
Automata-based Analysis of
Threaded ProgramsThreaded Programs

Markus Müller-Olm

Westfälische Wilhelms-Universität Münster, Germany

Workshop HOMC + CDPS

Singapore, September 19-23, 2016

What This Talk is About

Last decades:

Tremendous progress on automatic analysis of infinite-state

systems

One line of research:

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 2

Automata-based methods / regular model-checking

This talk:

Automata-based analysis of recursive multi-threaded

programs synchronizing via locks/monitors

Communicating Synchronization via lock

Distributed Parallelism, no globally shared state

PParameterised Dynamic thread creation

Systems Networks of pushdown systems

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 3

Dynamic Pushdown Networks (DPNs)

� DPN: An automata-based model for multi-threaded recursive programs

� A natural extension of push-down systems:

| | 2

' ' | |=1

a

a

p qw w

p qw q w

γ

γ γ

→ ≤

→ >

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 5

� Generic methods for lock-sensitive iterated reachability analysis based
on word- and tree-automata

� Applied for data-race and information-flow analysis of Java

' ' | |=1a
p qw q wγ γ→ >

Recursive Programs with Thread Creation

4

5

Q:

C

Procedures

0

1

P:

A

Recursive
procedure calls

Thread
creation

Entry point, eq,
of Q

E

6

7

D

call Q

2

33

B

call P spawn Q
procedure calls

Basic
statements

Return point, rq,
of Q

+ finite-state abstraction of (thread-local) global and local variables

Branching &
Looping

Modelling Program Behavior with DPNs

() ()() � �
#

, ' ', , if , , ', '
e

g l u g l v g l g l A→ ∈

u

v

Afor basic edge e:

abstraction of
global state

abstraction of
local state current

control point

à la [Esparza/Knoop, FOSSACS’99]

Abstr(A)

init, , ,
e

Pg l u g l e l v→

u

v

call Pfor call edge e:

init init, , ,
e

Pg l u g l v g l e→ >

u

v

spawn Pfor spawn edge e:

,
ret

Pg l r g→rP

for return point of
each procedure

Execution Semantics of DPNs on
Word-shaped Configurations

A configuration of a DPN is a word in (PΓ*)+:

... an infinite state space

*

1 1 2 2 (with , , 0)
k k i i

p w p w p w p P w k∈ ∈Γ >L

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 8

The transition relation of a DPN:

()a

a

p qw

u p v u q wv

γ

γ

→ ∈ ∆

→

()' '

' '

a

a

p qw q w

u p v u q w qwv

γ

γ

→ ∈ ∆

→

>

Example

A DPN: 0

spawn
p p qγ γγ γ→ > 0 1

1 2

hello

world

q q

q q

γ γ

γ

→

→

spawn hello helloworldspawn

One of its many execution sequences:

pγ
0q pγ γγ 0 0q q pγ γ γγγ 1 0q q pγ γ γγγ 2 0q q pγ γγγ 2 1q q pγ γγγ

spawn hello helloworldspawn

9Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015

Spawns are Fundamentally Different
from Parallel Procedure Calls

4

5

6

call Q

Q:

C

0

1

2

call P

P:

A

spawn Q

6

7

D

2

3

B

P induces trace language: L = U { An ⋅ (Bm ⊗ (Ci⋅ Dj) | n ≥ m≥ 0, i ≥ j ≥ 0 }

Cannot characterize L by constraint system with „⋅“ and „⊗“.

Trace languages of DPNs differ from those of PA processes.

[Bouajjani, MO, Touili: CONCUR 2005]

Definition
*

*

pre []() : { | , : * }

post []() : { | , : * }

w

w

L C c d C w L c d

L C d c C w L c d

= ∃ ∈ ∈ →

= ∃ ∈ ∈ →

Basic Results on Reachability Analysis of DPNs

2) post*[A*](C) is effectiv. context-free for context-free C and A ⊆ Act (in polytime).

1) post*[Act*](C) is in general non-regular for regular C.

Forward-Reachability

[Bouajjani, MO, Touili, CONCUR 2005]

����

����

1) pre*[A*](C) is effectively regular for regular C and A ⊆ Act (in polytime).

Backward-Reachability

2) post*[A*](C) is effectiv. context-free for context-free C and A ⊆ Act (in polytime).

2) Membership in pre*[L](C) is in general undecidable for regular L.

1) pre*[A](C) and post*[A](C) are effectively regular for regular C and A ⊆ Act

(in polyn. time).

Single Steps

3) Membership in post*[L](C) is in general undecidable for regular L.

☺☺☺☺

☺☺☺☺

����

����

����

Example: Backward Reachability Analysis for DPNs

Consider a DPN with just the rule

()γ γ γ
+

+= =

and the infinite set of states

spawn
p p qγ γγ γ→ >

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 13

Analysis problem: can Bad be reached from pγ ?

()Bad ()q q p L Aγ γ γ
+

+= =

Example: Backward Reachability Analysis for DPNs

1. Step: Saturate automaton for Bad with the DPN rule:

p p p γ

γ

spawn
p p qγ γγ γ→ >

γ

γ
Generalization of [Bouajjani/Esparza/Maler, CONCUR`97]

method for pushdown systems

Resulting automaton Apre* represents pre*(Bad) !

q q qγ γ

γ

2. Step: Check, whether pγ is accepted by Apre* or not

Result: Bad is reachable from pγ, as Apre* accepts pγ !

spawn
up v uq p vγ γ γγ→

Some Applications of pre*-Computations with
unrestricted L (i.e. L = Act*)

Reachability of regular sets of configurations,

e,g. conflict analysis, data race analysis etc.

Set Bad of configurations is reachable from initial configuration p0γ0

iff

p0γ0 ∈ pre*[Act*](Bad)

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 15

Bounded model checking

By iterated pre*-computations alternating with single steps

corresponding to synchronizations/communications

Bit-vector data-flow analysis problems

Variable x is live at program point u

iff ()(), *[*] *[*] *[]()
initinit Main u x x

g l e pre Act At pre NonDef pre Use Conf∈ ∩

à la [Esparza/Knoop, FOSSACS’99]

used in JMoped of Schwoon/Esparza

Lock-/Monitor-sensitive Analysis

� Assume finite set of locks (or monitors)

� Have acquire- and release actions

� acq L, rel L ∈ Act f.a. locks L

� Intuition: At any time a lock can be held by at most one thread

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 22

� Intuition: At any time a lock can be held by at most one thread

� The Goal: lock-sensitive analysis

A Multi-Threaded Java Program

class MyThread extends Thread {

private Objekt l;

private int secret = 42;

private int x = 0;

public MyThread (Object l) {

this.l = l;

}

public void run() {

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 23

public void run() {

synchronized (l) {

x= secret;

}

}

public static void main (...) {

... // see right column

}

}

public static void main (String[] args) {

Object l = new Object();

MyThread t = new MyThread(l);

System.out.println(t.x);

synchronized (l) {

t.start ();

System.out.println(t.x);

}

}

Lock-sensitive Analysis

0

3

output (x)

acquire l

spawn P

Main:

0

1

2

acquire l

x := secret

release l

P:

2
1

2

3

Power of different analyses:

� Pure lock sets: 3

� Analysis sensitive to thread creation, e.g., [BMOT05], [LMO07]:

1,2

� Lock-sensitive analysis from [LMO08], [LMOW09]: 1,2,3,4

Of course, we also treat branching, loops, recursion !

4

5

6

output (x)

spawn P
4

release l

release l

3

4

The Results of Kahlon and Gupta

Reachability is undecidable for two pushdown-systems running in parallel

and synchronizing by release- and acquire-operations used in an

unstructured way.

Idea: Can simulate synchronous communication

Theorem 1 [Kahlon/Gupta, LICS 2006]

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 25

Reachability is decidable for two pushdown-systems running in parallel and

synchronizing by release- and acquire-operations used in a nested fashion.

Idea: Collect information about lock usage of each process in „acquisition
histories“ and check mutual consistency of the collected histories.

Theorem 2 [Kahlon/Gupta, LICS 2006]

Our goal: Lock-sensitive analysis for systems with thread creation

Example: Locksets are not Precise Enough

Thread 1:

acquire L1

acquire L2

release L2

X:

Thread 2:

acquire L2;

acquire L1;

release L1;

Y:

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 26

Must-Lockset computed at X: { L1 } Must-Lockset computed at Y: { L2 }

We have disjoint locksets at X and Y: { L1 } ∩ { L2 } = { } .

Nevertheless, X and Y are not reachable simultaneously !

A Tree-Based View of Executions: Action Trees

A DPN: 0

spawn
p p qγ γγ γ→ > 0 1

1 2

hello

world

q q

q q

γ γ

γ

→

→

1q pγ γγ 2q pγγ
hello

spawn

spawn

hello hello

world

world

spawn

spawn

Execution sequences:

pγ
0q pγ γγ 0 0q q pγ γ γγγ 1 0q q pγ γ γγγ 2 0q q pγ γγγ 2 1q q pγ γγγ

0 1q q pγ γ γγγ 1 1q q pγ γ γγγ

spawn

spawn

worldhello

ε ε

ε

spawn hello

hello

hello

hello

hello

hello

world

world

spawn

Action tree:

2 1q q pγ γγγpγ T *We write:

T:

Definition

A Tree-Based View of Executions

*

*

pre []() : { | , : * } where *

preT []() : { | , : * } where ()

w

T

L C c d C w L c d L Act

M C c d C T M c d M Trees Act

= ∃ ∈ ∈ → ⊆

= ∃ ∈ ∈ → ⊆

Recall:

Membership in pre*[L](C) is undecidable for regular L already for very simple

languages C (e.g. singletons).

preT*[M](C) is effectively regular for regular C and regular M (on trees).

Theorem 1 [Lammich, MO, Wenner, CAV 2009]

In a DPN that uses locks in a well-nested and non-reentrant fashion:

Set of tree-shaped executions having a lock-sensitive schedule is regular.

Idea of proof: Generalize Kahlon and Gupta‘s acquisition histories.

Size of automaton exponential in number of locks...

Theorem 2 [Lammich, MO, Wenner, CAV 2009]

Which of these action trees
have a lock-sensitive schedule?

acq X

spawn

acq Xε

acq X

spawn

acq Xrel X

spawn

acq Y

acq X

acq X

acq Yacq X

rel X

ε

ε

acq X

rel X

ε

ε

rel X

rel X

ε ε

acq X

rel Y

acq Y

No!
Yes: (0,acq X),(0,sp),(0,rel X),

(1,acq X),(1,rel X)
No!

YX
YX YX

An Even More Regular View to Executions:
Execution Trees

Joint work (VMCAI‘11) with:

� Thomas Gawlitza, Helmut Seidl (TU München)

� Peter Lammich, Alexander Wenner (WWU Münster)

Realised for Java analysis: Benedikt Nordhoff‘s diploma thesis

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 30

Realised for Java analysis: Benedikt Nordhoff‘s diploma thesis

Example:

_

: '

: '

: ''

: '' ''

call

spawn

no more

return

Call p p

Spawn p p q

NoMore p p

Return p p

γ γγ

γ γ γ

γ γ

γ

→

→

→

→

>

:
hello

Hello q qγ →

_

: '

: '

: ''

: '' ''

call

spawn

no more

return

Call p p

Spawn p p q

NoMore p p

Return p p

γ γγ

γ γ γ

γ γ

γ

→

→

→

→

>
call

spawn

hello

ε

An Even More Regular View to Executions

The DPN:

: hello
Hello q qγ →

Action tree:

call

spawn

hello

ε

no_more

ε

return

return

Call

Spawn

NoMore

Execution tree:

Call

Spawn

Return

Hello

Return

Hello

Return

return

Execution Trees

Recall: post*[Act*](p0γ0) is non-regular in general.

Set of execution trees that have a lock-sensitive schedule is regular, e.g. for:

• nested non-reentrant locking (even with structured form of joins)

Observation 2:

Set of all execution trees from given initial config., postE*(p0γ0), is regular !

Observation 1:

• nested non-reentrant locking (even with structured form of joins)

• reentrant block-structured locking (monitors, synchronized-blocks)

Obtain homogenous approach to, e.g., lock-sensitive reachability:

Reg. set C is lock-sensitively reachable from start config p0γ0

iff

postE*(p0γ0) ∩ LockSensTrees ∩ ExecTrees(C) is non-empty.

Set of execution trees reaching a given regular set C of configs is regular

Observation 3:

Applications

Lock-join-sensitive ...

� ... reachability analysis to regular sets of configurations,

e.g. conflict analysis, data race analysis etc.

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 33

� ... bounded model checking

� ... DFA of bitvector problems

Realization for Java

Uses:

� WALA from IBM: T.J. Watson Libraries for Analysis

� XSB: A Prolog-like system with tabulating evaluation

Identifies object references that can be used as locks

� Object creation sites visited at most once

� Experiments with Kidd et. al.‘s random isolation technique

Benedikt Nordhoff

For practicality:

� Pre-analysis of WALA flow graph and (massive) pruning

� Modular formulation of automata-based analysis

� Clever evaluation strategy for tree automata construction

Experimental applications:

� Lock-sensitive data-race analyzer for Java

� With KIT: Improve PDG-based IFC analysis of concurrent Java programs

40Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015

Java Data-Race Finder: Screenshot 1

Java Data-Race Finder: Screenshot 2

Java Data-Race Finder: Screenshot 3

Experimental Integration with Joana: Screenshot

Conclusion

� Lock-join-sensitive analysis using automata

� Finite state + recursion + thread creation + locks + joins

� Experimental applications for Java

Markus Müller-Olm, WWU Münster HOMC + CDPS Workshop, September 19-23, 2015 45

� SAS‘13: Extension to „contextual locking“

� LOPSTR‘15: Application to information-flow analysis

� Ongoing work: Unbounded number of locks

Thank you !Thank you !

