

synchronized(lock){
x = "secret";

}

Problems = Tasks [El Console 53 JUnit @] Error Log Git Staging Progress ® 5% | Ex 5B & & | = Eyfy= &
<terminated= Integration]UnitTest.testExample [JUnit] fSystem/Library flava/lavavirtualMachines/ 1.6.0.jdk /Contents /Home/ bin/java (08.10.2012 15:01:37)

Lock sensitive thread regions: 187 - mormal regions: 7

1 of 1: Checking interference from 58-= Application, Lexamples<Example, run{)V = to 188« Application, Lexomples/Exomple, mail
Removing interference from 58« Application, Lexamples/Example, run{}V > to 188« Application, Lexamples/Example, main{[Ljava
F oo examples. Exomple. x = #(secret) 88} -1I01-» examples.Exomple.main{jova.lang. String[J}{v18 = e

MOVED: examples.Example.run(){exXtgles. Example.x = #(secret]) @8} - 1101 -> exomples.Exomple.main{java.lang.5tring[]){v1@ =
Removed 1 of 1 interference edges. Codhed @ runs.

Writahle Smart Insert 18 : 26

Conclusion

Lock-join-sensitive analysis using automata
Finite state + recursion + thread creation + locks + joins

Experimental applications for Java

SAS‘13: Extension to ,contextual locking*
LOPSTR'15: Application to information-flow analysis

Ongoing work: Unbounded number of locks

Markus Miller-Olm, WWU Midnster HOMC + CDPS Workshop, September 19-23, 2015

45

Thank you !

